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Abstract: Photo-realistic representation in user-specified view and lighting conditions is a challenging
but high-demand technology in the digital transformation of cultural heritages. Despite recent
advances in neural renderings, it is still necessary to capture high-quality surface reflectance from
photography in a controlled environment for real-time applications such as VR/AR and digital arts.
In this paper, we present a deep embedding clustering network for spatially-varying bidirectional
reflectance distribution function (SVBRDF) estimation. Our network is designed to simultaneously
update the reflectance basis and its linear manifold in the spatial domain of SVBRDF. We show that
our dual update scheme excels in optimizing the rendering loss in terms of the convergence speed
and visual quality compared to the current iterative SVBRDF update methods.

Keywords: SVBRDF; deep embedding clustering; appearance capture; surface reflectance estimation

1. Introduction

Realistic representation of surface reflectance is a well-known but still challenging
problem in computer graphics and vision. For an opaque object, it has been commonly mod-
eled using a Bidirectional reflectance distribution function (BRDF) when the material has
homogeneous reflectance properties. However, for an opaque object with inhomogeneous
reflectance properties, which occurs when representing a material more realistically, the
surface reflectance needs to be represented by a spatially-varying bidirectional reflectance
distribution function (SVBRDF). A rich body of studies has estimated various types of
SVBRDF using linear decomposition [1–5], independent BRDF reconstruction [6–8], and
local linear embedding using BRDF examples [9–12].

The aforementioned methods require a dense sample of surface reflectance at multi-
ple views under given lighting conditions since they are weak for generalization ability
for which we can leverage inter-sample variability on SVBRDF estimation. For example,
deep learning models further generalize model constraints using self-augmentation [13,14],
random mixture of procedural SVBRDFs [15], or rendering with priors on shape and
reflectance [16–18]. These methods are able to capture SVBRDF from a few images based
on reflectance basis generated by prior information or self-augmentation scheme. Re-
cently, neural radiance fields (NeRFs) have become a mainstream technology for reflectance
estimation. They can learn a sparse representation of surface reflectance via view syn-
thesis [19,20]. Beneficial to implicit view synthesis, NeRFs alleviate the complexity of the
image capturing process.

However, there is still a high demand for full-sampling of surface reflectance, especially
for a non-planar object in cultural heritages and AR/VR [21,22]. Due to the fact that
cultural artifacts often consist of a non-planar geometry and a complex surface reflectance
including non-diffuse reflectance properties, the current deep learning approaches have
several limitations when applied to applications in which a high-quality reproduction of
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surface reflectance is required. Conceptually, their methods are capable of approximating
SVBRDF with sparse samples. However, practically, their solution space is limited to a flat
surface [13–15], or a single view [16–18]. In the same manner, recent advances in NeRFs
allow us to handle global illumination changes. However, their solutions are yet bounded
for a simple object with a parametric BRDF [23].

In this paper, we present a novel unsupervised deep learning-based method to estimate
SVBRDFs from full reflectance samples. In contrast to the recent deep learning networks
that infer a parametric BRDF [13,18,23,24], we adopted a general microfacet model [25]
using an isotropic Normal Distribution Function (NDF). Our network trains for a non-
parametric tabular form of basis BRDFs which allows a better representation of reflectance
than the BRDFs using a parametric NDF such as Beckmann [25] and GGX [26]. Furthermore,
our network architecture is designed to simultaneously learn a linear reflectance manifold
spanned by NDF basis and the NDF basis, itself, by a novel autoencoder structure with two
custom layers: the Reprojection layer that updates the NDF basis via rendering loss, and
the Distance measure layer that remaps NDF basis in the spatial domain. These properties
allow for a fast and more accurate approximation for SVBRDF compared to the current
iterative update scheme [1,2,27,28] by the dual gradient search scheme.

