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Abstract: Microgrid with hydrogen storage is an effective way to integrate renewable energy and
reduce carbon emissions. This paper proposes an optimal operation method for a microgrid with
hydrogen storage. The electrolyzer efficiency characteristic model is established based on the linear
interpolation method. The optimal operation model of microgrid is incorporated with the electrolyzer
efficiency characteristic model. The sequential decision-making problem of the optimal operation
of microgrid is solved by a deep deterministic policy gradient algorithm. Simulation results show
that the proposed method can reduce about 5% of the operation cost of the microgrid compared with
traditional algorithms and has a certain generalization capability.

Keywords: hydrogen storage; electrolyzer efficiency; optimal operation; deep deterministic
policy gradient

1. Introduction

Renewable energy, such as wind and solar energy, is essential for the energy decar-
bonization [1]. Microgrid is an important form for renewable energy integration to the
power systems [2]. Hydrogen energy is another type of clean and low-carbon energy. The
combustion product of hydrogen is water with zero-carbon emissions [3]. For microgrid
systems with high renewable energy integration, hydrogen energy can be used as a long-
term energy storage to improve the utilization of renewable energy and reduce carbon
emissions. The renewable energy is intermittent and random, and brings great challenges
to the operation of the microgrids [4].

To address the economic dispatch problem in microgrids containing hydrogen storage,
a mixed integer nonlinear dispatch model for a microgrid with 100% renewable energy
generation is proposed in [5], and the GAMS solver is used to optimize the operation
strategy of hydrogen storage and improve the economic efficiency of the microgrid in the
day-ahead market. In [6], a nonlinear scheduling model for a microgrid containing fuel cell
and hydrogen storage systems is proposed and the CONOPT solver is used to optimize the
energy purchase cost of the microgrid. In [7], an optimization model to schedule an islanded
microgrid with various resources, including photovoltaic generation and hydrogen energy
system, is proposed. The problem is represented as a mixed integer linear program problem
and solved by CPLEX. In [8], the retail price problem of the electricity energy retailer that
owns plug-in electric vehicles and hydrogen storage systems is proposed. The proposed
model is verified by simulation using GAMS. In [9], the harmony search algorithm is used
to optimize the hydrogen production capacity of the hydrogen storage in the microgrid to
reduce the operating cost. In [10], a hybrid AC-DC microgrid model containing electric
vehicles and hydrogen fuel cells is presented, and the operating scheme is optimized
using an improved teacher learning algorithm. In [11], the genetic algorithm is used to
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optimize the life cycle cost of the microgrid containing hybrid electric-hydrogen energy
storage. In [12], the particle swarm algorithm is used to solve the multi-objective energy
management problem of renewable energy microgrid containing electric-hydrogen hybrid
energy storage to improve the system efficiency.

The conventional mathematical programing algorithms in the above literature are
computationally efficient. However, these methods tend to be trapped in local optima
when the problem is nonlinear and nonconvex. The heuristic algorithms have better global
optimization capability, but suffer from slow convergence and poor generalization. In
addition, the above literature mainly focuses on the day-ahead scheduling problem of
microgrid, and relies on the accurate predictions of renewable energy and load.

Deep reinforcement learning is a machine learning method with the ability to per-
ceive the environment and address uncertainties. Currently, deep reinforcement learn-
ing has been used to achieve certain results in several areas, such as reactive power
optimization [13,14], electric vehicles [15,16], and power markets [17,18]. In terms of
optimal operation, the deep reinforcement learning algorithms is used in [19] to solve
the energy management problem of residential energy system with electricity, heat, and
gas demand. In [20], a microgrid scheduling model is proposed and deep reinforcement
learning algorithms is adopted to reduce the power purchase cost. However, this literature
fail to consider the impact of hydrogen energy storage system on the microgrid operation.
In [21], a coordinated control method for electrochemical and hydrogen energy storage
in microgrid based on deep reinforcement learning is proposed. However, the hydrogen
storage model is simple and ignores the electrolyzer efficiency characteristics, which has
significant influence on the operation of microgrid. Moreover, only sub-optimal solution
can be found because of the discretization of the action space.

