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Abstract: Data are an important part of machine learning. In recent years, it has become increasingly
common for researchers to study artificial intelligence-aided design, and rich design materials are
needed to provide data support for related work. Existing aesthetic visual analysis databases contain
mainly photographs and works of art. There is no true logo database, and there are few public and
high-quality design material databases. Facing these challenges, this paper introduces a larger-scale
logo database named JN-Logo. JN-Logo provides 14,917 logo images from three well-known websites
around the world and uses the votes of 150 graduate students. JN-Logo provides three types of
annotation: aesthetic, style and semantic. JN-Logo’s scoring system includes 6 scoring points, 6 style
labels and 11 semantic descriptions. Aesthetic annotations are divided into 0–5 points to evaluate
the visual aesthetics of a logo image: the worst is 0 points; the best is 5 points. We demonstrate five
advantages of the JN-Logo database: logo images as data objects, rich human annotations, quality
scores for image aesthetics, style attribute labels and semantic description of style. We establish
a baseline for JN-Logo to measure the effectiveness of its performance on algorithmic models of
people’s choices of logo images. We compare existing traditional handcrafted and deep-learned
features in both the aesthetic scoring task and the style-labeling task, showing the advantages of
deep learning features. In the logo attribute classification task, the EfficientNet _B1 model achieved
the best results, reaching an accuracy of 0.524. Finally, we describe two applications of JN-Logo:
generating logo design style and similarity retrieval of logo content. The database of this article will
eventually be made public.

Keywords: aesthetic evaluation; logo image analysis; baseline; database

1. Introduction

In recent years, intelligent design has become a new dimension of design practice and
academic research. Intelligent design system-assisted design, such as intelligent poster
design, photo classification and intelligent logo design, has gradually become popular,
bringing more possibilities to the design industry. However, there are few public databases
that include design materials such as posters, web pages and logos, so related technologies
use photo databases and personal databases. This is inconvenient for researchers. In
2020, Wu et al. [1] in China explored new next-generation artificial intelligence technology
including deep learning and proposed a next-generation artificial intelligence plan. The
reference exemplifies the need for data and accurate expert annotation knowledge for deep
learning. It was confirmed that a database with high-quality annotation knowledge has
high research value. On 8 July 2021, at the World Artificial Intelligence Conference (WAIC
2021), the digital creative intelligent design engine proposed by the Alibaba–Zhejiang
University Frontier Technology Joint Research Center summarized the model construction
of a media carrier that organically integrates design theory and computing. The research
content involves the interdisciplinary topics of artificial intelligence and design, such
as design semantic annotation, image generation, graphic style learning and aesthetic
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computing. It can be seen that the computational method of intelligent design urgently
needs a large-scale public database of design materials.

As researchers committed to solving this problem, we introduce a new visual analysis
database of logo image aesthetics named JN-Logo that combines and improves aesthetic
analysis.

The data and labels for the aesthetic score are at this link: https://drive.google.
com/file/d/13EXuptt6TpKqHWk6tDr2AWFLVSW-dHHC/view?usp=sharing (accessed
on 24 September 2022).

The data and labels for style attribute classification are at this link: https://drive.
google.com/file/d/1NQc-uCV42j71sumwh0jWeFpZyvMdHSW1/view?usp=sharing (ac-
cessed on 24 September 2022).

The following are the contributions and innovations of our work:

• We introduce a larger database of logos that are design materials. We evaluate the
aesthetics of the data by manual annotation. The evaluation system includes six kinds
of aesthetic scores, six kinds of style attribute labels and semantic descriptions. We
also show five advantages of JN-Logo.

• We set up two tasks for JN-Logo: a style attribute classification task and an aesthetic
quality scoring task. JN-Logo is tested using methods based on traditional features as
well as deep features. Finally, the best performance is selected as the baseline.

• We demonstrate JN-Logo for logo retrieval and specifying color transfer. It is proven
that high-quality data with aesthetic quality evaluation is more beneficial to intelligent
system design.

The rest of the paper is organized as follows. In Section 2, we present an aesthetic
quality evaluation, aesthetic visual analysis database and logo database related to JN-Logo.
In Section 3, we describe the aesthetic evaluation of JN-Logo and compare the pros and cons
of related datasets. In Section 4, we present aesthetic visual analysis tasks and experiments.
In Section 5, we describe two applications of JN-Logo: logo style generation and logo
content similarity retrieval. In Section 5, we discuss how JN-Logo will be expanded for
more research in the future.

2. Related Work

This section introduces the aesthetic visual analysis database and the logo database. At
present, most of the data used for quality evaluation are photographic pictures. Subjective
evaluation methods mainly involve scoring and annotation. Commonly used aesthetic
analysis databases are: Databases of photographic aesthetics are AVA [2], CUHK [3],
CUHKPQ [4,5] and Photo.Net dataset (PN) (https://www.photo.net, (accessed on 25 March
2021)) [6,7]. Image databases containing subjective evaluations of observers are also:
Laboratory for Image & Video Engineering (LIVE) [8], Categorical Subjective Image Quality
(CSIQ), IVC, MICT, A57, Tampere Image Database 2008 (TID2008) [9] and Tampere Image
Database 2013 (TID2013) [10]. TID2013 is an enhanced version of TID2008. Additionally
used are Wireless Imaging Quality (WIQ) [11], etc.

