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Abstract: Due to the battery capacity limitation of battery electric vehicles (BEVs), the importance
of minimizing energy consumption has been increasing in recent years. In the mean time, for im-
proving vehicle energy efficiency, platooning has attracted attention of several automakers. Using
the connected and automated vehicles (CAVs) technology, platooning can achieve a longer driving
range while preserving a closer distance from the preceding vehicle, resulting in the minimization
of the aerodynamic force. However, undesired behaviors of human-driven vehicles (HVs) in the
platooning group can prohibit the maximization of the energy efficiency. In this paper, we developed
a speed planner based on the model predictive control (MPC) to minimize the total platooning energy
consumption, and HVs were programmed to maintain a long enough distance from the preceding
vehicle to avoid collision. The simulations were performed to determine how HV influences the effi-
ciencies of the platooning group, which is composed of CAVs and HVs together, in several scenarios
including the different positions and numbers of the HVs. Test results show that the CAVs planned
by our approach reduces energy consumption by about 4% or more than 4% compared to that of
the HVs.

Keywords: platooning; connected and automated vehicle (CAV); electric bus; energy optimization;
model predictive control

1. Introduction

Eco-friendly vehicles such as battery electric vehicles (BEVs) have been promoted to
counter environmental issues, but their driving range is limited due to the limitation of the
battery capacity [1,2]. Therefore, since the 20th century, the development of energy saving
approaches to increase energy efficiency has attracted attention of many automakers. Some
researchers have developed an optimal velocity planning scheme using traffic signal phase
and timing (SPAT) [3,4], efficient regenerative braking systems to recharge batteries [5], and
energy-efficient cabin climate control [6,7].

In addition, many researchers have proposed platooning using vehicle to everything
(V2X) connection to improve energy efficiency [8–10]. The vehicles in platooning drive
along the same trajectory, maintaining short inter-vehicle distance. The effect of improving
energy efficiency and highway capacity can be achieved by platooning. To provide consis-
tent signal coverage, a wireless communication infrastructure is necessary for vehicular
communication. Vehicles exchange information about the local traffic conditions, and this
advanced technology has led to the connected and automated vehicles (CAVs) [11–14].
This advancement can be exploited to form a group of vehicles that travel together to
maximize energy efficiency. A small inter vehicle distance allows the platooning group
to reduce the overall air resistance. For example, refs. [15,16] show how drag coefficient
influences the energy consumption according to inter-vehicle distance. Depending on the
number of vehicles, the air drag coefficient of vehicles in the group can be reduced by
40% [17]. This impact reduces the total air resistance of vehicles, thereby reducing energy
consumption [18–20].
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However, previous studies have not considered mixed CAVs and human-vehicles
(HVs) in a specific platooning group. Communication between vehicles is difficult in this
case because the HVs are disconnected from the CAVs. That is, the driving intention of HV
is not unknown to CAV by nature. Evidently, for this disconnection, reducing the total air
drag of the group is extremely grueling. From this motivation, in this paper, we develop an
efficient energy platooning strategy for a group in which the CAVs and HVs coexist, and
demonstrate the energy consumption results according to their formations.

Reinforcement learning (RL) is one of the theories to develop an eco-platooning strat-
egy [21]. RL has an explosion of interest in technology to control automated vehicles, but
learning-based algorithms may result in fatal accidents. Although dynamic programming
(DP) can be considered, it requires the entire journey trajectory to calculate the optimal tra-
jectory [22]. Therefore, DP cannot be implemented to real-time control. Meanwhile, model
predictive control (MPC) can be considered as a solution to both safety and real-time issues.
To predict optimal future the behavior, MPC calculates the trajectory of the future-modified
inputs [23–26].

In this study, we exploit MPC and vehicle speed preview using V2X to plan energy
efficiency platooning with mixed CAVs and HVs in the group. The main objective of this
study is to create an optimized path for CAVs using the expected vehicle information. CAVs
in platooning aim to reduce the overall energy consumption of the group. In addition, we
analyzed how HVs affect energy consumption according to the platooning formation. The
main contributions of this study are as follows:

(1) We propose the CAVs platooning control algorithm using MPC. Using predicted
vehicle information, CAVs optimize speed trajectory to minimize the total platooning
energy consumption, and the effectiveness is confirmed through simulations under various
conditions.

