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Abstract: Fog computing has been prioritized over cloud computing in terms of latency-sensitive
Internet of Things (IoT) based services. We consider a limited resource-based fog system where real-
time tasks with heterogeneous resource configurations are required to allocate within the execution
deadline. Two modules are designed to handle the real-time continuous streaming tasks. The
first module is task classification and buffering (TCB), which classifies the task heterogeneity using
dynamic fuzzy c-means clustering and buffers into parallel virtual queues according to enhanced least
laxity time. The second module is task offloading and optimal resource allocation (TOORA), which
decides to offload the task either to cloud or fog and also optimally assigns the resources of fog nodes
using the whale optimization algorithm, which provides high throughput. The simulation results
of our proposed algorithm, called whale optimized resource allocation (WORA), is compared with
results of other models, such as shortest job first (SJF), multi-objective monotone increasing sorting-
based (MOMIS) algorithm, and Fuzzy Logic based Real-time Task Scheduling (FLRTS) algorithm.
When 100 to 700 tasks are executed in 15 fog nodes, the results show that the WORA algorithm saves
10.3% of the average cost of MOMIS and 21.9% of the average cost of FLRTS. When comparing the
energy consumption, WORA consumes 18.5% less than MOMIS and 30.8% less than FLRTS. The
WORA also performed 6.4% better than MOMIS and 12.9% better than FLRTS in terms of makespan
and 2.6% better than MOMIS and 4.3% better than FLRTS in terms of successful completion of tasks.

Keywords: resource allocation; cloud fog based IoT; whale optimization; WORA; TCB; TOORA

1. Introduction

The Internet of Things (IoT) has expanded very quickly, providing many services in
different domains, such as traffic management, vehicle networks, energy management,
healthcare, smart homes, among others. [1–3]. Addressing diverse requirements means
connecting end devices, such as sensors, smart mobile phones, actuators, advanced vehicles,
advanced appliance, smart meters, etc. Although real-time tasks demand heterogeneous
resource requirements for processing, the processing of tasks at end devices with limited
resources run down the performance, which forces them to switch to other computing
environments. Cloud computing with a large resource center can compute these tasks of
end devices with on-demand resource requirements.

Cloud servers are usually located remotely from the end devices. With increasing of
end devices the task offloading is also increased. This excessive data transfer most likely
will create network congestion and degrade the performance of the network. Most of the
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applications cannot afford the delay in processing the tasks in the cloud [4,5], as this is
detrimental to the application sensitivity.

The above paradox is addressed with fog computing [6], which works in the middle
tier between cloud and end devices. The fog computing being closer to end devices provides
high-quality services by satisfying the requirements of delay-sensitive tasks and reducing
the workload of the cloud server.

The devices (routers, gateways, embedded servers, controllers, etc.) that have the
capability of computation, storage, and communication are treated as fog nodes. These
nodes with limited resources and computation capability may not satisfy the requirement
of heterogeneous resources for multiple tasks execution at a time [7,8]. The improper
resource allocation may change the order of execution of tasks, which may lead to low
throughput and failure in achieving deadlines of tasks.

The majority of the research work concerning IoT applications concentrates on ex-
ploration of fog computing or cloud computing environments individually. A relatively
unexplored dimension in this research arena is a hybrid environment that can handle both
delay-sensitive data and non-sensitive data with equal efficacy. This hybrid environment,
termed as the cloud–fog model, is formed by combining both the cloud environment and
the fog environment. There has not been a very significant number of studies carried out
on the cloud–fog model. Therefore, the intricacies in handling the real-time heterogeneous
tasks with different features such as deadline, data size, arrival time, and execution time,
etc., are another challenge in the cloud–fog model. In this present work, the first task at
hand is to process the heterogeneous tasks by multiple queues. As the fog node is limited
in resources and resource allocation is a NP-hard problem [9,10], it motivates us to use
meta-heuristic techniques for optimally allocating resources. The recent optimization tech-
nique named whale optimization algorithm (WOA) gives more optimal results under many
complex situations. Therefore, the second motivation is to employ the whale optimization
and explore the optimal solution for allocating resources. Energy consumption is another
issue that leads to worldwide carbon emissions problem; thus, the third motivation is
necessitating minimization of energy consumption in the cloud–fog model [11–13].