Logo databases are commonly used for logo retrieval [12], logo recognition [13–16]
and logo detection [17–19]. The BelgaLogos database [20] was the first benchmark for logo
detection and is used to detect logos. LogoDet-3K [21] is used for both logo detection and
logo recognition and is the largest logo detection database with complete annotations. The
logo-2K+ database [22] is only used for logo image recognition, similar to the logoDet-3K
database. Some of the larger logo databases for object detection are FlickrLogos-32 [14]
and Logos in the Wild [23]. The databases used for logo detection and logo recognition
are Logo-Net [24], WebLogo-2M [25] and PL2K [26]. The large-scale databases used for
logo detection are basically pictures of logo scenes, which are not suitable for the aesthetic
analysis of logos. Small databases for logo recognition can be used for aesthetic analysis,
but most are not publicly available and have small numbers. For example, Vehicle Logos
is a dataset for classification and instance segmentation containing 34 logos, each with
16 images, for a total of 544 images. Each image has a corresponding image class label and
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instance segmentation image label. FlickrSportLogos-10 is a dataset of 10 sports brands with
2038 images that can be used for classification and object detection. HFUT-CarLogo dataset
contains 32,000 car logo images, divided into HFUT-VL1 and HFUT-VL2, for classification
and object detection, respectively. Car-Logos-Dataset contains 374 car logo images, one for
each logo. The logos-627-Dataset is a dataset containing 627 logo images.

We have added new datasets in recent years to enrich our work, but they are not
datasets of logo images.

The PIAA database [27] is an image aesthetics database containing 438 subjects with a
total of 31,220 photographic images with rich aesthetic annotations from people and with
rich subjective attributes. FLICKR-AES and REAL-CUR [28] are automatic aesthetic rating
databases with people’s aesthetic preferences and content and aesthetic attributes suitable
for residual-based models. AADB [29] is also a photographic image database for aesthetic
scores and attributes, and the developers used a deep learning method—deep convolutional
neural networks—to rank the aesthetics of photos. The current large multimodal database
M5Product [30] has 6 million multimodal samples, including five modes: image, text,
table, video and audio. Ego4D [31] is a large-scale video dataset with data captured using
seven cameras. The DynamicEarthNet dataset [32] contains daily Planet Fusion images
and Sentinel 2 images with manual annotation. It is a large-scale multi-class dataset with
a multi-temporal change detection benchmark for the fields of Earth observation and
computer vision. The FineDiving dataset [33] is a collection of videos of diving events and
competitions, including the Olympic Games, World Cup, World Championships and other
diving sports.

In the design domain, the applications of logo datasets are logo image generation,
image retrieval and image recognition. Logo image datasets are mainly used in specific
visual designs. There are few publicly available logo image datasets.

Therefore, a small logo dataset is mainly dominated by logo images. This the same
type of data in the JN-Logo database introduced in this paper. However, JN-Logo has a
larger scale and is collected, screened, filtered and manually annotated, and the quality of
the image clarity and beauty is better.

3. Creating JN-Logo

We introduce the process of creating JN-Logo, a comparison of JN-Logo and related
databases, and a visual analysis of JN-Logo.

3.1. Methodology

This section describes the steps to construct the dataset: acquisition, filtering and
annotation.

3.1.1. Collecting

The images of JN-Logo were mainly obtained by crawling the Internet via https://
www.logoids.com, https://www.logosj.com, https://www.logogala.com, https://image.
baidu.com, https://www.logonews.cn/, https://logopond.com/gallery/list/?gallery=
featured and http://www.zhengbang.com.cn/ (accessed on 25 March 2021).

LogoNews has more than 50 popular categories of content, including more than
90 different countries and regions and 49 design agencies. LogoPond can find the most
popular logo designs on the Internet today. It mainly provides mock-up logo design videos
and other services. Its biggest feature is to update the logo designs and other works
uploaded by some artists or designers every month. The website “www.zhengbang.com.cn”
(accessed on 25 March 2021) includes China’s top 500 companies, such as CCTV, Bank of
China, China Southern Power Grid, and other companies, as well as Internet companies
such as Baidu and Alibaba. It contains more than 50 industry categories, such as the
Internet, new technology telecommunications, aviation, automobiles, home appliances,
central enterprises, real estate, banking, medical and pharmaceuticals, road transportation,
logistics, corporate services, consulting, etc. Thus, we can search for original domestic
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logos at this website. To increase the diversity of the dataset, we also grabbed logo images
from categories such as “Internet company logo”, “cultural industry company logo”,
“cosmetic brand logo” and “food brand logo” from online engines such as “Baidu.com”. We
also supplemented information by photographing storefronts, company signs and logos.
Through the above methods, we have collected a large number of pictures from different
countries, industries, classifications and graphics, and with rich colors.

3.1.2. Interviews and Questionnaires

This section discusses annotations through interviews, questionnaires and data clean-
ing. To obtain the stylistic attributes of the logo images, this paper conducted a question-
naire to observe the participants’ preferences for style. The questionnaire contained 50
random logo images and 2 questions, as shown in Table 1:

Table 1. The two questions we invited subjects to answer on the questionnaire.

Question 1 How do you feel about this logo image? Multiple answer.

Question 2 Please select a logo that feels familiar to you. Multiple answer.

According to the correlation between color and psychological feeling, we set dozens of
labels with regard to Question 1. The content of the labels combines people’s psychological
attributes, emotional attributes and aesthetic preferences. Finally, we evaluated style
preference. Question 2 aims to understand people’s aesthetic preferences.

The content of the labeling is shown in Figure 1. It can be seen that the 10 most-
appearing style descriptions were finally obtained through voting.
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(a) Semantic description of style.

Figure 1. Cont.
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Figure 1. Style labels in Question 1 and the style descriptions that received the most votes: (a) semantic
description of the style of logo images and (b) the 10 selected semantic descriptions.