(2) We analyze the energy consumption with respect to platooning formation mixed
with HVs. Although HVs are disconnected with CAVs, we estimate the HVs behavior
to keep short distance from the preceding vehicle as much as possible to minimize air
resistance.

The rest of this paper is organized as follows. In Section 2, we define the problem
formulation for the case of mixed CAVs and HVs for platooning. In Section 3, we present the
simulation modeling for the electric bus, and compare vehicle model from Autonomie with
the control-oriented model. Autonomie [27] offers a reliable model and a small discrepancy
with the test results. In Section 4, we present a platooning strategy that minimize energy
consumption. In Section 5, we introduce the intelligent driving model (IDM) for HV model
and estimate the behavior of a HV using a particle filter. The simulation results are discussed
in Section 6 followed by the summary and conclusions in Section 7.

2. Problem Formulation

Figure 1 depicts an illustration of the platooning scenario. Leading vehicle is consid-
ered as a CAV in platooning for complete communication links. We assume that CAVs
are connected to predecessor-leader-following (PLF) communication [28]. Owing to its
complete communication links, the PLF communication topology performs better than
the others, leading to the prediction of the future CAV behavior. This advantage allows
us to adapt MPC to optimize path planning. Nevertheless, CAVs are connected to each
other, whereas HVs are disconnected from CAVs. This implies that HVs cannot provide
the predicted behavior. In this study, we assume that the HV position can be detected
with noise and we propose the estimation of HVs speed using a particle filter. We used
this information to maintain a short inter-vehicle distance from the preceding HV. The
measurement of inter-vehicle distance is an important issue for the safety and reduction of
air resistance in platooning [29].
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Figure 1. Illustration of the platooning scenario. CAVs are connected each other by using V2X
technologies while human-vehicle(HV) disconnected with CAVs.

3. System Modeling
3.1. Vehicle Longitudinal Dynamics

As shown in Figure 2, in this subsection, the longitudinal dynamics of the vehicle are
described. In this study, we assume that vehicles only drive in a longitudinal direction. The
disturbances like cut-in and the lane-changing maneuver is not considered. The vehicle
longitudinal dynamics is as follows.

ṡ = v (1)

v̇ =
Tw

mr
− 1

2m
ρACdC f v2 − gsinθ − f gcosθ (2)

where s denotes travel distance of the vehicle, v denotes the vehicle speed, Tw denotes
the applied input wheel torque, m denotes the vehicle mass, r denotes the wheel radius, ρ
denotes the air density, A is the frontal area of the vehicle, g denotes the constant as gravity,
θ denotes the road slope, f is the rolling resistance coefficient, Cd is the drag coefficient,
and C f is the drag coefficient ratio.

Figure 2. Longitudinal vehicle dynamics.

The control input, i.e., motor torque Tm, is calculated as follows:

Tm ≈
Tw

i0
(3)

where Tw denotes the input wheel torque and i0 denotes the final reduction gear ratio.
In general, the air resistance of individual vehicles in platoons is affected by the

distance between vehicles. The numerical analysis done by Zabat et al. [30] measured
aerodynamic drag coefficients of light-duty vehicles (LDVs) in the wind tunnel. The results
show that shorter vehicle spaces in platoons present a reduced average drag coefficient.
The average drag reduction showed up to 55% for five-vehicle platoon at inter-vehicle
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distance 5 m [31]. Through the drag coefficient ratio C f multiplied by aerodynamic force,
the control-oriented model can be more accurate to find optimal control action. We refer
Hussein et al. [32] which proposes fitting drag coefficient ratio, using rational polynomial
function based on experiment measurement, and C f is defined as follows:

C f =


andn

inter+an−1dn−1
inter+···+a1d1

inter+a0

bndn
inter+bn−1dn−1

inter+···+b1d1
inter+b0

, 0 < G ≤ G0

1, G ≥ G0

(4)

Here C f is the drag coefficient ratio between the ego car and the preceding car, dinter is the
distance gap, an and bn are calibrated constants, and n denotes the number of vehicles in
the convoy.