The primary objective is resource allocation for heterogeneous real-time tasks in
the cloud–fog model within the deadline requirement of tasks, which can improve the
makespan, task completion ratio, cost function, and energy consumption. In this paper, a
three-tier cloud–fog model with parallel virtual queues architecture is considered.

The significant contributions of this work are as follows:

1. The task classification and buffering (TCB) module is designed for classifying tasks
into different types using dynamic fuzzy c-means clustering, and these classified tasks
are buffered in parallel virtual queues based on enhanced least laxity time scheduling.

2. Another module, named task offloading and optimal resource allocation (TOORA), is
modeled for deciding on offloading the task in cloud or fog and uses WOA to allocate
the resources of the fog node.

3. The approach is evaluating the metrics, such as makespan, cost, energy consumption,
and the successful completed tasks within the deadline and comparing them with
other algorithms such as SJF, MOMIS, and FLRTS for performance evaluation.

4. When 100 to 700 tasks are executed in 15 fog nodes, the results show that the WORA
algorithm saves 10.3% of the average cost of MOMIS and 21.9% of the average cost
of FLRTS. When comparing the energy consumption, WORA consumes 18.5% less
than MOMIS and 30.8% less than FLRTS. The WORA is also performed 6.4% better
than MOMIS and 12.9% better than FLRTS in terms of makespan and 2.6% better than
MOMIS and 4.3% better than FLRTS in terms of successful completion of tasks.
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The structure of the remaining sections are organized as follows. The survey on
resource allocation in different environments is presented in Section 2. In Section 3 system
model is described and problem is formulated. Section 4 describes the optimal resource
allocation algorithm in fog nodes. Section 5 presents the performance evaluation of our
proposed algorithm. Finally, the conclusion and future work are presented in Section 6.

2. Related Work

Currently, fog computing is the most popular research area in terms of service manage-
ment. Many researchers are focused on the concept, architecture, and resource management
issues of fog computing. The fog computing paradigm as a virtual platform was introduced
by Bonomi et al. [14]. Refs. [15–17] highlighted the issues and challenges related to fog
computing that need to be solved.

The cloud node contains massive storage and processors with high-speed network
connectivity and various application services [18–20]. For assigning services to suitable
service nodes with appropriate distribution of workload in every node, Chen et al. [21]
proposed RQCSA and FSQSM, which improved the efficiency and minimized queue
waiting time and makespan. Behzad et al. [22] proposed the queue based hybrid scheduling
algorithm for storing jobs in the queue according to the order of priority. The job with
lower quantum time is allocated with the CPU and executed. Venkataramanan et al. [23]
studied the problem due to overflow of queue in wireless scheduling algorithm. In [24],
the stability of the queue was achieved by applying a reinforcement learning approach
to Lyapunov optimization for resource allocation of edge computing. Similarly, Eryilmaz
and Srikant [25] stated that the length of the queue is bounded with the setting of the
Lyapunov function drift. Hence, the Lyapunov function is important to control the virtual
queue length. Some researchers have also used this queuing theory in fog computing.
Iyapparaja et al. [26] designed a model based on queueing theory-based cuckoo search
(QTCS) to improve QoS of resource allocation. Li et al. [4] considered heterogeneous tasks
to be placed in parallel virtual queues. The task offloading is decided on the basis of the
urgency of the task based on laxity time.

In the real world, continuous streaming data are generated that are required for online
analysis. Most adaptive clustering is application-specific, so Sandhir and Kumar [27,28]
proposed a modified fuzzy c-means clustering technique called dynamic fuzzy c-means
(dFCM) clustering with the aid of a synthetic dataset. Most of the researchers in [1,4,29]
considered laxity time for prioritizing the tasks: the lower laxity time task will be executed
first. The laxity time is also estimated on account of the deadline, execution time, and
current time, which also decided the task offloading. Ali et al. [30] proposed a fuzzy
logic task scheduling algorithm for deciding tasks to be executed either in the fog node
or cloud center. The tasks with constraints such as deadline and data size exploited the
heterogeneous resources of fog nodes, which improved makespan, average turnaround
time, delay rate, and successful task completion ratio. According to Pham et al. [10],
resource allocation is a non-linear programming problem and an NP-hard problem. Such
types of problem can be solved using three methods, including heuristic, meta heuristics,
and hybrid. As there is no optimal performance guarantee of the heuristic method, one is
forced to adopt a meta-heuristic method, such as a whale optimization algorithm, as a recent
efficient optimization method. Here, WOA was used for solving allocation of power, secure
throughput, and offloading in mobile edge computing. Hosseini et al. [31] used WOA for
optimal resource allocation and minimized the total run-time of requested services in cloud
center. Several optimization techniques in different platforms were studied [32–34].