3.1.3. Cleaning

We obtained valid questionnaires from training subjects. This preliminary work was
used for data cleaning. Then, to ensure data quality, the data were cleaned before labeling.
We sanitized the data to ensure that the logo images were the appropriate size. In particular,
we removed the following logo images: (a) images with length or height less than 300 pixels
or extreme aspect ratios and (b) images with extreme aspect ratios.

3.1.4. Annotation

In JN-Logo, we provide three types of annotations: aesthetic, style and semantics. We
chose 100 random images and asked subjects to annotate the images. In the annotation
system, one image is randomly selected from the logo dataset at a time, each of which
conforms to the original aspect ratio.

A total of 14,917 images were set and divided into image quality of 0–5 points and style
attributes of 1–6. Approximately 150 people participated in marking during the scoring
process. Finally, 6 quality scores, 6 style attributes and 11 style descriptions were obtained.
With our scoring system, each subject annotated 100 images, and 150 people took turns
annotating 14,917 images. The final scores for aesthetics, style and semantics were obtained.

3.2. JN-Logo Visual Analysis

This section analyzes the score distribution and style classification distribution of
the JN-Logo data. Score distribution and style classification distribution can solve two
problems: (1) image quality score can learn the aesthetic preferences of landmark images,
and (2) the distribution of style classification can learn style preferences and semantic
descriptions. Figure 2 shows the amount of data for aesthetic ratings and the amount of
data for style attributes.

It can be seen from Figure 2b that the number of data points for style attributes
is mainly concentrated in Attribute 1 and Attribute 5. Further, it can be seen from the
histogram that about 12 kinds of blue, such as dark blue and light blue, account for a large
proportion in Attribute 1. From dark red, red, orange, and yellow, about 10 colors account
for a large proportion in Attribute 2. From purplish red, rose red, light pink, light yellow,
and mint green, about 13 colors account for the largest proportion in Attribute 3; it has
the most mixed colors. In attribute 4, green has a large proportion, and about 13 green
color systems have a large proportion. In attribute 5, the proportion of color distribution is
relatively balanced, and about 9 different dark colors account for a large proportion. As
shown in Figure 2a, the scoring data points are mainly concentrated between 3–5 points,
with 4 points being the most popular. The category with picture quality of 1 point has the
smallest number of pictures, about 800. From the perspective of database construction,
this trend conforms to a uniform distribution. Quality score data and style attribute data
are generally in line with the actual situation, and there is no extreme class imbalance
problem, which means the dataset can meet the training requirements and can be used for
classification and training algorithms.
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(a) The ordinate is the number of
logo data points, and the abscissa
is the aesthetic quality score.

(b) The ordinate is the number of
logo data points, and the abscissa
is the style label.

Figure 2. (a) The number data points for aesthetic preferences; (b) the number of data points for style
attributes and style semantic descriptions.

As shown in Figure 2, the scoring data points are mainly concentrated between
3–5 points, and the logo data with 4 points is the most popular.

Figure 3 shows the color distribution of 6 style attributes and 11 style descriptions.
A circle chart is a visualization of color data, and a histogram is a visualization of color

value and specific gravity distribution extracted from the circle chart. Figure 4 shows a
visualization of 57 colors. We extracted a total of 57 dominant colors from the data.

We performed statistical analysis of the colors in the six data styles of the style annota-
tion. This can be seen in Figures 2 and 3.

Finally, Figure 5 shows the image quality score image category (Figure 5a), and the
style attribute image category (Figure 5b) with style semantic description.

A score of 0–5 is shown in Figure 5a, representing worst, worse, bad, good, better
and best, respectively, with 5 points being the highest score. Figure 5b shows feelings of
Rational, Scientific, Warm, Hot, Sweet, Fresh, Dynamic, Vivacious, Simple, Pure and Others.
Thus, there are a total of 6 styles and 11 semantically described logo images. Due to the
different subjective feelings of participants, their understanding of beauty was different.
Subjects were judged on the basis that images with low clarity were rated lower. Further,
the participants had different preferences for colors, graphics and content of images. It
can be seen that although subjects had different aesthetic preferences, subjects still rated
images with low clarity as lower.

Ultimately, the accuracy of the image quality score is unstable and is close to random
guessing. On the other hand, the subjects of the style category images are more uniform in
matching style selection and semantic description, so the distribution of style attributes is
relatively accurate. The specific prediction method is introduced in Section 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Color distribution map of 6 style attributes of JN-Logo based on feeling: (a) Rational and
Scientific, (b) Warm and Hot, (c) Sweet and Fresh, (d) Vivacious and Dynamic, (e) Simple and Pure,
and (f) other.

Figure 4. Shows 57 colors extracted from 6 types of style attributes.
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(a)

(b)

Figure 5. (a) Image quality score images (0–5). (b) Style attribute images with style semantic
description (1–6).

3.3. Comparison of JN-Logo-Related Datasets

In Tables 2 and 3, we compare JN-Logo with similar aesthetic databases and logo
databases.

This section compares the JN-Logo database to similar quality-evaluation databases
and logo databases in Tables 2 and 3, respectively. Five advantages of the JN-Logo database
are having logo images as data objects, rich annotations, quality scores for image aesthetics,
style attribute labels and description of the style; these aspects demonstrate the advantages
of this database. We discuss the similarities and differences between JN-Logo and related
databases.

Table 2. Comparison of the advantages of JN-Logo and four other quality-evaluation databases based
on five aspects.