The key observation found is that a gradient on a linear manifold of SVBRDF can
be represented by a function of both basis BRDFs and the corresponding feature points
in the manifold. Based on this observation, we have designed a non-linear autoencoder
that simultaneously updates both the basis BRDFs and a spatial weight function that maps
the observed reflectance to a linear manifold of the basis BRDFs. Our network design is
inspired by the concept of the Deep Embedded Clustering (DEC) [29] which facilitates a
joint-optimization of a mapping function and the clusters in an embedded space at the same
time. In order to employ their strategy to learn a faithful linear manifold of the SVBRDF,
we designed two custom layers that perform to measure similarity between reflectance at a
surface point and the basis BRDFs and to render through basis BRDFs.

We believe that it yields a better solution in terms of accuracy and convergence speed
compared to the existing methods which have fixed basis functions when forming a linear
manifold [3,30], or updating the basis functions and blending weights iteratively [1,2,27].
The benefits of the DEC are also inherited from our network. It is less sensitive to the use of
varying hyperparameters and provides state-of-the-art performance for a target application.
A variational autoencoder-based deep embedded network is beneficial to high-resolution
and non-planar geometry reflectance samples since it does not employ a shape-constrained
layer, such as convolutional layers or self-attention modules, on the network.

In summary, the contributions of our research are as follows:

• We proposed Deep embedding clustering-based joint update scheme simultaneously
updating non-parametric basis BRDFs and their linear manifold.

• We designed a novel autoencoder that is suited for learning the appearance properties
of complex objects using unsupervised learning.

• We demonstrate that our network produces a high-quality rendering result in different
illumination conditions.

2. Related Work
2.1. Point-Wise Estimation

The most common way to represent spatially-varying effects over a surface is to treat
each surface point as an independent spatial sample. Gardner et al. [6] fitted an isotropic
BRDF model at each surface point under a linear light source. Similarly, Aittala et al. [7]
used a two specular lobe model to reconstruct the spatially-varying reflectance of a pla-
nar object lit by a programmable LCD light source. To simplify the acquisition setup,
Dong et al. [31] captured a video sequence in a natural illumination and recovered a data-
driven microfacet model at each surface point using a temporal variation in the appearance.
Recently, Kang et al. [8] combined a non-linear autoencoder with a near-field acquisition
system that emits multiplexing light patterns, in order to efficiently estimate per-point-
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based anisotropic BRDFs using fewer samples (16∼32 images). All these methods were
capable of reconstructing individual BRDFs at each surface point using rich information
(e.g., programmed lighting or appearance variation from motion). However, they have not
utilized spatial coherency of the surface reflectance which is commonly observed in real
materials [11,30,32].

2.2. Estimation Using BRDF Examples

Another class of the SVBRDF estimation method utilizes BRDF examples, called
representatives, before manifold mapping in the spatial domain of SVBRDF. These methods
form a local linear subspace at every surface point using only the selected representatives
that are closed to the observed reflectance. Researchers have proposed various methods
to collect representatives: manual acquisition [9,11], NDF synthesis at spatial clusters [32],
and the use of a reference chart [10]. Other researchers used data-driven BRDFs (e.g.,
MERL BRDFs [33]) to jointly optimize the surface normal and reflectance [34,35], or a BRDF
dictionary that consists of a set of parametric BRDFs sampled uniformly from a parametric
domain. Wu et al. [36] proposed a sparse mixture model of analytic BRDFs to represent
Bidirectional Texture Functions (BTFs). Chen et al. [28] utilized a BRDF dictionary with a
sparse constraint to reconstruct anisotropic NDFs. Wu et al. [37] used a single parametric
BRDF which is best suited for the observed reflectance at each point in order to jointly
optimize the geometry, environmental map, and reflectance from an RGBD sequence.
Zhou et al. [12] optimized not only blending weights but the number of basis functions
blended at a surface point.

Most of the above methods share the same limitation that they rely on various types
of given BRDFs. In the case that a prior distribution does not match the appearance of a
target object, these methods could fail to produce a proper solution.

2.3. Estimation Using Linear Subspace

Studies in this category seek to use a low-dimensional subspace to represent the
spatially-varying reflectance. The linear decomposition methods represent the reflectance
at a surface point as a linear combination of basis functions. The basis functions have been
constructed by matrix factorization [1,27], or spatial clustering based on the similarity of
diffuse albedo [2,4,30,38] and the distance to a cluster center [3,5].