If a single vehicle in the platoon exceeds the critical inter-vehicle distance G0, the
vehicle is not susceptible to the drag coefficient ratio (i.e., C f = 1). Therefore, the inter-
vehicle distance of a single vehicle must be less than G0 in order to take advantage of the
drag coefficient ratio’s benefit. The ego vehicle’s C f is calculated using dinter between the
ego and its preceding vehicle at time k. dinter at time k can be calculated as follows:

dinter = dp − de (5)

where dp is the preceding car’s and de is the ego car’s inter-vehicle distance.
As shown in Figure 3, actual and approximated drag coefficient ratio C f data set

for three-buses in platoons is depicted. The drag coefficient ratio of individual vehicles
in platoon increases exponentially until inter-vehicle distance approaches critical point
G0. Although C f can be minimized as dinter approaches zero, we specify the minimum
dinter value to keep the safety. In addition, it is assumed that the third car in the platoon’s
drag reduction is the same from the perspective of the vehicle behind it. This model was
developed by [32] and was obtained using empirical dataset [33]. The parameters data
empirically fitted for C f are listed in Table 1.

0 100 200 300 400

Inter-Vehicle Distance (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
ra

g
 C

o
e
ff

ic
ie

n
t 

R
a
ti

o
 (

-)

Lead Bus - Data

2
nd

 Bus - Data

3
rd

 Bus - Data

Lead Bus- Approximation

2
nd

 Bus - Approximation

3
rd

 Bus - Approximation

Figure 3. Drag coefficient ratio C f for three-bus in platoons according to inter-vehicle distance. The
fitting parameters of the drag coefficients ratio is presented by [32] based on actual data [33].
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Table 1. Parameters of the drag coefficients ratio for individual bus platoons [32].

Parameters

Bus Platoon

Two Buses Three Buses

Lead Trail Lead Middle Trail

a3 −1.5175 × 10−4 −7.2951 × 10−4 −1.5175 × 10−4 4.7945 × 103 9.3348 × 10−2

a2 1.3115 × 10−1 4.4369 × 10−1 1.3115 × 10−1 −4.0404 × 104 5.1656

a1 1.5396 6.1509 1.5369 3.5213 × 105 −3.9662

a0 3.4243 × 10−1 1.1174 × 10 3.4243 × 10−1 1.0311 × 106 6.7697

b3 −8.9422 × 10−5 −8.5027 × 10−4 −8.9422 × 10−5 4.6933 × 103 8.1124 × 10−2

b2 1.1463 × 10−1 4.6002 × 10−1 1.1463 × 10−1 −1.6202 × 104 1.0062 × 10

b1 1.7730 1.2569 × 10 1.7730 2.9853 × 105 −4.2684

b0 4.0877 × 10−1 1.9639 × 10 4.0877 × 10−1 1.9158 × 106 1.4692 × 10

G0 - 3.0815 × 102 - 2.4082 × 102 4.0045 × 102

3.2. Battery Dynamics

In this subsection, we introduce the battery dynamics to calculate required energy to
generate the vehicle traction force. The battery state of charge (SOC) is as follows:

SOC(t) = SOC(t0)−
∫ t

t0
Ib(t)dt

C
(6)

where Ib denotes the battery current, and C is the battery maximum capacity.
The SOC is estimated based on battery current condition. The battery current Ib is

calculated as follows:

Ib(t) =
Pb(t)
V(t)

(7)

where Pb is the battery power, and V denotes the battery voltage. The battery is discharged
when Pb is positive, and charging when Pb is negative. The Pb expressed described as
follows:

Pb =

{
Pmeb, Pm < 0
Pm
eb

, Pm ≥ 0
(8)

where Pm is the motor power, which is positive when motor power is used to produce
traction force, and eb is the battery efficiency. To obtain Pm, we used a look-up table indexed
by the motor speed and torque (see Figure 4).
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Figure 4. Motor power map indexed by motor torque and speed.
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As shown in Figure 5, the control-oriented and Autonomie models are compared. The
simulation results [27] show the accuracy of the vehicle model provided by Autonomie.
In this study, the simulation was implemented by using the UDDS velocity profile and
the parameters of the vehicle model are listed in Table 2. The discrepancy in the SOC
between the control oriented model and the Autonomie is 1.75%. Through this simulation,
we developed a reliable vehicle model for electric buses.