In this paper, an optimal operation model for a microgrid with hydrogen energy
storage system is developed. The efficiency-power model of the electrolyzer is established
based on linear interpolation to evaluate the operating cost of the electrolyzer. The objective
of the optimal operation model is to reduce the operation cost and guarantee the safety of
the system. The deep deterministic policy gradient (DDPG) algorithm is used to optimize
the operation scheme of the microgrid. The DDPG algorithm can deal with the continuous
action space problem and obtains better operation scheme compared with the conventional
algorithms. Additionally, the trained DDPG model is used in new scenarios. The simulation
results show that the DDPG algorithm has generalization capabilities.

The main contributions can be summarized as:

• A refined model represents the electrolyzer efficiency characteristics based on the
linear interpolation method is proposed;

• An optimal operation model for a microgrid with hydrogen storage is proposed. The
electrolyzer efficiency characteristics model is incorporated into the optimal operation
model;

• The DDPG algorithm is adopted to solve the optimal operation model, which has a
continuous action space.

2. Model of the Microgrid System

A microgrid can increase the integration of renewable energy and reduce the carbon
emissions of the whole energy system. In this paper, an islanded microgrid was constructed.
The structure of the microgrid is shown in Figure 1. The microgrid included the load, a
microturbine, a photovoltaic (PV) generation device, a battery energy storage system
(BESS), and a hydrogen storage system. The hydrogen storage system consisted of an
electrolyzer, a hydrogen storage tank, and a solid oxide fuel cell (SOFC). The hydrogen
storage system [22] can provide regulation capability to the microgrid and improve the
system reliability.
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Figure 1. Schematic diagram of the microgrid.

2.1. Electrolyzer Efficiency

Electrolyzer efficiency ηel is the efficiency of the hydrolysis reaction at constant tem-
perature and pressure. The electrolyzer efficiency [23] consists of voltage efficiency ηv and
current efficiency ηi as below:

ηel = ηiηv (1)

The current efficiency, also known as Faraday efficiency, can be expressed as:

ηi = 96.5e0.09/I−75.5/I2
(2)

where I is the stack current of the electrolyzer.
Voltage efficiency is the ratio between the theoretical decomposition voltage of water

and the actual decomposition voltage, which can be expressed as

ηv = (Utn/Uel) ∗ 100% (3)

where Utn is the theoretical decomposition voltage, which is generally 1.482 V; Uel is the
actual decomposition voltage. Under the pressure p of 1.01 × 105 Pa, Uel depends on the
unit current density during the electrolysis of water, as below:

Uel(j, T, p) = Urev(T, p) + Uohm + Uh2(j, T) + Uo2(j, T) (4)

where j is the unit current density; T is the working temperature of the electrolyzer;
Urev is the reversible voltage of the electrolytic water; Uohm is the voltage drop caused
by the resistance of electrolyte; Uh2 and Uo2 are the hydrogen overpotential and oxygen
overpotential generated by the electrolytic water, respectively. Urev, Uohm, Uh2 and Uo2 are
determined by

Urev(T, p) = 1.5184− 1.5421× 10−3T + 9.523× 10−5T ln T + 9.84× 10−8T2 (5)

Uohm = IRi (6)

Uh2(j, T) =
RT

αcncF
ln
(

j
jco

)
(7)

Uo2(j, T) =
RT

αanaF
ln
(

j
jao

)
(8)
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where Ri is the resistance of the electrolyte; R is the universal gas constant, F is the Faraday
constant; αa and αc are the charge transfer coefficients of anode and cathode, respectively;
jao and jco are the exchange current densities of anode and cathode, respectively; na and nc
are the electron transfer numbers of anode and cathode, respectively. The input power of
the electrolyzer Pel is related to the electrolyzer current I as follows

Pel = Uel I (9)

The relation between the input power and the electrolyzer efficiency can be obtained
by Equations (1)–(9). However, the relation is complicated and contains logarithmic calcu-
lations. Thus, it is difficult to find the corresponding electrolyzer efficiency based on the
input power of the electrolyzer in the microgrid scheduling problem.