Most methods have fixed the basis functions while forming a linear manifold [3–5,30,38]
or iteratively updated basis functions and their blending weights [1,2,27]. In comparison to
these methods, our method can make further improvements by performing a simultaneous
update of both basis NDFs and blending weights.

2.4. Estimation Using Deep Learning

Deep learning-based methods have also been developed to estimate the reflectance
properties and they can be broadly categorized into two types: the supervised and the unsu-
pervised. They differ from one another based on the existence of a separate dataset to train
the network. Early work in the supervised method reconstructs the intrinsics of Lambertian
surface from a collection of real photographs [39–42]. It is extended to a non-Lambertian
surface [17] but their material representation is still based on a simple dichromatic reflection
model. For an accurate representation of surface reflectance, many supervised methods
have utilized more complex SVBRDFs for inverse rendering. Aittala et al. [43] captured
the appearance of a flat surface under a flash light source using Convolutional Neural
Network (CNN)-based texture synthesis. Li et al. [13] also recovered the SVBRDF of a flat
material that had a homogeneous specular reflection over the surface using CNN-based
networks trained by a self-augmentation scheme. Their subsequent work [14] extended it
for inexact supervision based on empirical experiments on self-augmentation. Li et al. [24]
further refined SVBRDF parameters using learnable non-local smoothness conditions.
Deschaintre et al. [15] introduced a rendering loss that compared the appearance of an
estimated SVBRDF with the ground truth photographs rendered by in-network rendering
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layers. Their work had strength in terms of producing a globally consistent solution. Last
but not least, Li et al. [18] utilized U-net-based CNNs for estimating the shape and re-
flectance under multi-bounce reflections. Most supervised methods for SVBRDF estimation
rely on strong supervision over the appearance of materials so that they can produce a
reliable solution even under an ill-posed condition. However, they limit the range of target
application to a near-planar surface [13,15,24,43] or a single-view case [17,18].

Unsupervised learning methods have received less attention in resolving the inverse
rendering problem. Kulkarni et al. [44] proposed a variational autoencoder that cap-
tured a distribution over the shape and appearance of face images. Tewari et al. [45]
employed CNN-based autoencoders for facial reconstruction from a monocular image.
Tanini et al. [46] resolved the photometric stereo problem using two CNNs that captured
per-point surface normal and reflectance, respectively. Compared to these methods, how-
ever, our method is oriented toward an object-specific SVBRDF estimation which can
handle multi-view inputs of a 3D object. A general microfacet model that our network
trains on yields a more realistic solution of relighting for virtual environment applications.

3. Preliminaries

In this chapter, we describe the terminology and assumptions used in this paper. We
assume that a target object is lit by a dominant light source (e.g., photometric stereo [46],
mobile flash photograph [2]) and its surface reflectance is isotropic. We do not consider
multi-bounce reflections. The irradiance function L(x, i) and geometry of the surface are
presumed to be given in advance. A BRDF sample ρ̃ is expressed in a local frame where
the upward direction is aligned with the surface normal n at each x. From the radiance
equation introduced under a point light source in [47], ρ̃ can be formulated as

ρ̃(x, i, o) =
I(x′)

L(x, i)(i · n) , (1)

where x′ is the pixel location corresponding to x, and i and o are an incident and outgoing
vector, respectively.

The surface reflectance is modeled by the general microfacet BRDF [25] as the following:

ρ(x, i, o) = ρd(x, i, o) +
D(x, h)G(x, i, o)F(x, i, o)

4(i · n)(o · n) , (2)

where the half vector h is calculated by the normalized sum of i and o as h = (i+ o)/||i+ o||.
ρd(x, i, o) is the diffuse term which is a blackbox expression of non-local effects such as

sub-surface scattering and inter-reflections. It is simply modeled by the Lambertian surface
model: ρd(x, i, o) = kd(x)/π, where kd(x) is the diffuse coefficient. For isotropic reflectance,
the NDF D(x, h) can be expressed as a univariate function of the angle θh between h and
n: θh = cos−1(h · n). We impose the non-negativity constraint: D(x, h) ≥ 0 and normalize
it so that