Table 2. Electric-bus parameter values offered from AMBER [34].

Description Symbol Value

Mass of the vehicle m 19,717 [kg]
Wheel radius r 0.4655 [m]

Ratio for single reduction gear i0 11.76 [-]
Frontal area A f 7.33 [m2]

Coefficient of rolling
resistance f 0.00863 [-]

Drag coefficient Cd 0.65 [-]
Battery voltage V [3.5 4.2] [V]

Battery efficiency eb 0.9 [-]
Maximum capacity of battery Cb 33.1 [Ah]

SOC range SOC [0 1] [-]
Gravity g 9.81 [m/s2]

Air density ρ 1.1985 [kg/m3]
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Figure 5. The driving results of the control oriented-model and the AMBER model are compared.
(a) Motor speed (ωm), (b) Motor torque (Tm), (c) Battery power (Pb), (d) State of Charge (SOC).

4. Nonlinear Programming Problem

The optimal control was designed to minimize the energy consumption. The key
idea of our approach is to maximize regenerative braking and minimize air resistance by
considering highway road information. We propose the design of the cost function and
control constraints for the prediction and control horizon N:
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min
u∈U

N−1

∑
k=0

W1Pb(k|i) + W2C f (k|i) (9a)

subject to

Tmin
m < u(k|i) < Tmax

m (9b)

dmin
inter < dinter(k + 1|i) < dmax

inter (9c)

vmin(k + 1|i) < v(k + 1|i) < η · v̂p(k + 1|i) (9d)

k = 0, 1, 2 · · · , N − 1,

where W1, W2 is the weight factor, [Tmin
m , Tmax

m ] is the restricted rage of control input, and
[dmin

inter, dmax
inter] is the predefined range of the inter-vehicle distance while avoiding vehicle

collisions and reducing the drag coefficient. η is a safety variable, v̂p denotes preceding
vehicle velocity and i + k is obtained at time instant i. We tuned W1, W2 factors according
to road information to maximize energy efficiency.

5. Car-Following Model and Velocity Estimation

In this section, we introduce an intelligent driver model (IDM) to model collision-free
car following motion. Since the communication between HVs and CAVs is not available,
the behavior of HV is highly uncertain. For this reason, the CAV following the HV employs
the IDM because using the MPC with predicted information is not available. Also, a particle
filter is used to estimate the HV’s velocity using the sensor measurements [35,36].

5.1. Intelligent Driving Model

The IDM model can adjust the desired safety time gap and the longitudinal veloc-
ity [37]. The IDM model is given by

v̇(t) = a

[
1−

(
v(t)
v0

)δ

−
(

s∗(v, ∆v)
s(t)

)2
]

(10)

where a denotes the maximum acceleration, v0 denotes the preferred velocity, and s∗(v, ∆v)
denotes the desired gap. The desired gap s∗(v, ∆v) is given by

s∗(v, ∆v) = s0 + s1

√
v
v0

+ Thv +
v∆v

2
√

ab
(11)

where s0 and s1 are the minimum gap when following other vehicles, Th denotes time
headway, and b denotes the characterized deceleration.

5.2. Particle Filter-Based Velocity Estimation

In this subsection, we propose a method of estimating HV’s velocity using particle
filter (a.k.a. sequential Monte Carlo) in order to keep the safe-distance while following.
Since HV drives stochastically at every moment, we should estimate HV’s velocity through
a probability-based particle filter. The basic principle of the particle filter is well described
in [38].