In order to simplify the electrolyzer efficiency characteristics model, this paper firstly
obtained ηel and the corresponding Pel according to j. Then, the electrolyzer efficiency
characteristic curve was obtained based on ηel and Pel , as shown in Figure 2. Twenty points
on the efficiency characteristic curve were taken as the original data to form the data table.
When solving the scheduling problem, the electrolytic cell efficiency corresponding to Pel
can be quickly found by looking up the table and linear interpolation, as shown below:

ηel =
η1 − η0

P1 − P0
(Pel − P0) + η0 (10)

where P0 and P1 are the two power values nearest to Pel in the data table; η0 and η1 are the
corresponding electrolyzer efficiencies of P0 and P1 in the data table.
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Figure 2. Electrolyzer efficiency characteristic.

When the input power and the efficiency of the electrolyzer are determined, the
hydrogen production power of the electrolyzer can be calculated according to Equation (11):

Pel,out = ηel Pel (11)

where Pel,out is the hydrogen production power of the electrolyzer.
Different from the conventional fixed efficiency model of electrolyzer, the hydrogen

production power was obtained by multiplying the power consumption of electrolyzer and
the respective efficiency obtained from the electrolyzer efficiency characteristic model.
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2.2. Economic Dispatch Model of Microgrid
2.2.1. Objective Function

The total cost F in all scheduling periods of a day is set as the objective function. This
objective function not only covers the economic benefits of microgrid, but also takes into
account the environmental benefits of microgrid, as below:

F =
T

∑
t=1

(CMT(t) + CMT
co2

(t) + Cbat(t) + Cel(t) + C f c(t)) (12)

where T is the whole dispatching cycle; t is the time step, and the scheduling interval is 1 h;
CMT(t) is the operating cost of the microturbine at time t; CMT

co2
(t) is the CO2 emission cost

of the microturbine at time t; Cbat(t), Cel(t) and C f c(t) are the operation costs of the BESS,
electrolyzer, and fuel cell, respectively. The above operation costs can be determined by

CMT(t) = δ2(PMT
t )

2
+ δ1PMT

t + δ0 (13)

CMT
co2

(t) = cco2 λMT
co2

PMT
t (14)

Cbat(t) = cbat

∣∣∣Pb
t

∣∣∣∆t (15)

Cel(t) = cel Pel
t ∆t (16)

C f c(t) = c f cP f c
t ∆t (17)

where δ2, δ1, and δ0 are the power generation cost coefficients of microturbine; ∆t is the
scheduling interval; cbat, cel , and c f c are the operation and maintenance cost coefficients
of BESS, electrolyzer, and fuel cell, respectively; λMT

co2
is the CO2 emission coefficient of

microturbine; cco2 is the carbon emission price of carbon trading market; PMT
t is the power

generation of microturbine at time t; Pb
t is the charging or discharging power of BESS at time

t, and a positive value of Pb
t means the BESS is charged. Otherwise, BESS is discharged;

Pel
t and P f c

t are the input power of electrolyzer and output power of fuel cell at time
t, respectively.

2.2.2. Constraints

Generally, in order to ensure the overall working efficiency of the hydrogen storage
system, the electrolyzer and fuel cell cannot work at the same time. Therefore, the input
power of the electrolyzer is regarded as the charging power of the whole hydrogen storage
system, and the discharging power of the fuel cell is regarded as the discharging power of
the whole hydrogen storage system, as below:

Ph2
t =

{
Pel

t Ph2
t ≥ 0

−P f c
t Ph2

t < 0
(18)

where Ph2
t is the charging/discharging power of the hydrogen storage system at time t,

and a positive value of Ph2
t means the hydrogen storage system is charged. Otherwise, the

hydrogen storage system is discharged.
In addition to economic efficiency, the operation safety of microgrid also needs to be

guaranteed. The operation constraints of microgrid are as follows:

1. Power balance

The microgrid in this study is off grid. The power balance of the microgrid mainly
relies on the output power of PV generation and microturbine. The imbalance power is
regulated by BESS and hydrogen storage system. The power balance equation is

PPV
t − Pcurt

t + PMT
t = Pload

t − Ploss
t + Pb

t + Ph2
t (19)
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where PPV
t , Pcurt

t , Pload
t and Ploss

t are the available PV generation, curtailment of PV genera-
tion, load power, and curtailment of load at time t, respectively.