∫
Ω+(n)

(h · n)D(x, h)dωh = 1 where Ω+(n) is the upper hemispherical domain
which satisfies (h · n) > 0. For this, we set the specular coefficient ks(x) as

ks(x) =
∫

Ω+(n)
(h · n)D(x, h)dωh. (3)

G(x, i, o) is a geometric term for the shadowing and masking effects by microfacets.
We use the uncorrelated geometric term expressed as the product of two independent
shadowing functions derived by Ashikmin et al. [48]:

G(x, i, o) = S(x, i)S(x, o), (4)

where

S(x, k) =
(k · h)∫

Ω+(k) ∩ Ω+(n)
(k · h)D(x, h)dωh

, (5)
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and a given direction k can be either i or o (Figure 1).

i

o

h

n

x

Ω+(i) ∩Ω+(n)

x
n
i, o
h
kd(x), ks(x)
η(x)
ρ(x, i, o)
S(x, k)
D(x, h)
F(x, i, o)
W1, W2
Ω+(k)
B∗(h)

surface point
surface normal
incident/outgoing direction
half vector
diffuse/specular coefficient
refraction index
BRDF
shadowing factor
NDF at x
Fresnel factor
weight factors
domain of {k|k · n > 0}
basis BRDFs

Figure 1. Integration domain of S(x, i) denoted as the blue area, and notations used in BRDF
definition. Integration domain of S(x, o) can also be computed in the same manner.

F(x, i, o) accounts for the Fresnel effect which is dominant at near-grazing angles. We
use the Schlick’s approximation [49] for computational efficiency. It can be represented as a
linear function of the refraction index η(x) at x as

F(x, i, o) = η(x) + (1− η(x))(1− (i · h))5. (6)

As a result, ρ(x, i, o) can be rewritten as

ρ(x, i, o) =
kd(x)

π
+ ks(x)

D(x, h)S(x, i)S(x, o)F(x, i, o)
4(i · n)(o · n) . (7)

Our method takes two input tensors I and P constructed from the pairs of an image,
the corresponding light source and camera poses. The observation tensor I ∈ Rnp×m×3

contains per-point pixels extracted from multi-view images, where np is the number of
surface points, m is the number of images. The cosine-weight tensor P ∈ Rnp×m×4 contains
four cosine weights Pij = (i · n, o · n, h · n, i · h) for each Iij where i = 1, 2 ·, np and
j = 1, 2 ·, m.

4. Deep Embedding Network

The objective of our network is to reconstruct an observed input image I as close
as possible. Our network, the so-called Deep Embedding Network (DEN), does not rely
on a prior distribution of the reflectance provided by training data. It instead attempts
to estimate the basis BRDFs B∗ represented as a general microfacet model [25], and their
manifold from I. These two attributes are simultaneously optimized while training the
network through the back-propagation of gradients of the rendering loss.

The design of the DEN is inspired by the deep embedded clustering method [29] which
jointly updates a mapping function for a low-dimensional manifold and cluster centroids.
The deep embedded clustering is specialized for an image classification problem where
its kernel function measures the similarity between low-dimensional points and cluster
centroids by an auxiliary target distribution based on the Student’s t-distribution. Since
the observed reflectance is not well described by a mixture of Gaussian-like distributions
due to the fact that the BRDF is represented as a non-linear function of several BRDF terms
described in Equation (7), the DEN employs a different kernel function which measures the
weighted reflectance difference [2,32] as the similarity between reflectance at x and B∗. In
order to apply this kernel function to the encoder, we have introduced a new layer, called
the Distance Measure (DM) layer as the upfront module of the encoder (Section 4.1). We
have also customized our decoder using a single layer, called the Re-Projection (RP) layer,
so that it can compute the rendering loss of B∗ and low-dimensional features z embedded
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in the manifold of B∗ (Section 4.2). In our network design, the weights used for two custom
layers DM and RP, which are represented as B∗, are identical. They share the weights while
training the network in order to avoid overlapping updates.