It is assumed that the preceding HV’s position is measured continuously and this
position information is used to estimate the HV’s state variable xk+1. The current state xk
is calculated by the measurement during the sampling time. The distribution of particles
should be conducted because the future HV’s behavior is predicted based on probability.
For this reason, we randomly scattered particles to find the behavior of HV that most likely
to happen. The distribution is calculated as follows.

xk+1,i = fk(xk,i, wk) i = 1, · · · , N (12)

where k indicates the time instance, xk is the state variable, wk is the process noise, Ts is
the sampling time, zk is the measurement noise, i is the index for the particle, and N is the
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number of particles generated via trial-and-error. We randomly generate N particles xk,i at
time k. In this process, white noise wk that is randomly generated is considered to prevent
the case that particles are distributed on the point which is much far from the actual data.

Subsequently, we weight the particles based on relative likelihood to approximate
actual velocity. The relative likelihood qk,i(xk,i) is assumed to be followed the Gaussian
distribution:

qk,i(xk,i) =
1

(2πR)1/2 exp

(
−(x∗k − xk,i)

2

2R

)
(13)

where x∗k is the estimated state variable at time instance k, and R is the variance.
We define a new distribution of cumulative probability function(CDF) for the resam-

pling step. The CDF can prevent being biased by considering the only one points that lots
particles are gathered when the resampling happens. The normalized relative likelihood
can be expressed as follows:

qi =
qi

∑N
j=1 qj

(14)

The resampling stage was conducted qi into the accumulated distribution. Based
on the accumulated distribution, sum of all the normalized relative likelihood is equal
to one. We randomly pick particles given weight and average them for estimation. The
approximated mean of particles is given by

E(xk+1) ≈
1
N

N

∑
i=1

xk,i (15)

where E(xk) denotes the expected value.
The particle xk,i is randomly selected in the accumulated distribution domain qi for

resampling. Subsequently, the sum of the resampled particles xk,i is divided by the number
of particles to calculate the expectation value. We set xk as HV’s velocity to keep safty
distance.

As shown in Figure 6, the estimation of HV speed is depicted when it is driven based
on the adapted US06 speed profile. We assumed that the HV position and state are the HV
velocities. Although there are some differences between the actual and estimated data, the
estimation tracks the intended acceleration and deceleration of human vehicles. Using the
estimated value, the vehicle behind the HV was followed by using the IDM model.
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Figure 6. Particle filter results in human vehicle driving based on three-times US06 speed profile.

6. Simulation and Results

In this section, we evaluate developed CAV speed planner in various scenarios in
terms of the energy efficiency according to the HVs position and the number of HVs. We
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assumed that all the leading vehicles in the scenario drive with a modified US06 speed
profile in highway. The total travel distance for the leading vehicle is 29.78 km, and speed
profile of the leading vehicle is shown in Figure A3. In addition, road slope information
was obtained from Google Earth [39] (see Figure A1). The following vehicles travel until the
leading vehicle stops. The simulation is performed in Windows 10 operating system with
Intel(R) Core(TM) i5-9500, 16GB RAM memory. The MPC problem is solved by MATLAB
function f mincon().

6.1. Case 1: Energy Efficiencies Depending on the Locations of HV on the Flat Road

In this subsection, four scenarios were considered, as shown in Figure 7 in which
the leading CAV is assumed to drive with deformed US06 speed profile on the flat road,
so the total travel distance for the leading vehicle was 29.78 km. Scenarios 1, 2, 3, and 4
are illustrated in which the HV is placed differently. Figure 8 shows the average gap and
the reduced drag coefficient factor C f between the preceding and following vehicles for
each scenario. The red, green, and orange bars indicate the HV, CAV, and average values,
respectively.

Figure 7. Platooning scenario according to the location of HV.

As discussed in Table 3, where the aero drag coefficient decreases if the more vehicles
travel in front even if the inter-distance between vehicles are same, the HV in the scenario
1 consumed more average SOC than other scenario. It is observed that the position of
vehicle strongly influences on the energy consumption. Although HVs drive with similar
inter-vehicle distance, drag coefficient is applied differently depending on the position
(see Figure 3). As shown in Figure 8, the HV in the scenario 1 has the most biggest drag
coefficient 0.91 which consumes the most battery energy.

Table 3. Battery SOC consumption for four scenarios in Case 1.

