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Abstract: As industrial computerized tomography (ICT) is widely used in the non-destructive testing
of a solid rocket motor (SRM), the problem of how to automatically discriminate defect types and
measure defect sizes with high accuracy in ICT images of SRM grains needs to be urgently solved.
To address the problems of low manual recognition efficiency and data utilization in the ICT image
analysis of SRM grains, we proposed an automated defect analysis (ADA) system for ICT images
of SRM grains based on the YOLO-V4 model. Using the region proposal of the YOLO-V4 model,
a region growing algorithm with automatic selection of seed points was proposed to segment the
defect areas of the ICT images of grains. Defect sizes were automatically measured based on the
automatic determination of defect types by the YOLO-V4 model. In this paper, the image recognition
performance of YOLO-V4, YOLO-V3, and Faster R-CNN models were compared. The results show
that the average accuracy (mAP) of the YOLO-V4 model is more than 15% higher than that of the
YOLO-V3 and Faster R-CNN models, the F1-score is 0.970, and the detection time per image is 0.152 s.
The ADA system can measure defect sizes with an error of less than 10%. Tests show that the system
proposed in this paper can automatically analyze the defects in ICT images of SRM grains and has
certain application value.

Keywords: industrial computerized tomography; solid rocket motors; automated defect analysis;
YOLO-V4 model

1. Introduction

In the life cycle of an SRM, inner bore cracking, internal slag inclusion, and interlayer
debonding are the main defects affecting the structural integrity of grains. In order to
study the effects and causes of defects, determining the types and sizes of defects in the
grains is important. Industrial computerized tomography (ICT) is widely used in the
non-destructive testing of SRMs. The manual-based interpretation of defective features in
the ICT images of grains may result in reduced reliability due to fatigue [1]. Automatically
recognizing the types and sizes of defects in the ICT images of grains is the key to fast and
highly reliable quality assessments.

Identifying defects in the ICT images of grains is a problem for image target detection.
The current mainstream target detection networks can be divided into two categories:
the two-stage target detection network and one-stage target detection network [2]. Using
the former, a series of candidate regions is first extracted and then classified. Region-
convolutional neural network (R-CNN) algorithms, such as Fast R-CNN [3], Faster R-
CNN [4], and Mask R-CNN [5], are the most representative. Using the latter, the target
detection problem is regarded as a regression problem with a convolutional neural network
(CNN) as a regressor and the whole image to be detected as a candidate region. The CNN
is directly input to regress the location information of the target in the image to be detected.
The YOLO [6] and SSD [7] are the most representative algorithms. The detection speed of
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the one-stage target detection network is much higher than that of the two-stage detection
network. In [8], Bochkovskiy et al. proposed the YOLO-V4 model. So far, scholars have
made many efforts to improve the YOLO-V4 model. Wu et al. [9] proposed to reduce the
training cost of the YOLO-V4 model by using a channel pruning algorithm. Dewi et al. [10]
used different generative adversarial networks (GAN) to generate more image data for
the training of the YOLO-V4 model and achieved a higher quality recognition accuracy.
Chie et al. [11] proposed a network scaling method, which can modify the depth, width,
resolution, and structure of the network model. These improvement measures reduce the
training cost of the YOLO-V4 model, which makes the application of the YOLO-V4 model
in grain ICT image datasets feasible.

Due to the high costs of the ICT images of grains, deep learning-based methods have
not been maturely applied in the existing studies. In the main method, different defect
types are classified and identified by different image region features, which are subject to
greater human interference and inefficiency [12–14]. For target detection networks, it is
relatively easy to determine the target type; however, measuring the target size requires
segmenting the target area. Using the Mask R-CNN, the segmentation requirement can be
achieved. However, its detection time is long due to the two-stage network structure. In
addition, the training cost of the Mask R-CNN is high, which is not suitable for the ICT
images of grains [15,16].

In order to segment defect areas in the framework of the one-stage target detection
network, we developed an automated defect analysis (ADA) system based on the YOLO
framework to determine the types and measure the size of the defects in ICT images of
grains. With the addition of post-processing operations in ICT images of grains, defect
areas can be automatically segmented, and defect sizes can be measured. We compared
the detection effect of the YOLO-V4 model with that of the YOLO-V3 and Faster R-CNN
models, and the measured dimensional errors were counted to prove the effectiveness of
the system.