Several studies have proposed solving resource allocation problems in different net-
works. Table 1 summarizes the methodology, policies, and limitations of the resource
allocation problem. Some research work is discussed here. Li et al. [4] combined the
method of fuzzy c-means clustering and particle swarm optimization to design a new
resource scheduling algorithm that improved user satisfaction. Rafique et al. [9] proposed
a novel bio-inspired hybrid algorithm (NBIHA) for task scheduling and resource allocation
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of fog node, which reduced the average response time. Sun et al. [35] designed a resource
scheduling model using improved non-dominated sorting genetic algorithm (NSGA-II) for
the same fog clusters by which improved task execution and reduced service latency. In [36],
Taneja and Devy handled the modules of fog-cloud model and mapped the modules to the
mapping algorithm, that gave better performance to energy consumption, network usage,
and end-to-end latency than that of traditional cloud infrastructure. In [11], Mao et al.
designed separate energy-aware algorithm and time-aware algorithm for handling the task
in a heterogeneous environment and developed a combined algorithms ETMCTSA that
managed and controlled the performance of the cloud on the basis of parameter α of the
algorithm. Bharti and Mavi [37] adopted ETMCTSA and discovered that underutilized
resources of the cloud can increase the usage of resources. Anu and Singhrova [38] modeled
P-GA-PSO algorithm that allocate resources efficiently in fog computing that reduced delay,
waiting time, and energy consumption compared to round-robin and genetic algorithms.
In a three-layer computing network, Jia et al. [39] presented an extension of the deferred
acceptance algorithm called double-matching strategy (DA-DMS) that was a cost-efficient
resource allocation in which a paired partner cannot change unilaterally for more cost-
efficiency. In [40], an algorithm based on a Pareto-domination mechanism to particle swarm
optimization algorithm searched for a multi-objective optimal solution. Ni et al. [41] mod-
eled a dynamic algorithm based on PTPN, where the user can use appropriate resources
from the available group of resources autonomously. Both price and cost are considered for
the completion of the task. Many such resource allocation algorithms in different systems
are found in [42–48].

Table 1. Related work on resource allocation in different systems.

Article Ideas Target System Improved Criteria Limitations

Li et al. [4] Laxity time and
Lyapunov optimization Fog computing Throughput and task

completion ratio
No other parameters

are considered

Bae et al. [24]
Reinforcement learning

and Lyapunov
optimization

Edge computing Time-average penalty
cost cost

Operates with general
non-convex and

discontinuous penalty
functions

Iyapparaja et al. [26] Queueing theory-based
cuckoo search Fog computing Response time and

energy consumption

Resource allocation to
the edge node is

challenging

Ali et al. [30] Fuzzy logic Cloud–fog
environment

Makespan, average
turnaround time,

success ratio of the
tasks, and delay rate

Large-scale network
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Table 1. Cont.

Article Ideas Target System Improved Criteria Limitations

Pham et al. [10] Whale optimization
algorithm Wireless network System utility,

overhead Small dataset of user

Li et al. [4]
Fuzzy clustering with

particle swarm
optimization

Fog computing User satisfaction Small dataset of tasks

Rafique et al. [9]
Novel bio-inspired
hybrid algorithm

(NBIHA)
Fog computing Average response time Small dataset of tasks

Sun et al. [35]
Non-dominated sorting

genetic algorithm
(NSGA-II)

Fog computing

Reduced service
latency and improved

stability of task
execution

Other parameters such
as cost is not
considered

Taneja and Devy [36] Module mapping
algorithm

Fog–cloud
Infrastructure

Energy consumption,
network usage, and
end-to-end latency

Only compared with
traditional cloud

infrastructure

Mao et al. [11]