Our network architecture is illustrated in Figure 2. The structure of the DEN has single
encoder and single decoder analogs with the structure of a variational autoencoder [29,44,45].
Our non-linear encoder as a non-linear mapping function fΘ consists of the DM layer and
a series of Fully-Connected (FC) layers, where Θ indicates learnable parameters of the
mapping function f . fΘ maps the observation features Ii into the latent space Z ∈ Rnc

where I = {Ii ∈ Rm×3}, Z = {zi ∈ Rnc}, and nc is the number of basis BRDFs. The
single-layer decoder reconstructs Ii from zi using the rendering equation [47]. In contrast
to [44,45], we do not utilize convolutional layers since they impose a strong constraint on
the image resolution and are inefficient in handling masked inputs which are common in
multi-view images.

Reprojection layer

Distance measure layer

Fully-connected layer

image

poses

reconstructed
image

DEN

I

P

I

Figure 2. Overview of our method. From two input tensors (I, P), the DEN reconstructs the input I
by updating the parameters of the network through the rendering loss for the basis BRDFs and the
latent features (Section 4.2). The encoder which maps the input I into the latent space consists of the
distance-measure layer and the fully-connected layers. The single-layer decoder (Reprojection layer)
reproduces the input I from the encoded features.

4.1. Manifold Mapping

Our encoder learns the linear manifold of the basis BRDFs B∗(i, o) which are defined as
a non-parametric tabulated function that considers three color bands: B∗(i, o) ∈ R(ns+1)×nc×3

where ns is the number of samples in the NDF domain. The diffuse albedo of each of the basis
BRDFs is also listed in the tensor so that there is one additional entry in the first dimension
of B∗ [2]. In this paper, we manually set ns as 90 according to Matusik et al. [33]. We further
transform the NDF domain θh by θ′h =

√
θh in order to densely sample θh near 0 [33].

The reflectance at each x is represented as the sum of B∗(i, o) by

ρ(x, i, o) =
nc

∑
c=1

zicB∗c (i, o), (8)

where B∗c (θi, θo) is a slice of B∗ which represents a single basis BRDF B∗c ∈ R91×3 and zic is
the corresponding feature in an embedded feature vector zi.

A direct mapping from I into Z [29,44] is undesirable for this case as we mentioned
in the above section. Therefore, the DM layer in front of fΘ firstly transforms I into a low-
dimensional space by measuring the weighted mean squared distance di ∈ Rnc between a
partial observation of reflectance at each x and each B∗c :

dic =
∑(B∗c (i, o)− ρ̃(xi, i, o))(h · n)

∑(h · n) . (9)

The following eight FC layers map di into Z. We flexibly set the number of nodes in
FC layers according to nc so that each layer has {2nc, 4nc, 8nc, 16nc, 8nc, 4nc, 2nc, nc} nodes,
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respectively. In this paper, the learnable parameter Θ of the mapping function corresponds
to the weights of FC layers.

For all FC layers, we apply the ‘Tanh’ activation function except for the last one. In the
last layer, the ‘softmax’ activation function is applied so that zi has non-negative weights
for B∗ where ∑c zic = 1. During the training stage, we set the weight of the DM layer to be
non-trainable and copy B∗ from the RP layer to the DM layer after each batch.

4.2. Rendering Loss

The RP layer is a single-layer decoder that computes the rendering loss under a single
light source condition similar to [15,46]. We have further customized it to allow for the use
of the non-parametric BRDFs B∗.

The rendering loss is defined as

L = ||I(x′)− ρ(x, i, o)L(x, i)(i · n)|| (10)

where || · || indicates the mean squared difference. Gradients for the two major parameters
D∗ and zi are defined as

∂L
∂zic

= − 2
m ∑ W1W2B∗c ,

∂L
∂B∗c

= − 2
m ∑ W1W2zic.