2. Operating power constraints

To ensure the safety of the devices in microgrid, the operating power constraints are
as below:

PMT
min ≤ PMT

t ≤ PMT
max (20)

Pb
min ≤ Pb

t ≤ Pb
max (21)

Pel
min ≤ Pel

t ≤ Pel
max (22)

P f c
min ≤ P f c

t ≤ P f c
max (23)

where PMT
max, Pb

max, Pel
max and P f c

max are the upper power limits of microturbine, BESS, elec-
trolyzer, and fuel cell, respectively; PMT

min , Pb
min, Pel

min and P f c
min are the lower power limits of

microturbine, BESS, electrolyzer, and fuel cell, respectively.

3. Energy storage capacity

In order to avoid overcharging and over-discharging of energy storage, the states of
charge (SOCs) of energy storage can be constrained as:

SOCb
min ≤ Sb

t ≤ SOCb
max (24)

SOCh2
min ≤ Sh2

t ≤ SOCh2
max (25)

where Sb
t is the SOC of BESS at time t; SOCb

max and SOCb
min are the upper and lower limits

of SOC of BESS, respectively; Sh2
t is the SOC of hydrogen storage system at time t; SOCh2

max

and SOCh2
min are the upper and lower limits of the SOC of hydrogen storage system.

The SOCs of the two energy storage devices can be calculated by the following equations:

Sb
t =

Sb
t−1 +

Pb
t ηb∆t

Eb Pb
t ≥ 0

Sb
t−1 +

Pb
t ∆t

ζbEb Pb
t < 0

(26)

Sh2
t =

Sh2
t−1 +

Ph2
t ηh2 ∆t

Eh2
Ph2

t ≥ 0

Sh2
t−1 +

Ph2
t ∆t

ςh2 Eh2
Ph2

t < 0
(27)

where ηb and ζb are the charging and discharging efficiencies of BESS, respectively; ηh2

and ςh2 are the efficiencies of electrolyzer and fuel cell, respectively; Eb and Eh2 are the
capacities of BESS and hydrogen storage tank, respectively.

Because the operating cost of microturbine is a quadratic function, the objective
function is nonlinear. All of the constraints are linear. Thus, the whole model is a quadratic
programing model that is nonlinear.

3. Deep Reinforcement Learning

Deep reinforcement learning is a data-driven method and can be used in high-
dimensional sequential decision-making problem. The deep reinforcement learning model
can be trained offline and applied online [24]. Thus, deep reinforcement learning is suitable
for the application of the optimal operation of the microgrid. The block diagram of optimal
operation of microgrid with deep reinforcement learning is shown in Figure 3.
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3.1. Reinforcement Learning

Reinforcement learning is the learning process where an intelligence agent interacts
with the environment in order to maximize the cumulative reward. The schematic diagram
of reinforcement learning is shown in Figure 4.
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Q-learning is one of the main algorithms of reinforcement learning. Q-learning eval-
uates the merit of an action by the state action value function and obtains the optimal
policy by solving the optimal action value function. The action value function is calculated
as below:

Qk+1(st, at) = Qk(st, at) + α[rk + γmax
a′

Qk(st+1, a′)−Qk(st, at)] (28)

where Qk(st, at) is the value function of the state action at the kth iteration under the state
st; γ is the decay rate; rk is the reward value under the action at at the kth iteration; a′ is the
arbitrary action that can be selected for the state st+1.
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3.2. Deep Deterministic Policy Gradient Algorithm

Conventional reinforcement learning methods, such as Q-learning, perform well in
problems with small discrete spaces. However, when dealing with continuous state variable
tasks, the number of states using discretization method increases exponentially as the
dimensionality of the space increases. This results in the curse of dimensionality. With the
development of machine learning, deep learning is combined with reinforcement learning
to solve the curse of dimensionality problem. In this paper, the DDPG algorithm was used
to solve the microgrid optimal operation problem. The DDPG algorithm [20] consists of
two independent neural networks fitting the policy function and the action-value function.
The two neural networks are called the policy network and the evaluation network.