Section 2 introduces the ICT image dataset of the grains. Section 3 presents the
proposed ADA system. The experimental results and discussion are present in Section 4.
The paper ends with the conclusions in Section 5.

2. Materials

In this study, the images of grains with defects obtained by ICT were tested. The defect
areas in images were labeled with rectangular boxes, and XML documents were generated.
We used the YOLO-V4 model to train the dataset and compared its precision (P), recall rate
(R), average accuracy (mAP), and other evaluation indicators with those of the YOLO-V3
and Faster R-CNN models.

2.1. Defect Types of Grains

Stress concentration is the main reason for defects in grains. When defects occur, the
stress concentration tends to expand the size and number of defects of the same type rather
than generate different types of defects. Therefore, most defects are of a single defect type
in ICT images of grains. Among the defect types of an SRM, internal slag inclusion occurs
at the production stage, while inner bore cracking and interlayer debonding tend to occur
during cooling, storage, and transportation [17]. The defect classification image is shown in
Figure 1, with the three types marked as Slag, Crack, and Debonding, respectively. LabelMe
was used as the image labeling software. The annotation file was saved in XML format.

2.2. Image Augmentation

High-quality images can reduce the loss of the target areas. The ICT images of grains
contain much noise. In order to reflect the characteristics of defects and prepare images for
annotation, we adopted a bilateral filter to reduce the noise in the ICT images and maintain
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the edge information of the defects in the images [18]. Figure 2 shows image augmentation
in the pre-processing. The template of the bilateral filter can be expressed as follows:

w(i, j, k, l) = exp

(
− (i− k)2 + (j− l)2

2σ2
d

− ‖I(i, j)− I(k, l)‖2

2σ2
r

)
(1)

where i, j, k, and l are the spatial positions of pixels. σd and σr are the space standard
deviation and range template standard deviation, respectively. I is the image pixel value. In
the bilateral filtering algorithm used in this paper, σd = 30, σr = 70, and the filtering radius,
r = 2.
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Figure 2. Image augmentation operation flow in the pre-processing.

The effect of the image augmentation is shown in Figure 3. Figure 3 shows that the
image is smoother, and the gray distribution is more concentrated after augmentation,
making the defect features more prominent.
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Figure 3. Images before and after augmentation: (a) original grain ICT image; and (b) augmented
grain ICT image.

2.3. Dataset

According to the ICT test standard of an SRM, there are unified requirements for the
sizes of images generated after ICT scanning of an SRM, which are 512 × 512, 1024 × 1024,
and 4096 × 4096, respectively. With the increase in image size, the computational effort of
YOLO-V4 increases, and the training cost of the model increases accordingly. Therefore,
the size of 512 × 512 was selected in this paper.

In order to achieve better model training effects, we collected 600 ICT images of SRM
propellants with defects. There are 200 images of Crack, Slag, and Debonding, respectively.
The numbers of images in the training and test datasets are shown in Table 1.

Table 1. Numbers of images in the training and test datasets.

Defect Types Training Dataset Test Dataset

Crack 150 50
Slag 150 50

Debonding 150 50
Total 450 150

3. Methodologies

The ADA system was proposed to identify the types and measure the sizes of the
defects in the ICT images of grains. Figure 4 shows the structure of the ADA system. The
system mainly consists of the pre-processor for datasets, the YOLO-V4 framework for
defect recognition, and the post-processor based on region growing. First, the images of
grains were collected by ICT to form the dataset of the ADA system, and then these data
were annotated manually. Next, the whole dataset was divided into the training dataset
used to train the YOLO-V4 model and the test dataset used to evaluate the performance of
the trained model. Finally, we used the region-growing method with automatic selection
of seed points to segment the defect areas and measure the defect sizes with the addition
of post-processor operation based on the gray distribution characteristics of the calibrated
defect area.