(11)

where W1 ∈ Rm×3 and W2 ∈ Rm×3 are weight tensors which can be formulated as

W1(x, i, o) =
ks(x)S(x, i)S(x, o)F(x, i, o)

4(i · n)(o · n)
W2(x, i, o) = {I(x′)− ρ(x, i, o)L(x, i)(i · n)}L(x, i)(i · n),

(12)

4.3. Network Initialization

For the initialization of the DEN, the weights of FC layers are initialized by the ‘glorot’
uniform distribution [50]. To initialize the weights of the DM and RP layers, we firstly
performed a manual separation of the diffuse and the specular components for each x by
using a minimum filter [10,32]. We grouped Ii to nc clusters using a k-means algorithm
based on the L2 distance between cluster centroids and kd(xi) in the RGB color space. An
initial guess of B∗ was calculated for collected reflectance samples in each cluster. For this,
we excluded the samples of near-grazing angles where cos(θi) < 0.2 or cos(θo) < 0.2 and
assumed F(x, i, o) = 1 [32]. S(x, i) and S(x, o) are also assumed to be equal to 1 at the
starting point. After the calculation of B∗ has been performed, the weights of the DM and
RP layers are initialized to the value of B∗.

5. Results
5.1. Comparison for the Reconstruction Quality

We validated our network on 3D objects (Buddha, Minotaur, and Terracotta) provided
by Schwartz et al. [51]. This 3D dataset aims to estimate a dense BTF of objects which
have complex shapes and surface reflectance so that they captured 151× 151 = 22, 801
sample images. For 3D objects, we parameterized the surface of a triangle mesh into a
2D texture map using the ABF++ mesh parameterization method [52]. Each 2D texture
map is rasterized in the resolution of 1024× 1024. To construct the input tensors I and
P, we selected the co-located images, where the camera and light source positions are
identical [34].

We compared the DEN with the Discrete Spatial Clustering (DSC) [4] and the Log-
Mapping PCA (LMPCA) [53] method. The DSC fits a parametric BRDF to reflectance data
collected in each cluster. In the comparison, we used the Cook–Torrance [25] BRDF with a
parametric NDF for DSC and LMPCA.
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Table 1 shows the PSNR of reconstruction results with respect to the ground truth.
Overall, the DEN outperforms the competitive methods. This improvement is derived
from the mechanism of the DEN that can learn non-parametric NDFs with its blending
weights in the spatial domain. Since the non-parametric NDF is capable of representing
a comprehensive surface reflection by giving more degrees of freedom in the shape of
specular reflection, the reconstruction result of the DEN is improved in comparison with
the method using a parametric BRDF [4] or a pre-defined BRDF [53].

Figure 3 shows the visual comparison of 3D objects. In contrast to the DSC which fails
to capture underlying surface reflectance including an irregular mixture of materials, the
DEN robustly reproduced the surface reflectance. Meanwhile, the result of the LMPCA
seems to be over-saturated in specular regions.

Bu
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r

Te
rr

ac
ot

ta

(a) (b) (c) (d)

Figure 3. Visual comparison on Buddha, Minotaur, and Terracotta dataset: (a) Ground truth photo-
graph; (b) DEN; (c) DSC; (d) LMPCA.
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Table 1. PSNR comparison with DEN, DSC, and LMPCA. We evaluated the PSNR of each reconstruc-
tion result with respect to the ground truth input tensor I.

Object
PSNR

DEN DSC [4] LMPCA [53]

Buddha 31.5 29.7 30.0
Minotaur 36.9 31.8 32.4
Terracotta 40.8 34.5 35.4

To observe whether the DEN is over-fitted to training data, we evaluate the RMSE of
test data that has a novel view and illumination conditions. The result in Table 2 indicates
that the SVBRDF estimated from the DEN is not over-fitted and well applied to different
views and illumination conditions from that of images in training data. This characteristic
is very important to guarantee visual consistency in real-time rendering (Section 5.7).

Table 2. RMS errors of the DEN for the training data and the test data in the BTF dataset. The number
of basis BRDFs nc are also listed in the table.