JN-Logo AVA [2] Photo.net [7] CUHK [3] CUHK-PQ [5]

Logo objects Yes No No No No
Rich annotations Yes Yes No Yes Yes
Score distribution Yes Yes Yes No No

Style labels Yes Yes No No No
Semantic descriptions Yes No No No Yes

Table 3. Comparison of the advantages of JN-Logo and four other logo databases based on five
aspects.

JN-Logo B-Logos [20] W-Logo [25] Logo-2K [22] Logo-3K [21]

Logo object Yes Yes Yes Yes Yes
Rich annotations Yes Yes No Yes Yes
Score distribution Yes No No No No

Style Labels Yes No No No No
Semantic descriptions Yes No No No No
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The AVA [2] database contains approximately 250,000 images. Each image was scored
by 78 to 549 raters, with scores ranging from 1 to 10. The average score is used as the
ground-truth label for each image. The author annotated 1 to 2 semantic labels for each
image based on the information in the text of each image. There are a total of 66 textual
tags in the entire database. The pictures in AVA are marked with photographic attributes,
which involve photographic aesthetics and are described from the three directions of light,
color and composition. There are a total of 14 photographic attributes. This database
contains by far the largest amount of aesthetic-quality evaluation data. However, the
semantic annotations are not strictly classified and mainly describe the content and style of
the images.

Both JN-Logo and AVA obtain human aesthetic preference scores and style attributes
through manual annotation. The difference is that JN-Logo scores range from 0–5 points
and style attributes from 1–6 points. The number of scores is 0: 1303, 1: 896, 2: 1775, 3: 3320,
4: 3793 and 5: 2636. In the style attribute annotation, the number in each category is 2752,
1622, 1733, 2647, 3268 and 2895, respectively. The distribution is shown in Figure 2.

The second difference is that JN-Logo is different from photographic databases. Logo
image datasets are more suitable for design and have more research value and innovation.
The third difference is that JN-Logo is based on the characteristics of logo design by adding
image descriptions of visual psychological feelings to the style attributes, such as sense of
reason and technology, enthusiasm and warmth, sweetness and vitality. The AVA dataset
does not use this approach.

Photo.Net dataset (PN) (https://www.photo.net) [7] is a sharing platform for photog-
raphy enthusiasts. Each picture has a rating of 1–7, and 7 is the most beautiful photograph.
One advantage of PN scoring is that the scores are provided by online photography peers,
and each image receives two or more points [2]. The difference between http://Photo.net
and JN-Logo is that the former does not provide rich annotations, nor does it have style
tags or semantic descriptions of styles.

CUHK [3] (http://DPChallenge.com) contains approximately 12,000 photographic
images. Each photo has been scored by at least 100 users. CUHK has the same user
score as AVAs with an advantage: the scoring method is different. All photos have only
binary labels. The top and bottom 10% of photos are extracted and designated as high-
quality professional photos and low-quality snapshots, respectively, but 80% of photos
are ignored. CUHK has no style tags or semantic descriptions of styles. CUHK-PQ [4,5]
(http://DPChallenge.com (accessed on 25 March 2021)) contains 17,690 images. All photos
still only have binary labels (1 = high-quality images, 0 = low-quality images). However,
photos have more content-based tags. The data are grouped into seven scene categories:
animal, plant, still life, architecture, landscape, people and night scenery.

The difference between CUHK-PQ and JN-Logo is that the former has content-based
classification labels. However, it does not have style tags. The most significant difference
between JN-Logo and the above four databases is that JN-Logo’s content is not photographs
but rather logo images, and JN-Logo adds a semantic description of the style.

There are four logo datasets introduced as follows: BelgaLogos [20] is the first bench-
mark for logo detection and is used to detect logos. All images are manually annotated,
and the dataset consists of 10,000 images with 37 logos and 2771 logo instances annotated
with bounding boxes. It has no score distribution, style labels or semantic descriptions.

WebLogo-2M [25] uses the social media site Twitter as its data source, with 194 logo
categories and 1,867,177 images. WebLogo-2M is the first large-scale fully automated
dataset constructed by exploiting inherently noisy web data. However, there is no human
annotation, and it is not a public dataset.

Logo-2K+ [22] is a dataset for logo image recognition only. It is similar to the LogoDet-
3K dataset and can be used for image classification and object detection. Logo-2K+ contains
10 major categories, 2341 subcategories and 167,140 images, with at least 50 images for each
logo category. Logo-2K+ is a large logo dataset containing human annotations but does not
have score distributions, style labels or semantic descriptions.

https://www.photo.net
http://Photo.net
http://DPChallenge.com
http://DPChallenge.com
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LogoDet-3K [21] is used for copyright infringement detection, brand awareness
monitoring, etc. It is the largest logo detection dataset with complete annotations. It
has 3000 logo categories, approximately 200,000 manually annotated logo objects and
158,652 logo images. The photos are human-annotated in detail, and each logo object is
annotated and contains multiple instances of the logo. To ensure the annotation quality of
LogoDet-3K, each bounding box is manually annotated and placed as close as possible to
the logo object. LogoDet-3K contains not only logos and photos of logos but also a large
logo dataset with human annotations. However, it has no score distribution, style labels or
semantic descriptions.

The four aesthetic databases are based on photographs and refer to photographic aes-
thetics, and are mainly used for the aesthetic evaluation and classification of photographs.
However, these data are not design-related images and are not fully applicable to the
design field. The four logo datasets, such as BelgaLogos [20], have logo objects and photos
containing logos, which are mainly used for retrieval, object detection, classification and
image recognition. However, they do not have the aesthetic characteristics of images
such as image quality scores and image style attributes. JN-Logo can be used for image
quality assessment as well as logo image recognition and retrieval. In contrast, our JN-Logo
database consists of logo images that can be used for logo-related aesthetic evaluation,
retrieval, classification and generation.