3.1. YOLO-V4 Framework

In a YOLO model, a target detection problem is treated as a regression problem. The
image to be detected is used as a candidate region, and the image is fed into the CNN
to generate the boundary coordinates and probabilities for each class. The YOLO model
mainly consists of the Backbone, Neck, and Dense Prediction. Among them, the Backbone
is composed of the CNN, which completes the task of extracting feature information from
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images. The Neck fuses the feature maps generated by different layers in the CNN so that
the deeper image information of the image can be discovered. Dense Prediction detects the
targets in the feature maps and generates the prediction results of the model. The structure
of the YOLO model is shown in Figure 5.
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The YOLO-V4 model is an optimized YOLO model. In the YOLO-V4 model, the
Backbone-DarkNet53 network in the YOLO-V3 model is optimized as the Cross-Stage-
Partial-connections (CSP) DarkNet53 network. The feature mapping of the base layer is
first divided into two parts by CSP, and then they are merged by a cross-stage hierarchy.
Therefore, the learning ability of the CNN can be improved, making the YOLO-V4 model
lightweight while maintaining accuracy. Moreover, the computational cost can be effectively
reduced. The CSP Darknet53 network has a higher detection accuracy than the CSP
ResNeXt-50 [19]. In the YOLO-V4 model, the activation function of the DarknetConv2D
is optimized from LeakyReLU to Mish to improve the accuracy of model classification.
Mish is an activation function similar to ReLU and Swish, but it performs better in different
datasets [20]. Its formula is shown below:

y = x× tanh(ln(1 + ex)) (2)

where x is the independent variable; and y is the dependent variable.
In the YOLO-V4 model, the Backbone is the CSP Darknet53 network, the Neck consists

of SPP and PAN, and the Head is still the head of the YOLO-V3 model. Its structure is
shown in Figure 6.



Electronics 2022, 11, 3215 6 of 14

Electronics 2022, 11, x FOR PEER REVIEW 6 of 15 
 

 

In the YOLO-V4 model, the Backbone is the CSP Darknet53 network, the Neck con-
sists of SPP and PAN, and the Head is still the head of the YOLO-V3 model. Its structure 
is shown in Figure 6. 

 
Figure 6. Structure of the YOLO-V4 model. 

3.2. Post-Processor 
The trained YOLO-V4 model can effectively calibrate defect types and ranges. How-

ever, determining defect types alone cannot meet the actual demand for the defect analy-
sis of the ICT images of grains. Measuring defect sizes is equally important for the safety 
evaluation of an SRM. Therefore, we measured defect sizes by adding the post-processing 
operation based on the region proposal. 

The defect parts in the grains need to be segmented to measure the defect sizes. The 
gradient magnitude of an image can reflect the clarity of the edge [21]. It can be calculated 
as follows: 

𝐺𝐺 = �𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 (3) 

where Gx and Gy are the gradients in the x and y directions of the image, respectively. G 
is the gradient amplitude of the image. The gradient amplitudes of the ICT images of the 
grains with different defects were calculated after image augmentation. The results are 
shown in Figure 7. The defects in the ICT images of grains have clear edges and are suit-
able for image segmentation using the region growing method. The basic idea of the re-
gion growing algorithm is to select a seed point in the target area and then merge the seed 
point with the pixel points in its neighborhood that can meet the growth conditions. The 
merged points are used as the new seed points to grow outward until they reach the 
boundary conditions [22]. It can be seen that the key to the region growing method is the 
selection of seed points, growth conditions, and boundary conditions [23]. 

Figure 6. Structure of the YOLO-V4 model.

3.2. Post-Processor

The trained YOLO-V4 model can effectively calibrate defect types and ranges. How-
ever, determining defect types alone cannot meet the actual demand for the defect analysis
of the ICT images of grains. Measuring defect sizes is equally important for the safety
evaluation of an SRM. Therefore, we measured defect sizes by adding the post-processing
operation based on the region proposal.

The defect parts in the grains need to be segmented to measure the defect sizes. The
gradient magnitude of an image can reflect the clarity of the edge [21]. It can be calculated
as follows:

G =
√

G2
x + G2

y (3)

where Gx and Gy are the gradients in the x and y directions of the image, respectively. G
is the gradient amplitude of the image. The gradient amplitudes of the ICT images of the
grains with different defects were calculated after image augmentation. The results are
shown in Figure 7. The defects in the ICT images of grains have clear edges and are suitable
for image segmentation using the region growing method. The basic idea of the region
growing algorithm is to select a seed point in the target area and then merge the seed point
with the pixel points in its neighborhood that can meet the growth conditions. The merged
points are used as the new seed points to grow outward until they reach the boundary
conditions [22]. It can be seen that the key to the region growing method is the selection of
seed points, growth conditions, and boundary conditions [23].