Object nc RMSE of Training Data RMSE of Test Data

Buddha 9 0.0264 0.0274
Minotaur 10 0.0143 0.0141
Terracotta 9 0.0091 0.0090

5.2. Comparison with the Iterative Optimization Method

Iterative optimization methods which separately optimize the basis functions of the
SVBRDF and the blending weights have been widely used [1,2,27,28]. We compared
the convergence speed with that of the iterative optimization method. For comparison,
we implemented a quadratic programming-based optimizer that updates B∗ and zi by
iteratively solving two quadratic equations in Equation (10). Refer to Nam et al. [2] for the
details of constructing these quadratic equations. While training the iterative method, we
used the same constraints imposed on the DEN. Figure 4 shows RMS errors in terms of the
computation time. Our method converged faster than the iterative optimization due to the
simultaneous update of B∗ and zi. Nevertheless, our method shows a good visual quality
as shown in Figure 4.
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Time (min) Masked
photograph

D
EN
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R

D
EN

Time= 7(min) 14 120

Figure 4. (left) RMS errors between reconstructions and photographs according to the computation
time. (right) DEN: DEN with initialization of B∗, RDEN: Randomly-initialized DEN by glorot uniform
distribution, IO: Iterative Optimization. The middle figure is a masked photograph. The highlighted
figures are the reconstruction result of each method at t = 7, 14, and 120 min.
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5.3. Gradient Observation

Figure 5 shows the histogram of the magnitude of the gradients
∣∣∣ ∂L

∂B∗c

∣∣∣ according to

|zi,c| at the first epoch. As noted in Equation (11),
∣∣∣ ∂L

∂B∗c

∣∣∣ is linearly proportional to |zi,c|. It

indicates that B∗c which is closer to a partial observation B̃(x, θh) has been updated more
rapidly. This characteristic plays an important role in the convergence of the DEN. We
observed that a random initialization of B∗ leads to local minima in which the DEN gave a
poor result (Figure 4(left)). However, when an initial value of B∗ computed by a discrete
spatial clustering [2,3,5,38] is given to the DEN, it outperforms the iterative optimization
method for B∗ and zi.
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5.4. Comparison of Photometric Stereo Data

The DiLiGenT benchmark dataset (Shi et al. [54]) provides 96 photometric stereo
images and the corresponding light source positions for 10 objects, as well as their ground
truth surface normal. They also provide the BRDF fitting results of Alldrin et al. [27] under
the given surface normal and the given number of basis functions as three.

Table 3 summarizes the comparison result in terms of the PSNR. Our method shows a
better performance than the ACLS [27]. Although the PSNR in several objects is marginally
improved by the proposed method, we have observed that the DEN significantly improves
the visual quality of the reconstruction. Figure 6 shows highlighted results for three
objects: Harvest, Reading, and Ball, to compare the visual quality of the two methods. The
DEN produces more realistic solutions than the competitive method in both specular and
diffuse regions.
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(a) (b) (c) (d)

Figure 6. Visual comparison on the Harvest, Reading, and Ball dataset: (a) Ground truth photograph;
(b) Alldrin et al. [27]; (c) Ours; (d) Highlighted regions in (a–c).

Table 3. Comparison of PSNR with ACLS for the “DiLigenT” dataset. We generated the reconstruction
results using the ground truth surface normal for both methods.

Object
PSNR

ACLS [27] DEC

Ball 38.9 43.3
Bear 43.1 41.4

Buddha 38.2 39.2
Cat 43.1 43.3

Cow 40.3 39.8
Goblet 36.7 35.7

Harvest 30.4 30.8
Pot1 45.8 48.9
Pot2 45.6 49.2

Reading 27.5 29.0

5.5. Sensitivity for Normal Error

The reconstruction quality of the DEN can be affected by the noise in the surface normal
since it relies on the given surface geometry and camera configurations. We measured
the sensitivity of the reconstruction results in terms of the normal error of the 10 objects
for the DiLiGenT dataset. For each object, we constructed 11 cosine-weight tensors P
corresponding to a single observation tensor I by adding uniform random noise to angles
of the surface normal in the polar coordinates. We gradually increased the amplitude of
noise µ as µ = {0, 1, 2, . . . , 9, 10}°. As shown in Figure 7, the RMS error of reconstruction
results is increased as µ increases. Shiny objects tend to be more sensitive to normal errors
as reported by Zhou et al. [12].
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number of clusters

R
M

SE

Figure 7. RMS errors in terms of the degree of uniform random noise in the surface normal. Shiny
objects (reading, ball, goblet, harvest, and cow) tend to be more affected by normal perturbation. This
figure is best viewed in color.