Scenario 1st Bus
SOC (%)

2st Bus
SOC (%)

3st Bus
SOC (%)

4st Bus
SOC (%)

5st Bus
SOC (%)

6st Bus
SOC (%)

Average
SOC Consumption (%)

Scenario 1 22.97 22.07 20.98 18.21 17.97 17.99 20.03
Scenario 2 22.97 19.92 20.13 20.6 18.02 17.96 19.80
Scenario 3 22.97 19.32 18.15 20.15 20.68 17.99 19.84
Scenario 4 22.97 19.12 18.15 18.08 20.01 20.47 19.98
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(a) Scenario 1 in Platooning
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Figure 8. Average inter-vehicle distance and drag coefficient ratio under scenarios 1, 2, 3 and 4 in
Case 1. Red: HV; Green: CAV; Orange: Average.

6.2. Case 2: Energy Efficiencies Depending on the Locations of HV on the Sloped Road

In this subsection, we analyze the energy efficiencies for each scenario on the sloped
road (see Figure 7). Test results of each scenario’s SOC consumptions are described in
Table 4. The SOC of CAVs following HV is higher than other vehicles. This results are
caused by (9), where the vehicles use the regenerative braking function as much as possible,
which is more effective than reducing drag coefficient on sloped road. In the Figure 9,
CAV that located right behind of human vehicle has shorter inter-vehicle distance from the
preceding car compared to other CAVs in every scenarios which have high drag coefficient.
However, the SOC of CAVs which drive with long inter-vehicle distance was lower than
others even though they have bigger air drag coefficients. To sum up, we can conclude
that energy recovering by the regenerative braking is more effective than the reducing aero
drag coefficient.
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Table 4. Battery SOC consumption for four scenarios in Case 2.

Scenario 1st Bus
SOC (%)

2st Bus
SOC (%)

3st Bus
SOC (%)

1st Bus
SOC (%)

5st Bus
SOC (%)

6st Bus
SOC (%)

Average
SOC Consumption (%)

Scenario 1 23.33 22.55 20.98 19.96 19.79 19.99 21.17
Scenario 2 23.33 20.21 20.81 21.20 19.78 20.01 20.99
Scenario 3 23.33 20.21 19.80 20.65 21.03 19.93 20.93
Scenario 4 23.33 20.21 19.80 19.78 20.71 21.16 20.94

(c) Scenario 3 in Platooning
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(d) Scenario 4 in Platooning
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Figure 9. Average inter-vehicle distance and drag coefficient ratio under scenarios 1, 2, 3 and 4 in
Case 2. Red: HV; Green: CAV; Orange: Average.

6.3. Case 3: Energy Efficiencies Depending on the Number of Multiple HVs on a Flat Road

In this section, scenarios 5, 6, 7 and 8 are considered as shown in Figure 10. Each
scenario has the different number of the HV and results show how that influenced to the
platooning group. As shown on the Table 5, the average SOC consumption results show
that as the number of the HV increases, the average energy consumption tends to increase.
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The scenario 8 with the most number of HVs consumed an average SOC 21.23%, whereas
20.03% average SOC is consumed in Scenario 5 which has the fewest number of HVs. As
shown in Figure 11, CAVs have lower drag than HVs because CAVs can maintain shorter
inter-vehicle distance. The result of scenario 8 shows that scenario 8 has a higher average
inter-vehicle distance than scenario 7, which leads to higher air resistance. Overall, more
CAVs deployed in platoon can save energy consumption.

Figure 10. Platooning scenario according to the number of multiple HVs.
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(C) Scenario 7 in platooning
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(d) Scenario 8 in Platooning
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Figure 11. Average inter-vehicle distance and drag coefficient ratio under scenarios 5,6,7 and 8 in
Case 3. Red: HV; Green: CAV; Orange: Average.
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Table 5. Battery SOC consumption for four scenarios in Case 3.