The automatic selection of seed points has always been a key issue in applying the
restricted region growing method in engineering. In this paper, we analyzed the gray
values in the rectangular boxes of the calibrated target areas based on the defect areas
detected by the YOLO-V4 model. Figure 8 shows the variations in the image grayscales
along the diagonals in the rectangular boxes. According to different defect types, the
maximum gray value can be selected as the seed point in the defect distribution regions of
Debonding and Crack, and the minimum gray value can be selected as the seed point in
the defect distribution region of Slag.



Electronics 2022, 11, 3215 7 of 14Electronics 2022, 11, x FOR PEER REVIEW 7 of 15 
 

 

   
Figure 7. Gradient amplitudes of the ICT images of the grains with different defect types. 

The automatic selection of seed points has always been a key issue in applying the 
restricted region growing method in engineering. In this paper, we analyzed the gray val-
ues in the rectangular boxes of the calibrated target areas based on the defect areas de-
tected by the YOLO-V4 model. Figure 8 shows the variations in the image grayscales along 
the diagonals in the rectangular boxes. According to different defect types, the maximum 
gray value can be selected as the seed point in the defect distribution regions of Debond-
ing and Crack, and the minimum gray value can be selected as the seed point in the defect 
distribution region of Slag. 

 
(a) 

 
(b) 

Figure 7. Gradient amplitudes of the ICT images of the grains with different defect types.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 15 
 

 

   
Figure 7. Gradient amplitudes of the ICT images of the grains with different defect types. 

The automatic selection of seed points has always been a key issue in applying the 
restricted region growing method in engineering. In this paper, we analyzed the gray val-
ues in the rectangular boxes of the calibrated target areas based on the defect areas de-
tected by the YOLO-V4 model. Figure 8 shows the variations in the image grayscales along 
the diagonals in the rectangular boxes. According to different defect types, the maximum 
gray value can be selected as the seed point in the defect distribution regions of Debond-
ing and Crack, and the minimum gray value can be selected as the seed point in the defect 
distribution region of Slag. 

 
(a) 

 
(b) 

Figure 8. Cont.



Electronics 2022, 11, 3215 8 of 14Electronics 2022, 11, x FOR PEER REVIEW 8 of 15 
 

 

 
(c) 

Figure 8. Grayscale distribution of different defects along the diagonal direction: (a) grayscale dis-
tribution of Slag along the diagonal direction; (b) grayscale distribution of Debonding along the 
diagonal direction; and (c) grayscale distribution of Crack along the diagonal direction. 

Region growing can be performed according to appropriate growth criteria when the 
seed point and boundary conditions are determined. Figure 8 shows that the grayscale 
difference in pixels in each defect area is very small. Therefore, the grayscale difference 
less than a certain threshold should be selected as the region growth criterion of defect 
parts in the ICT images of grains. The specific growth criterion is as follows: in the next 
four neighborhood pixels to be analyzed, the point with the smallest absolute difference 
from the average gray value in the segmented region is selected. Ii is the gray value of the 
four pixels in the neighborhood, where i = 1, 2, 3, 4. µ is the mean gray value of the seg-
mented region. For the pixel to be analyzed, first determine whether it is within the 
boundary. After the conditions within the boundary are satisfied, the absolute difference 
between Ii and μ is calculated. If the absolute difference is minimized, the pixel is merged 
with the segmented region. If not, the pixel is removed. The specific algorithm flow is 
shown in Figure 9. 

Figure 8. Grayscale distribution of different defects along the diagonal direction: (a) grayscale
distribution of Slag along the diagonal direction; (b) grayscale distribution of Debonding along the
diagonal direction; and (c) grayscale distribution of Crack along the diagonal direction.