5.6. Selection of nc

The number of basis functions nc is the most dominant hyper-parameter of the DEN.
Similar to a grid hyperparameter tuning scheme for linear manifold search [55], we empiri-
cally select it by a brute-force search [1,2,10,27]. Figure 8 shows the tendency of the RMS
errors according to nc. In our experiments, a small number of basis functions is enough to
represent the reflectance of many surface points (300∼500 k). The reconstruction quality is
insignificantly improved when nc > 5.

R
M

S
er

ro
r

number of basis BRDFs
Masked

photograph n= 1 4 9

Figure 8. (left) RMS error between reconstructions and photographs according to the number of
basis BRDFs. (right) corresponding reconstruction result for the ground photograph.

5.7. Relighting Result

Figure 9 shows the relighting result under various environmental maps. We applied
the final weight of the RP layer as the basis NDFs and the final output of the encoder as the
weight of the basis NDFs. As shown in Figure 9, our network can generate a high-fidelity
reconstruction in given view and illumination conditions.
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(a) (b) (c)
Figure 9. Relighting results of three objects for different environmental maps provided by P. Debevec:
(a) Eucalyptus Grove (b) Grace Cathedral (c) St. Peter’s Basilica.

6. Conclusions

In this paper, we have presented a novel Deep Embedding Network (DEN) for the
simultaneous update of the basis NDFs and their linear manifold via the dual gradient
(Eq. 10) in order to search for a photo-realistic representation of an opaque object using
SVBRDF. We have empirically shown that the basis NDFs and their blending weights are
linear-proportionally updated in our autoencoder network. We also demonstrated that our
scheme excels in optimizing the rendering loss in terms of the convergence speed and the
visual quality compared to the iterative SVBRDF update methods [2,28].

Our method is specialized to model intra-class variations of the surface reflectance. It
is advantageous for restoring the high-definition appearance of a 3D object measured in a
laboratory environment. But our method does not take into account a sparse measurement
[15,18,43], or unknown illumination conditions [16,37]. In future work, we plan to extend
our work to estimate not only the surface reflectance but the surface geometry [56]. This
could be achieved by extending our network to jointly estimate the surface normal and
the reflectance as similar to Taniai et al. [46] or Nam et al. [2]. To achieve the goal, we can
directly adopt the CNN-based reflectance estimator [46] and the iterative quadratic solver
[2].
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6. Conclusions

In this paper, we have presented a novel Deep Embedding Network (DEN) for the
simultaneous update of the basis NDFs and their linear manifold via the dual gradient
(Equation (10)) in order to search for a photo-realistic representation of an opaque object
using SVBRDF. We have empirically shown that the basis NDFs and their blending weights
are linear-proportionally updated in our autoencoder network. We also demonstrated that
our scheme excels in optimizing the rendering loss in terms of the convergence speed and
the visual quality compared to the iterative SVBRDF update methods [2,28].

Our method is specialized to model intra-class variations of the surface reflectance.
It is advantageous for restoring the high-definition appearance of a 3D object measured
in a laboratory environment. However, our method does not take into account a sparse
measurement [15,18,43], or unknown illumination conditions [16,37]. In future work,
we plan to extend our work to estimate not only the surface reflectance but the surface
geometry [56]. This could be achieved by extending our network to jointly estimate the
surface normal and the reflectance as similar to Taniai et al. [46] or Nam et al. [2]. To
achieve the goal, we can directly adopt the CNN-based reflectance estimator [46] and the
iterative quadratic solver [2].
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