The introduction of the eight databases above shows that the photographic image
dataset for quality scoring and the logo image database for identification meet technical
needs to a certain extent. However, different types of data (images) make it difficult to
meet the needs of all disciplines. Because the content of the images is different, it is difficult
to meet the needs of all disciplines, nor can it meet the needs of researchers in design
disciplines for databases. The better the quality of the image and the closer the data type is
to the needs of the algorithm, the more advantageous. Therefore, the JN-Logo database can
meet the needs of designers and intelligent technology of logo images.

Figure 6 shows part of the logo data in the JN-Logo dataset.

(a)

(b)

Figure 6. (a) Logo images with backgrounds. (b) Logo images without backgrounds.
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4. Creation of Baseline

This section creates a baseline for JN-Logo as a performance criterion. We use methods
based on traditional features and deep features to conduct experiments on JN-Logo, analyze
the indicators of the model, prove the superiority of the performance of the model with
higher accuracy, and use it as a baseline. We separately set the style classification task and
the image quality scoring task to train simultaneously.

In the style classification task, the purpose is to train an attribute classifier that can
separate logo images of different attributes. For an image Ii, the attribute labels can be
obtained through the style attribute classifier.

attr i = classifier 1(Ii). (1)

In the image aesthetic scoring task, it is also necessary to train a scoring classifier to
distinguish different scoring levels. For an image Ii, obtain the score of this image through
the scoring classifier.

Scorei = classifier 2(Ii). (2)

4.1. Method

The handcrafted and deep-feature methods used for the two tasks are described below.
(1) Methods based on handcrafted features:
The method based on handcrafted features is divided into two steps. First, the features

of the image need to be extracted, and then, the features are input into the attribute classifier
or the scoring classifier.

We used the following methods: the style attribute classifier corresponds to the style
attribute classification task, and the scoring classifier corresponds to the quality scoring
task. The Histogram of Oriented Gradients (HOG) [34] is used to extract image features.
The second step is to feed the features into a style attribute classifier and scoring classifier
using a variety of approaches: (1) Support Vector Machine (SVM), (2) XGBoost [35] and
(3) Random Forest [36].

Although the above traditional handcrafted features have the advantages of high
efficiency and good interpretability, they cannot extract the implicit high-level semantic
information of the picture, so they cannot achieve high accuracy. Therefore, we also
consider using deep feature-based methods to accomplish these two tasks.

(2) Methods based on deep features: Deep feature-based methods use end-to-end
training, feature extraction and downstream tasks performed on one model, and the image
can be directly input into the deep model to obtain its attribute classification label or rating
label.

The following models are used: Convolutional Neural Network (CNN) [37–39], Resid-
ual Network, [40], EfficientNet [41,42], Visual Transformer Model [42] and MLP-Mixer [43].

Convolutional Neural Networks (CNNs) are a class of feedforward neural networks
that contain convolutional computations and have deep structures. Its artificial neurons
can respond to a part of the surrounding units within the coverage area and have the char-
acteristics of local perception, weight sharing, downsampling, etc., reducing the number
of parameters, expanding the network receptive field, and meaning the network does not
need complex preprocessing of images. The original image can be directly input, so this
method has been widely used in various tasks in the field of computer vision.

Residual Network (ResNet) [40] is mainly composed of residual blocks. By adding
residual connections to the residual blocks, the problem of network degradation is solved,
and the problem of gradient disappearance caused by increasing depth is alleviated so that
the network can be deeper.

EfficientNet [41,42] is a model obtained by compound model expansion combined
with neural structure search technology. It mainly scales the model automatically in the
three dimensions of depth, width and scale.
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Visual Transformer Model [42] is a deep self-attention mechanism learning model.
Visual Transformer is a class of models that blocks images and inputs them into the
transformer, abandoning the traditional CNN architecture and having less inductive bias.

MLP-Mixer [43] (Mixer) is entirely based on Multilayer Perceptrons (MLPs), without
using convolutions or self-attention, just repeatedly applied to spatial locations or feature
channels. Mixer relies only on basic matrix multiplication routines, data storage layout
transformations and scalar non-linearization.

The method in this section inputs the training data, that is, the large-scale sign image I,
into the depth model DM to obtain the depth feature F, where F is a one-dimensional vector
used for semantic representation of the sign image. After obtaining the image features, we
complete the attribute classification and aesthetic scoring tasks through the style attribute
classification layer or the scoring classification layer, respectively. The formula is as follows:

F = DM(Ii), Ii ∈ I. (3)

Specifically, the feature vector is mapped to the category label through a fully con-
nected layer (FC), and the input probability value (logits) is obtained through the softmax
function, which is expressed as follows:

logits = SoftMax(FC(F)), (4)

finally, the value of the cross-entropy function is calculated through the output logits,
the value of the cross-entropy is minimized, and the network parameters are updated
through the iterative training and back-propagation algorithm. Figure 7 shows the general
framework of the deep model approach. The model completes two tasks based on different
labels: style attribute classification and image quality scoring. In simple terms, we input
the training image into the deep model to obtain deep features, complete the classification
task through the classification layer, and iteratively update the model parameters through
the back-propagation algorithm.

Figure 7 shows the general framework of the deep model approach.