Region growing can be performed according to appropriate growth criteria when the
seed point and boundary conditions are determined. Figure 8 shows that the grayscale
difference in pixels in each defect area is very small. Therefore, the grayscale difference less
than a certain threshold should be selected as the region growth criterion of defect parts
in the ICT images of grains. The specific growth criterion is as follows: in the next four
neighborhood pixels to be analyzed, the point with the smallest absolute difference from
the average gray value in the segmented region is selected. Ii is the gray value of the four
pixels in the neighborhood, where i = 1, 2, 3, 4. µ is the mean gray value of the segmented
region. For the pixel to be analyzed, first determine whether it is within the boundary. After
the conditions within the boundary are satisfied, the absolute difference between Ii and µ is
calculated. If the absolute difference is minimized, the pixel is merged with the segmented
region. If not, the pixel is removed. The specific algorithm flow is shown in Figure 9.

Since most cracks are connected to the inner holes of the grains, the boundaries of the
cracks are not closed, making it difficult to segment the crack defect area using the region
growth method. The size of an inner hole of a grain changes with the change in the location
of ICT detection. The diameter of the inner hole should be obtained to complement the
inner hole boundary with a portion of that circle to close the crack defect area. In the ICT
image of the grain of an SRM, the center of the inner hole of the grain is coincident with
the center of the image. Referring to the method for automatically selecting seed points,
we proposed an algorithm for automatically measuring inner hole diameters, as shown in
Algorithm 1.

Algorithm 1. Algorithm for automatically measuring inner hole diameters

Begin:
(1) Record the grayscale change curves of the images in the four directions of A, B, C, and D, as
shown in Figure 10;
(2) Take the horizontal coordinates of the points in the image grayscale change curves where the
grayscales change at the beginning, as the measurements of the inner hole radii, noted as rA, rB,
rC, and rD;
(3) Select the significant level α = 0.05, the number of measurements n = 4, and the critical value D
(α, n) = 0.829 to reject the outliers among ri (i = 1, 2, 3, 4) according to the Dixon criterion [24];
(4) Calculate the average of the remaining inner hole radius measurements as the estimate of the
inner hole radius, rm.
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If the crack direction coincides with one of the directions A, B, C, or D, the measurement
of the inner hole radius will be larger than the real value. Therefore, the Dixon criterion is
used to eliminate the abnormal value by calculating the Q-value, which is shown as:

Qn =
xn − xn−1

xn − x1
(4)

where Qn is the Q value of the nth data; xn is the dataset that arranges the data from smallest
to largest; and n is the serial number of the data value. The confidence level α and sample
size n were chosen as 0.05 and 4. The calculated Qn is compared with the critical value in
the Dixon coefficient table. If Qn > Q(0.05, 4), the value is considered to be abnormal and
should be excluded. The Dixon coefficient table is shown in Table 2.

Table 2. The Dixon coefficient.

n α = 0.05 α = 0.01

3 0.970 0.994
4 0.829 0.926

If the ICT image of a grain contains a crack defect, an inner hole circle with a radius of
rm is added to the image to fill the crack boundary, and then the crack area is segmented
using the region growing algorithm.

The YOLO-V4 model is used to calibrate the defect area, and the region growing
algorithm is used to segment the image. The segmented defects are calibrated with the
smallest rectangular boxes. The size of each defect is obtained by multiplying the pixel
points occupied by the length and width of the smallest rectangular box with the actual
scale, respectively. The measurement results are shown in Figure 11.
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4. Experimental Results

In order to verify the effectiveness of the ADA system proposed in this paper, we
analyzed the defect detection performance. The experiments focused on two aspects: (i) the
detection performance of the trained YOLO-V4 model; and (ii) the accuracy of the defect
size measurements in post-processing operations. This section presents the results of the
experiments with real datasets.

The processor, Intel Core i7-11800H, with the main frequency of 2.30 GHz, the memory
of 16 GB, and the GPU of NVIDIA RTX 3060 was used to train the detection model. The
algorithm in this paper was developed using Microsoft Visual Studio 2015 and Python 3.6.

4.1. Results of the YOLO-V4 Model

The YOLO model was trained by loss functions, such as bounding box regression loss
(LIoU), confidence loss (Lconfidence), and classification loss (Lclass) [19]. Figure 12 shows the
training loss images of the YOLO-V4 model in this paper, indicating that the dataset estab-
lished in this paper can support the training of the model due to the obvious characteristics
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of the three typical defects in the ICT images of the SRM grains. The defect detection results
of the ICT images of the grains based on the YOLO-V4 model are shown in Figure 13.