Scenario 1st Bus
SOC (%)

2st Bus
SOC (%)

3st Bus
SOC (%)

4st Bus
SOC (%)

5st Bus
SOC (%)

6st Bus
SOC (%)

Average
SOC Consumption (%)

Scenario 5 22.97 22.07 20.98 18.21 17.97 17.99 20.03
Scenario 6 22.97 22.07 20.47 22.06 17.99 17.90 20.58
Scenario 7 22.97 22.07 20.47 20.46 20.97 18.15 20.85
Scenario 8 22.97 22.07 20.47 20.46 20.44 20.98 21.23

6.4. Case 4: Energy Efficiencies Depending on the Number of Multiple HVs on the Sloped Road

In this subsection, we analyze the energy efficiencies for each scenario on the sloped
road (see Figure 10). Each scenario has the different number of the HV and test results
show how the number of HVs between CAVs influence the energy efficiency of the vehicle
group. As the number of HVs increased, the average SOC consumption also increases as
depicted in Table 6. This is because more CAVs in platoon can save energy consumption
while exploiting regenerative brake. Although the average gap and C f in scenario 5 were
higher than other scenarios, they consumed lesser energy than other scenarios as shown in
Figure 12. This implies that exploiting regenerative brake is more effective than reducing
the air resistance on the sloped road from the perspective of saving energy.
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(d) Scenario 8 in Platooning
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Figure 12. Average inter-vehicle distance and drag coefficient ratio under scenarios 5, 6, 7 and 8 in
case 4. Red: HV; Green: CAV; Orange: Average.
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Table 6. Battery SOC consumption for four scenarios in Case 4.

Scenario 1st Bus
SOC (%)

2st Bus
SOC (%)

3st Bus
SOC (%)

4st Bus
SOC (%)

5st Bus
SOC (%)

6st Bus
SOC (%)

Average SOC
Consumption (%)

Scenario 5 23.33 22.55 20.98 19.96 19.79 19.99 21.1
Scenario 6 23.33 22.55 21.05 21.58 19.89 19.85 21.32
Scenario 7 23.33 22.55 21.05 21.01 21.51 19.93 21.56
Scenario 8 23.33 22.55 21.05 21.01 20.99 21.57 21.75

7. Conclusions

In this paper, we propose the energy-efficient control framework for CAV in platoon
and evaluate its effectiveness in mixed traffic environment. Especially, using the connectivi-
ties, the vehicles future behaviors are exploited when optimizing the velocity profiles of
multiple CAVs.

The two main distinctions of this study compared to existing studies are as follows.
First, the MPC-based controller for CAVs performed better than that for HVs in terms of
energy efficiency. Second, we propose estimating HV’s velocity through a probability-based
particle filter. The CAVs use estimated HV’s velocity to keep the safety distance while HV
drives stochastically at every moment. An evaluation is performed to verify our approach
under various platooning scenarios. The 5th CAV saved energy consumption by up to 4.1%
compared to HV in scenario 5. In addition, as the number of HVs in a group increases,
the average battery SOC consumption decrease. The average battery SOC consumption
value differed by up to 1.2% depending on the number of HVs in the convoy. However,
the average battery SOC consumption according to the position of the HV does not have a
meaningful relationship. This is because our predefined HV travels with a reasonable inter-
vehicle distance from the preceding vehicle, which can reduce energy consumption. Our
approach shows that CAV only use HV’s estimated information to keep a safety distance.

In future studies, we will model the human-drivers with different driving character-
istics, then we will perform hardware-in-loop (HIL) test to verify the applicability of our
approach in the mixed-traffic environment in real-time.
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Appendix A

The road slope information was provided from Google Earth, as shown in Figure A1.
We assumed that the leading vehicle traveled Daegu to Busan on a highway in south korea
as shown in Figure A2. In this study, the lateral position was not considered. This implies
that platooning only drives in a longitudinal direction, and there is no lane-changing.



Electronics 2022, 11, 3231 15 of 17

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Distance (m)

-10

-5

0

5

10

S
lo

p
e
 (

%
)

Figure A1. Road slope information of the certain period between Daegu and Busan in South Korea
(Google Earth).

Figure A2. Expressway information from Daegu to Busan in South Korea (Google Earth).

Appendix B

As shown in Figure A3, the leading vehicle travels with a deformed US06 speed profile.
This is because the acceleration ability of the BEV electric bus is a burden for following the
US06 speed profile. We only considered a section with a high speed range in US06. The
total travel distance is 29.78 km on a highway.
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Figure A3. Leading vehicles traveling with deformed US06 speed profile.
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