FC
Label1

Label2 

Dataset Model Features FC Label1：Style Attribute
Label2：Aesthetic 

Forward-propagating
Back-propagating

(1,0,0,0,0,0)

(0,0,1,0,0,0)
(0,0,1,0,0,0)

(0,1,0,0,0,0)

Figure 7. Diagram of the deep model-based approach. This model completes two tasks of style
attribute classification and aesthetic scoring based on different labels. First, input the training image
into the deep model to obtain deep features, complete the classification task through the classification
layer, and iteratively update the model parameters through the back-propagation algorithm.

The deep-feature-based method is an end-to-end model that does not require a human
to manually design algorithms to extract image features. The hidden high-level semantic
features of images can be directly extracted through a large number of learnable parameters.
Hence, manual intervention is reduced, and better performance is achieved.

4.2. Results
4.2.1. Dataset

For the dataset, JN-Logo is used to visually analyze all the data in the database, with
a total of 14,917 images, which are divided by image quality (0–5 points), style attributes
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(1–6) and 10 (excluding “other”) style descriptions. The image quality score is 0–5, and the
number of aesthetic scores 0–5 is shown in Table 4:

Table 4. Number of aesthetic annotations of logo images.

Score 0 1 2 3 4 5

Number 1303 896 1775 3320 3793 2636

The six categories of style attributes are called (1) Rational and Scientific, (2) Hot and
Warm, (3) Sweet and Fresh, (4) Dynamic and Vivacious, (5) Pure and Simple and (6) other
styles. The number of style attributes is shown in Table 5:

Table 5. Number of style annotations of images.

Style attributes with semantic descriptions 1 2 3 4 5 6

Number 2752 1622 1733 2647 3268 2895

The JN-Logo database is divided into a training set and a test set, and then 90% of the
pictures are randomly set as the training set, and the remaining 10% of the pictures are set
as the test set; the style attribute classification task and the image quality scoring task are
set for simultaneous training (Equation (5)).

Score i = classifier 2(Ii). (5)

For the style attribute classification task, the purpose is to train an attribute classifier
that can separate logo images of different attributes. For an image, its attribute label can be
obtained through this attribute classifier, which can be expressed as:

attr i = classifier 1(Ii), (6)

4.2.2. Experimental Setup

We use the JN-Logo dataset (14,917) for training with the following hyperparameter
settings: initial learning rate is set to 3e−4; there are a total of 20 rounds for training, and in
the 10th and 15th rounds, the decay learning rate is 1/10 of the previous one; SGD is used
as the optimizer, and the image resolution is set to 224× 224.

4.2.3. Evaluation Metrics

For the tasks of logo attribute classification and aesthetic scoring, accuracy is used as
the evaluation index:

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)

where N and P are the predicted classes, TP (True Positive) is the number of positive
samples predicted to be positive, TN (True Negative) is the number of negative samples
predicted to be negative, FP (False Positive) is the number of negative samples predicted
to be positive, and FN (False Negative) is the number of positive samples predicted to be
negative.

4.2.4. Results and Analysis

The specific results are shown in Table 6. Accuracy 1 represents the accuracy of the
manual feature method and the deep feature method for the style attribute category, and
Accuracy 2 represents the accuracy of the manual feature method and the deep feature
method for the aesthetic score category.
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Table 6. Accuracy 1 and Accuracy 2 of the manual feature method and the deep feature method.

Method Accuracy 1 Accuracy 2

Hog+SVM [34] 0.218 0.283
Hog+ Random Forest [35] 0.313 0.258

Hog+ XgBoost [36] 0.278 0.241
ResNet50 [40] 0.502 0.289

ViT-B [42] 0.360 0.289
DenseNet169 [44] 0.518 0.289

EfficientNet_B1 [45] 0.524 0.282
ResNeSt50 [46] 0.514 0.289

SeResNet50 [40,47] 0.489 0.293
VGG16 [38] 0.445 0.289

ResNeXt50 [48] 0.518 0.289
Mixer_B [43] 0.401 0.290
Swin-B [41] 0.433 0.289

In the logo attribute classification task, EfficientNet _B1 [45] achieved the best result,
reaching an accuracy of 0.524. In the quality scoring task, neither hand-crafted feature-based
methods nor deep feature-based methods achieved good results. The best performance
by SeResNet50 [40,47] reached an accuracy of 0.293. Therefore, it can be seen that the
participants differed greatly in scoring, and the different judgments of the quality of the
logo images resulted in a low accuracy rate. For this situation, it is necessary to design a
more appropriate model from the characteristics of the dataset itself. However, manual
scoring has high randomness, and each person has different scoring standards, so predicting
a high accuracy rate is still a challenging task.

In the quality scoring task, each person’s aesthetic preferences were different and
failed to achieve good results. This is a challenge to be solved.

We compared performance parameters of precision, recall and F-1 measure. The
performance parameters of the style attribute classification are shown in Table 7:

Table 7. Comparison of performance parameters of precision, recall and F-1 measure of style classifi-
cation.

Model F-1 Recall Precision

SVM [34] 0.291 0.326 0.706
Random Forest [35] 0.229 0.253 0.485

XgBoost [36] 0.203 0.221 0.703
ResNet50 [40] 0.407 0.541 0.832

DenseNet169 [44] 0.307 0.364 0.673
ViT-B [42] 0.275 0.322 0.734

EfficientNet_B1 [45] 0.142 0.215 0.845
ResNeSt50d [46] 0.383 0.508 0.830

SeResNet50 [40,47] 0.336 0.432 0.831
VGG16 [38] 0.140 0.267 0.845

ResNeXt50 [48] 0.386 0.411 0.831
Mixer_B [43] 0.162 0.278 0.830
Swin-B [41] 0.319 0.357 0.705

The performance parameters table of aesthetic score is as follows (Table 8):
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Table 8. Comparison of performance parameters of precision, recall and F-1 measure of aesthetic
classification.