Figure 12. YOLO-V4 loss curves: (a) the loss curve of LIoU; (b) the loss curve of Lconfidence; and (c) the
loss curve of Lclass.
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4.2. Comparison of Target Detection Algorithms

In a target detection algorithm, the F1-score and mAP are two widely used metrics.
The F1-score is proposed based on precision and recall. It is the summed average of
precision and recall and can reflect the performance of the target detection algorithm more
objectively [25]. Its calculation formula is shown below:

F1 =
2× P× R

P + R
(5)

where F1 is the F1-score; P is the precision; and R is the recall rate.
The average accuracy for a particular category is represented by AP, and mAP is the

average value of AP. The value of mAP reflects the detection ability of the training model in
all categories [26]. Therefore, the F1-score and mAP are used as the indices to measure the
performance of the target detection algorithm in this paper. The performance parameters
of three different target detection algorithms, Faster R-CNN, YOLO-V3, and YOLO-V4,
trained on the same training dataset and tested on the same test dataset are shown in
Table 2.

Table 3 shows that the YOLO-V3 algorithm has the highest F1-score value of 0.993.
The differences in the F1-score values of the YOLO-V4, Faster R-CNN, and YOLO-V3
algorithms are not significant. The mAP value of the YOLO-V4 algorithm is more than
15% higher than that of the YOLO-V3 and Faster R-CNN algorithms. The Faster R-CNN
algorithm has the longest detection time, while the detection times of the YOLO-V3 and
YOLO-V4 algorithms do not differ much. Therefore, the YOLO-V4 algorithm has superior
performance in detecting defects in the CT images of SRM grains.

Table 3. Performance parameters of three target detection algorithms.

Model mAP (%) F1-Score T (s)

Faster R-CNN 0.490 0.976 0.352
YOLO-V3 0.497 0.993 0.146
YOLO-V4 0.572 0.970 0.152

4.3. Accuracy of Defect Size Measurement

Through the post-processing operation in the ADA system, the sizes of the defects in
the grain ICT images can be obtained. A certain error exists in the measured defect sizes
due to the loss caused during the region growing and the smallest rectangular calibration.
The actual defect size is obtained by manual measurement. The manual measurement of
defect size varies depending on the type of defect. The actual defect size is its maximum
radial dimension for slag and debonding defects. For crack defects, the actual defect size
is the length of the line connecting the beginning and end of the crack. The actual defect
size should be compared with the long side size of the smallest rectangular box used in



Electronics 2022, 11, 3215 13 of 14

the automatic measurement. The accuracy of the algorithm is measured as the percentage
error, and the percentage error was calculated by the following formula:

E =

∣∣∣∣ rm − rt

rt

∣∣∣∣ (6)

where E is the percentage error; rm is the value of the measured defect size; and rt is the
value of the actual defect size. The sizes of the defects in the 450 images of the datasets in
this paper were measured. Figure 14 shows the percentage error distribution, indicating a
percentage error of the defect sizes measured by the ADA system of below 10%.
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5. Conclusions

In this paper, we proposed an ADA system to detect defects and measure defect sizes
in the ICT images of SRM grains. The system identifies defects based on the YOLO-V4
model. The defect sizes are automatically measured through the region growth algorithm
with the automatic selection of seed points. The comparison with the YOLO-V3 and
Faster R-CNN models proves that the YOLO-V4 model can well meet the requirements
of defect recognition in the ICT images of grains. The error of the proposed method was
found to be less than 10% by calculating the percentage error of size measurement. This
system provides a new research idea for image segmentation in the framework of the
one-stage target detection network. It can effectively solve the problem of requiring manual
measurement of defect sizes in engineering. In addition, it can improve the efficiency of the
ICT image analysis of SRM grains.

In future research, the inefficient training and detection of the YOLO-V4 model for
large-sized images should be solved first. In particular, reducing training costs is important
for defect detection in ICT images of solid rocket motor grains. Secondly, the method used
in this paper to achieve the automatic measurement of defect size is relatively complicated.
In addition, there is still room for improvement in measurement accuracy. Achieving the
automatic measurement of defect size with higher accuracy and simpler methods is still a
problem worth studying.
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