In addition, two target networks were used for the policy network and evaluation
network to add stability to training. The network parameters of the strategy network,
evaluation network, target strategy network, and target evaluation network are θπ , θQ, θπ′

and θQ′ , respectively. The strategy network and the evaluation network were updated with
the corresponding learning rates for the parameters. The evaluation network was updated
by minimizing the loss function as below:

L(θQ) = E (yt −Q(st, at

∣∣∣θQ))
2

(29)

yt = rt + γQ′(st+1, π′(st+1

∣∣∣θπ′)
∣∣∣θQ′) (30)

where E is expectation; yt is target Q value; Q′ and π′ are target Q value and target
strategy, respectively.

The policy network parameters were updated by sampling the policy gradient as:

∇θπ π = ∇aQ(s, a
∣∣∣θQ)

∣∣∣s=st ,a=π(st)∇θπ π(s
∣∣∣θπ)

∣∣∣
s=st

(31)

After the parameters of the strategy network and evaluation network were updated,
the parameters of the two target networks were updated through soft update technique
as below:

θQ′ = τθQ + (1− τ)θQ′ (32)

θπ′ = τθπ+(1−τ)θπ′ (33)

where τ is the soft update co-efficient.
In order to enhance the ability to explore the environment, random noise υt needs to

be added to the actions as:
at = π(st|θπ) + υt (34)

4. Optimal Operation of Microgrid Based on DDPG
4.1. State Space

The state space needs to include the factors that impact the strategy. For the optimal
operation of the PV-hydrogen energy system, the parameters of the state space include
the power generation of PV, the load, the SOC of BESS, and the SOC of hydrogen storage.
Therefore, the state space contains four states and can be expressed as

st =
{

PPV
t , Pload

t , Sb
t , Sh2

t

}
(35)

where St is the state space, which is the input of the policy network. Thus, the dimension
of the input layer of the DDPG policy network is 4.

4.2. Action Space

The decision variables of the microgrid operation optimization include the output of
microturbine, the charging and discharging power of BESS, the charging and discharging
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power of hydrogen storage system, curtailment of PV generation, and curtailment of load
power at time t. In order to avoid a high dimension action space of deep reinforcement
learning, where the agent has difficulty of exploring the feasible solution, the action space
of the microgrid operation optimization problem is expressed by microturbine output and
hydrogen storage system charging/discharging power as:

at =
{

Ph2
t , PMT

t

}
(36)

After the agent selects the action, the values of other decision variables were deter-
mined by the following rules. Firstly, the unbalanced power of electric energy after the
agent selects the action was calculated according to Equation (37):

Pextra
t = PPV

t − Pload
t − Ph2

t + PMT
t (37)

where Pextra
t is the unbalanced power of the system.

When the unbalanced power is positive, it indicates that the power generation of the
system is large. At this scenario, the BESS is set to charge power. When the unbalanced
power is negative, which represents that the power generation of the system is insufficient,
and BESS is set to discharge power. Since output power of BESS is affected by the constraints
of SOC, the maximum charging and discharging power under the current SOC can be
calculated by the following formula:

Pcha,max
t =

(1− Sb
t )Eb

ηb∆t
(38)

Pdis,max
t =

St
bEbζb

∆t
(39)

where Pcha,max
t is the maximum allowable charging power under the SOC at time t; Pdis,max

t
is the maximum allowable discharge power under the SOC at time t.

The charging and discharging power of BESS were calculated by comprehensively
considering the power limits and SOC constraints, as shown in Equation (39). Finally,
the curtailment of PV generation and the curtailment of load power of the system were
calculated according to the charging/discharging power of BESS and the imbalance power
of the system, as shown in Equations (41) and (42).