Model F-1 Recall Precision

SVM [34] 0.082 0.183 0.167
Random Forest [35] 0.067 0.167 0.208

XgBoost [36] 0.008 0.167 0.021
ResNet50 [40] 0.067 0.167 0.209

DenseNet169 [44] 0.058 0.146 0.182
ViT-B [42] 0.062 0.167 0.192

EfficientNet_B1 [45] 0.056 0.167 0.167
ResNeSt50d [46] 0.056 0.167 0.167

SeResNet50 [40,47] 0.056 0.167 0.167
VGG16 [38] 0.061 0.167 0.167

ResNeXt50 [48] 0.056 0.167 0.167
Mixer_B [43] 0.056 0.167 0.167
Swin-B [41] 0.067 0.167 0.167

The first three are traditional handcrafted features, the rest are deep learning features,
and the table shows that deep feature-based methods have certain advantages. The results
of aesthetics scoring are less than ideal, indicating that the aesthetics scoring task is still a
challenging task.

We increased the real-time display FPS (frames per second), which represents the
complexity of the algorithm. Complexity is inversely proportional to speed (Table 9).

Table 9. FPS of models.

Model FPS

SVM [34] 3351
Random Forest [35] 2137

XgBoost [36] 4565
ResNet50 [40] 1003

DenseNet169 [44] 640
ViT-B [42] 167

EfficientNet_B1 [45] 1362
ResNeSt50d [46] 652

SeResNet50 [40,47] 851
VGG16 [38] 619

ResNeXt50 [48] 765
Mixer_B [43] 646
Swin-B [41] 271

As shown in Table 9, the FPS frame rate of models such as Vit-B can meet the real-time
requirements.

5. Application of JN-Logo

In this section, we introduce the purpose of the three JN-Logos. Then, we describe
JN-Logo’s style classification and content classification for free-style-generated images,
specified style-generated images and similarity-based retrieval. These can take advantage
of JN-Logo by using the advantages of the image quality and color of the logo, as well as
the style classification and content.

5.1. Similarity-Based Retrieval Based on Content Classification

At present, for the problem of logo infringement, the technology that can retrieve
imitated logo designs is not perfect, and a high-quality dataset can better support the
algorithm.
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5.1.1. Methodology

This section provides JN-Logo as a logo image database that covers various industries
and types and can be used to explore the similarity of logos. Specifically, in this section, we
recall similar pictures through image retrieval-related technologies.

We conducted experiments by extracting features from the images in the JN-Logo
dataset and preprocessing the logo images. Then, we input the data into a Swin Transfomer
model [41] that was pretrained based on the ImageNet dataset [49], converted all logo
images into one-dimensional vectors, and stored them. Then, for a picture to be retrieved,
we used the previously acquired features to calculate its cosine similarity with the rest of
the pictures. At the same time, the pictures were sorted by similarity, and the most-similar
N pictures were returned. With this, it can found from the N pictures whether there are
similar signs. We observed infringement, which reduced the cost of manual screening.
Figure 8 shows the process of the experiment.

Figure 8. Retrieval flowchart: for an image, extract features through the Swin Transformer model.
Based on the extracted features, further calculate the cosine similarity of the pictures in the gallery
set. Sort pictures by similarity, and return N pictures with the highest similarity.

5.1.2. Results and Discussion

In this experiment, images with similar content are automatically screened out through
an image retrieval model. Experiments showed that this method has a good effect on the
similarity retrieval of JN-Logo data images. In addition, this method combined with our
data can effectively deal with logo infringement and counterfeiting. Figure 9 shows some
images whose similarity is close to the original image.

Figure 9. Retrieve images close to the original image. They are the five original images extracted
from the query dataset and the images retrieved from the corresponding gallery dataset.
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We selected five groups of images with better results. As seen in Figure 9, the first three
groups can detect pictures with obviously similar features. We found that similar parts
of the illustration-style graphics are easier to retrieve. The third group of geometrically
abstract figure-similar images can obviously be retrieved. A fourth group of similar images
with a white pattern and an orange-red background is easier to retrieve. The fifth group
of pictures is logo images of font designs in the form of oriental ink and wash, and it is
difficult to find logos with high similarity.

When this happens, there may be three problems. First, the dataset is not large enough
and needs to be expanded. Second, JN-Logo contains many pictures with the oriental style
that were not detected, indicating that our algorithm needs to be further improved. Third,
logos with oriental styles are more unique, and it is difficult to find similar images.

5.2. Image Generation Based on Style Attributes

When a user is dissatisfied with the color of a logo and wants to see a specific color,
our database can provide a specific style of logo. Therefore, the problem of specifying
colors to generate images can be solved.

5.2.1. Methodology

First, define the hue range for each style based on the hue circle. The enhanced
operation principle and actual use are as follows:

1. Extract the background color:
In logo images, the background color is usually white, black or other colors, as

shown in Figure 10. For the algorithm to work properly, the background part needs
to be determined so that it can be replaced when the background needs to be preserved, or
the background color can be changed separately.

Specify a logo image img1 and determine the RGB value of the first pixel of the image
as the background color b. The background color and its float (+−5) values are counted as
background colors. Mark the area where the background color is located as the background
for replacement after the style change is completed. When the color of the main body
of the logo includes the background color, the background extraction algorithm regards
the background color part of the main body (foreground) as the background. In this case,
subsequent style changes ignore this part.