The flowchart is shown in Figure 5:

Pb
t =

{
min(Pcha,max

t , Pb
max, Pextra

t ) Pextra
t ≥ 0

max(−Pdis,max
t , Pb

min, Pextra
t ) Pextra

t < 0
(40)

Ploss
t = Pextra

t − Pb
t Pextra

t < 0 (41)

Pcurt
t = Pextra

t − Pb
t Pextra

t ≥ 0 (42)

At each scheduling time t, the action vector at with dimension 2 is generated by the
strategy network under the state st. Therefore, the output layer dimension of the policy
network is 2. Since st and at are both inputs of the evaluation network, the input layer
dimension of the evaluation network is 6.
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4.3. Reward Function

The goal of the intelligence in the learning process is to maximize the reward. The
optimal policy must satisfy the constraints of the microgrid model. Thus, the constraints
need to be reasonably transformed into the reward function. The equipment power is
constrained by the upper and lower limits of the action space. The SOC constraints of BESS
are met in the decision-making process. Therefore, it is only necessary to add the SOC
constraints of the hydrogen storage system to the reward function in the form of a penalty
function as:

D1 =


−1 Sh2

t > Sh2
max

0 Sh2
min ≤ Sh2

t ≤ Sh2
max

−1 Sh2
t < Sh2

min

(43)

where D1 is the hydrogen storage system SOC penalty function.
The microgrid operates in an off-grid mode. In order to reduce the amount of load

shedding and PV curtailment to improve the utilization of renewable energy, the costs
of load shedding and PV curtailment are added into the reward function as part of the
microgrid operation cost:

D2 = ρ(Pcurt
t + Ploss

t )∆t (44)

where D2 represents the total cost of load shedding and PV curtailment; ρ is the cost coefficient.
Since the objective of the proposed model is to minimize the microgrid operating cost,

the reward function for each dispatch period contains the power system operating cost
Ft, the hydrogen storage SOC penalty function D1, and the cost of load shedding and PV
curtailment D2.
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Moreover, deep reinforcement learning is a process of maximizing the cumulative
reward, so the operating cost in the reward function needs to be expressed as a negative
value as:

rt = −Ft − D2 + D1 (45)

4.4. Process of the Optimal Operation Method

The flowchart of the proposed optimal operation method of the microgrid based on
DDPG is shown in Figure 6.
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5. Case Studies
5.1. Simulation Environment

The microgrid used for study is shown in Figure 1. The parameters of electrolyzer
efficiency characteristics are shown in Table 1, and the power limits and cost parameters of
the equipment in the microgrid are shown in Table 2 [25]. The capacity of the hydrogen
storage tank is 200 kWh. The electrochemical storage capacity is 2.9 kWh. The efficiency of
the fuel cell is 0.65, and the charging and discharging efficiencies of the electrochemical
storage are both 0.95. The microturbine cost parameters δ2, δ1, δ0 are 0.001166 USD/kW2,
0.03677 USD/kW, and 0.06829 USD/kW, respectively; The cost efficiency of load shedding
and PV curtailment is 0.3152 USD/kWh. The factor of CO2 emission is 724 kg/kW, and the
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carbon emission price in the carbon trading market of Beijing in China is 0.009079 USD/kg.
The data of PV and load are from [26]. The curves of PV generation and load forecast for a
typical day are shown in Figure 7.

Table 1. Parameters of electrolyzer.

Parameters Value

Unit current density j/A·cm−2 0~4
Operating temperature T/K 353

Universal gas constants R/J·(mol·K)−1 8.31446
Faraday’s constant F/C·mol−1 96,485.3

Cathodic charge transfer coefficient αc 0.71
Anode charge transfer coefficient αa 0.29

Cathode exchange current density jco/mA·cm−2 24.6
Anode exchange current density jao/mA·cm−2 24.1

Electron transfer number of cathode and anode nc, na 2
Electrolyte resistance/mΩ 20

Cross-sectional area of electrolyzer/cm2 16

Table 2. Parameters of devices in microgrid.

Device Maximum
Power/kW

Minimum
Power/kW

Operation and Maintenance
Cost (USD/kWh)

Electrolyzer 1 0 0.01262
Microturbine 1 0 /

Fuel Cell 1 0 0.01325
BESS 2.9 2.9 0.01311
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Figure 7. Typical daily PV and load forecast curves.

5.2. Simulation Results
5.2.1. Simulation Results of Electrolyzer Efficiency Characteristics

In order to study the effect of the electrolyzer efficiency characteristic on the microgrid
operation scheduling, the capacity of the hydrogen storage tank is set as 10 kWh. In the
case where the efficiency characteristic is not considered, the efficiency of the electrolyzer is
set as a constant that is 0.65 from the literature [21].