Figure 10. Images with different background colors, such as white, black, dark blue, dark red, bright
yellow, dark purple, medium green, rose red, etc.

2. HSV color space conversion:
The RGB model does not conform to the visual perception of the human eye [50], while

the HSV color space is closer to people’s visual perception of color than RGB. The HSV
space expresses the hue, saturation and lightness and darkness of colors very intuitively.
This is convenient for color comparison. When used to specify color segmentation, the HSV
space has a relatively large effect.

3. Make a style change:
We list the style types and hue ranges in Table 10 below. There are many mixed colors

in the vitality attribute. These colors are processed into two intervals representing two
different specified colors.
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Table 10. We define four style types with image descriptions.

Sensible and Technological (240,300)

Hot and Warm (0,90)

Sweet and Fresh (315,345)

Vivacious and Dynamic (90,180)

After specifying the type of color style to generate, a more appropriate and unique
generated image is obtained to make the generated image contrast and generate more
options. We first add the hue value of the image H as a random number r within (0, 10,000).
Numeric-type conversion is also performed to prevent exceeding the representation range
of unit8. Then, the color width (hue range) of the specified style is used to take the
remainder of the transformed hue channel to determine the hue part of the specified style.
Finally, the base value (the lowest value) of the style is added to make the colors all fall
within the hue range of the color and obtain the generated hue value H∗.

The formula is expressed as follows:

hij =
(

h∗ij + r
)

%(Ch − Cl) + Cl (8)

where h∗ij is the hue value of position i, j of the original image, hij is the new hue value, Ch
is the current style hue peak value, and Cl is the current style hue base value.

4. Convert HSV color space to RGB:
For computer storage and display, the HSV color space needs to be converted to the

RGB color space.
5. Replace the background color:
In the style change step, we ignored the existence of the background. Therefore, the

image background usually has a color after the change. To make the background blank, we
replace the previously extracted background with the image after style generation. The
entire algorithm (Algorithm 1) flow is shown in the following pseudocode:

Algorithm 1 Specified Style’s image generation algorithm

Input: Original image img1.
Output: Specified style image img2.

1: B←Extract background from img1.
2: img2←First perform HSV color space conversion on img1.
3: img2←Perform style conversion on img2.
4: img2←Convert img2 to RGB color space.
5: Replace the background part of img2 with B.
6: Save img2.

5.2.2. Results and Discussion

The color images generated by the specified image often have a single color, so we use
the subjective evaluation method HVPA [51] to obtain the average value of color harmony
for the four style attributes.

As above, using a five-point scoring system, the higher the score, the better the quality
of the indicator. We select 50 generated images that perform very well and score them
together with the original images. We still invite professional students to score and use the
scores of 20 professional subjects to obtain 1000 scores and average them.

Scoring rules are shown in Table 11.
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Table 11. Scoring system for indicator color harmony.

Comparison Indicator/Score Color Harmony

1 Worse
2 Bad
3 Good
4 Better
5 Best

Figure 11 shows the original image and generated images for the four style categories.

0

0:Original images.

(a) Original images from JN-Logo used for the experi-
ment.

(b) Original images corresponding to the sane, warm
and sweet, etc., generated images for 8 semantic style
categories.

Figure 11. (a) Images from JN-Logo. (b) Four different styles of images from our method with
8 semantic descriptions.

We use Figure 12 to show the numerical comparison of subjective evaluation. The
results show that the value range is concentrated between 2 and 3. It can be seen that the
color harmony index of the generated images corresponding to the four style attributes is
better than that of the original images.
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Style 1: Color harmony.

Style tags：

Style 2: Color harmony.

Style 3: Color harmony.

Style 4: Color harmony.

Generated images of Rational  and Scientific Feeling.

(Original) Images.

Generated images of Hot and Warm Feeling.

Generated images of Sweet and Fresh Feeling.

Generated images of Dynamic and Vivacious Feeling.
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Figure 12. Comparison of color harmony score indicators for four subjectively evaluated original
images and generated images.

6. Conclusions

We created a logo aesthetic image database that combines aesthetic analysis databases
(Photographic Aesthetic Image) and logo image retrieval databases (Logo Retrieval Image),
and we also established a baseline using a deep learning model. The model provides three
types of annotations: aesthetic quality score, style attribute classification and semantic
description. The data contain six aesthetic scores, six style labels and semantic descriptions.
We compare JN-Logo with other related databases and show the advantages of JN-Logo
in five aspects. Experiments on JN-Logo using traditional handcrafted features and deep
feature methods establish a baseline for JN-Logo as a performance standard. We measure
the effectiveness of the performance of algorithmic models that people choose to label data.
We introduce JN-Logo for similarity retrieval of image content and image generation with
style semantics. We demonstrate by the method that a high-quality database with specified
content is more conducive to intelligent design.

In the style attribute classification task, the EfficientNet _B1 model achieved the best
results, only reaching an accuracy of 0.524. Especially in the aesthetic scoring task, the
best result comes from the SeResNet50 model, which only achieves an accuracy of 0.293,
indicating that the current task is still challenging. Because manual annotation is hard to
control, we will continue to optimize our database and improve the model in the future.

For example, we will invite art-related experts to score, improve the quality and
accuracy of scoring and establish a better standard. We will design a multi-label system
and perform multiple rounds of labeling. In the classification of style attributes, not only
should the style of color be divided, but also the style of graphics should be classified.
In the evaluation method, there is no objective evaluation index for the image quality of
design material data such as logos. The database of this paper was used to propose a new
evaluation index algorithm. In the design field, we can build a font-based logo image
dataset, such as one that includes font logos of Chinese artists.
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