The scheduling scheme of the constant efficiency case is applied to the more accurate
electrolyzer model considering efficiency characteristic. Additionally, the SOCs of BESS
and hydrogen storage are shown in Figure 8b. In contrast, the simulation results using the
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efficiency characteristic model are shown in Figure 8a. The microgrid operation costs under
different electrolyzer models are shown in Table 3.
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Figure 8. Simulation results under different electrolyzer efficiency models. (a) Simulation results of
the model considering the efficiency characteristic of the electrolyzer. (b) The simulation results of
the model using a constant electrolyzer efficiency.

Table 3. Operating costs under different electrolyzer efficiency models.

Electrolyzer Efficiency Microgrid Operating Cost/USD

Considering efficiency characteristic 5.24
Constant efficiency 0.5 5.20
Constant efficiency 0.6 5.42

Constant efficiency 0.65 5.56
Constant efficiency 0.7 5.94

As shown in Table 3, the operating cost under the model considering electrolyzer
efficiency characteristic is minimum. The constant efficiency models result in larger op-
erating costs. It can be seen from Figure 8 that the maximum SOC of hydrogen storage
under constant efficiency model is much less than 1. Under the model consider efficiency
characteristic, the SOC of hydrogen storage reaches 1 at certain time steps. This means that
adopting the model with efficiency characteristics can better utilize the hydrogen storage
capacity and further reduce the operating cost.
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5.2.2. Simulation Results of DDPG Algorithm

Deep reinforcement learning needs to train a neural network in a short time and use
it for action decision making and value estimation. Thus, deep reinforcement learning
usually has a relatively shallow network to ensure fast training. Moreover, a too deep
and wide neural network structure can easily lead to over-fitting. Finally, the network
structure with two hidden layers is adopted through experiments. The strategy network in
the DDPG algorithm in this study consists of a 4-dimensional input layer, 2 hidden layers
with 64 neurons, and an output layer for actions. The evaluation network consists of a
4-dimensional input layer for states, a 2-dimensional input layer for actions, 2 hidden layers
with 64 neurons, and an output layer for outputting Q values. The structure of neural
network is shown in Figure 9.
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Figure 9. Architecture of the network. (a) The strategy network. (b) The evaluation network.

The decay rate of the DDPG algorithm γ is 0.9. The learning rate of the strategy
network is 0.0001. The learning rate of the evaluation network is 0.001. A total of 64 samples
are selected for each learning process. The size of the experience pool is 10,000. The standard
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deviation of Gaussian noise is 1. The standard deviation of Gaussian noise is reduced
to 0.9995 times of the original for each scheduling period during the learning process.
Additionally, the number of iterations is set as 2000.

The reward value curve during the training of the algorithm is shown in Figure 10. It
can be seen that, after 1000 rounds, the reward value is basically stable, and the algorithm
converges. The operating cost of the microgrid is USD 5.29.
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Figure 10. Convergence curve of the DDPG algorithm.

From Figure 11a, we can see that, in the time period from 8:00 to 17:00, the PV
generation increases and the BESS starts to charge. The electrolyzer also produces hydrogen,
and the BESS stops acting after it is fully charged. In the time period from 18:00 to 23:00
when the PV generation decreases and the load demand is high, the hydrogen storage is
mainly used for power generation at these time steps because the hydrogen storage has a
larger capacity.
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Figure 11. Scheduling results of microgrid based on the DDPG algorithm. (a) Scheduling results of
microgrid. (b) Curtailment of PV generation and load.

Figure 11b shows the curtailment of PV generation and load. A positive value means
the microgrid has excess generation, resulting in curtailment of PV generation. A negative
value means the load is more than the generation and a part of load is shed. As can be seen,
there is no load shedding in the microgrid, and all load demands are met. However, there
is curtailment of PV generation during the time steps from 11:00 to 17:00.

5.2.3. Performance Evaluation

In order to test the performance of the proposed optimal operation method for the
microgrid, the proposed algorithm is compared with the genetic algorithm (GA) [27] and
the interior point method [28]. The DDPG algorithm is implemented in Python using the
TensorFlow framework. The interior point method and GA are conducted in MATLAB.
The interior point method is implemented using the ‘fmincon’ function in the optimization
toolbox. The genetic algorithm is implemented using the ‘ga’ function. The simulation
results are shown in Figures 12 and 13. Table 4 summarizes the operating costs of the
microgrid using the three methods.

1. Method1: Optimize the operation of microgrids using DDPG algorithm;
2. Method2: Optimize the operation of the microgrid using the GA;
3. Method3: Optimize the operation of the microgrid using the interior point method.

It can be seen that the operating costs of method 2 and method 3 are higher than that
of method 1. In method 2 and method 3, the expensive microturbine is used for too many
times. In contrast, in method 1, the cheap fuel cell is used more often. In total, the operating
cost of method 1 is the least. The operating cost not only covers the economic benefits of
the microgrid system operation, but also takes into account the environmental benefits of
the microgrid. Through the simulation experiment, the proposed DDPG method has the
minimum operating cost compared to the traditional methods.
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Figure 12. Scheduling results of microgrid using method 2.
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Figure 13. Scheduling results of microgrid using method 3.

Table 4. Operating cost of microgrid using different algorithms.

Algorithm Method 1 Method 2 Method 3

Operating cost of
microgrid/USD 5.29 5.75 5.52

5.2.4. Generalization Analysis

To investigate the generalization of the DDPG algorithm in new scenarios, the already
trained DDPG model is tested in new winter and summer scenarios, since the load and
PV generation curves differ in shapes. The load and PV generation curves are shown in
Figure 14. The trained model was used for the new scenarios and the results are shown in
Figure 15.
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From the simulation results, it can be seen that in winter the PV generation is not
enough to support the load demand. The hydrogen storage system is discharged most of
the time, and the microturbine is put into use at peak hours from 16:00 to 22:00. Since the
PV generation power in winter is low, there is no PV curtailment in winter.

In summer, the PV generation is high. The load demand can be met under the
regulation of BESS and the hydrogen storage system. From 9:00 to 17:00, the PV generation
is larger, and the hydrogen storage system is in the charging state. From 17:00 to 23:00, the
load peak is at peak hours, and the hydrogen storage system is in the discharging state.

To compare with the DDPG algorithm, the GA method is applied to the new scenarios,
and the results are shown in Table 5.
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curves in winter. (b) PV and load forecasting curves in summer.
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Table 5. Optimization results of different algorithms.

DDPG GA

Operating cost of winter/USD 2.07 2.08
Operating cost of

summer/USD 5.31 5.70
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As shown in Table 5, the trained DDPG model can be applied to new scenarios directly
without additional training, and the operating cost of the microgrid is less than that using
the GA, which indicates that the proposed algorithm has a certain generalization after
training, and can reduce the operating cost of the hydrogen microgrid.

6. Conclusions

This paper proposes a refined model to represent the electrolyzer efficiency charac-
teristics using the linear interpolation method. The electrolyzer efficiency characteristic
model is combined with the model of the microgrid with hydrogen storage. Additionally,
an optimal operation method based on the DDPG algorithm is proposed for the microgrid.
According to the simulation results, the following conclusions can be drawn:

• The electrolyzer efficiency characteristics model using linear interpolation method
can describe the operation of electrolyzer more accurately. The proposed optimal
operation method for the microgrid considering electrolyzer efficiency characteristics
can reduce the PV curtailment and reduce the microgrid operation cost;

• The optimal microgrid operation method based on DDPG algorithm can effectively
reduce the operation cost and improve the microgrid efficiency compared with the
method based on traditional algorithms, such as the GA and interior point method;

• The optimal microgrid operation method based on DDPG algorithm has a certain
generalization and can be used in in different scenarios.

However, the uncertainties of PV and load are not considered in this research, and the
fuel cell efficiency is ignored. Future work will focus on the microgrid operation optimiza-
tion strategy under uncertain environments and take into account the characteristics of fuel
cell to make the operation model more realistic.
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Abbreviation Description
GAMS General algebraic modeling system
DDPG Deep deterministic policy gradient
PV Photovoltaic
BESS Battery energy storage system
SOFC Solid oxide fuel cell
SOC State of charge
GA Genetic algorithm
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