Energy-performance
trade-off multi-resource
cloud task scheduling
algorithm (ETMCTSA)

Green cloud computing
Energy consumption,

execution time,
overhead

Small task dataset

Bharti and Mavi [37] ETMCTSA for
underutilized resources Cloud computing Energy consumption,

overhead Used 100 cloudlets

Anu and
Singhrova [38]

Hybridization of
priority, genetic

algorithm, and PSO
Fog computing

Reduced energy
consumption, waiting
time, execution delay,
and resource wastage

Considered end devices

Jia et al. [39]

Double-matching
strategy based on

deferred acceptance
(DA-DMS)

Three-tier architecture
(cloud data center, fog

node, and users)
High-cost efficiency Large-scale network

Feng et al. [40]
Particle swarm

optimization with
Pareto-dominant

Cloud computing

Large-scaled instances,
middle-scaled

instances, small-scaled
instances

Did not use complex
tasks and resources

Ni et al. [41] Priced timed Petri nets
strategy Fog computing Makespan, cost

Did not consider
average completion

time and fairness

Most of the research discussed different resource allocation methods in the fog en-
vironment, the cloud environment, and wireless networks. These studies also tried to
improve metrics (i.e., response time, makespan, consumption of energy, overhead, etc.).
This paper adopts WOA which can allocate resources optimally. The metrics such as cost,
makespan, task completion ratio, and energy consumption are improved and compared
with recent studies. The abbreviation table presented in Table 2 lists all abbreviations that
are used in this paper.
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Table 2. Abbreviations and description.

Abbreviation Description

TCB Task classification and buffering

TOORA Task offloading and optimal resource allocation

WORA Whale optimized resource allocation

SJF Shortest job first

MOMIS Multi-objective monotone increasing
sorting-based

FLRTS Fuzzy logic-based real-time task scheduling

FCM Fuzzy c-means

dFCM Dynamic fuzzy c-means

EDF Earliest deadline first

WOA Whale Optimization Algorithm

WOASU Whale optimization algorithm spiral updating

WOAEP Whale optimization algorithm encircling prey

3. System Model

Considering end devices, fog layer and cloud layer a three-tier cloud-fog model is
designed as shown in Figure 1.

Figure 1. System architecture.
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End devices: The end devices {i1, i2, i3, . . . .., in} include sensors, actuators, mobile
vehicles, smart cameras, etc. The end devices generate tasks {T1, T2, T3, . . . .., Tn} with
different resource requirements. These tasks are classified and buffered in fog node for
further execution.

Fog layer: Fog nodes { f1, f2, f3, . . . .., fm} are the network devices (e.g., controller,
router, gateways, embedded server). Every fog node consists of a set of containers
{ci1, ci2, ci3, . . . .., cik}. The tasks require different resource requirements (e.g., CPU, band-
width, memory, and storage configuration) to process the data. Therefore, each container
contains a set of resources

{
r1

ij, r2
ij, r3

ij, . . . .., rl
ij

}
where rl

ij = {CPU, bandwidth, memory}.
Due to the limited resource of fog nodes, all tasks cannot process at fog nodes simultane-
ously, thus necessitating buffering of tasks in the queue.

Cloud layer: This layer has a cloud server that includes unlimited resources. The cloud
is placed far from fog nodes, thus causing data transmission latency. Even if there is data
transmission latency for transferring tasks to the cloud, it completes its processing without
waiting for resources, because of unlimited resources.

In the fog layer, two modules are designed as follows:

• Task classification and buffering (TCB): On the arrival of tasks at the fog node, the
similar type of tasks are gathered and buffered in parallel virtual queues according to
their execution order.

• Task offloading and optimal resource allocation (TOORA): All the tasks may not be
assigned with fog resources by their deadline. The tasks may wait long time in queue
which may lead failure of execution. These tasks can be transferred to cloud layer and
achieved the deadline. The transmission of tasks may increase the transmission cost,
thus, TOORA try to assign maximum tasks with fog resources. Table 3 represents all
notations of this paper.

Table 3. Notations and description.

Sl. No. Notation Description

1 in Represents end devices

2 fm Represents fog nodes

3 cik Containers of fog node

4 rl
ij Resources of a container

5 Ti Individual task where iε[1, n]

6 arrti Arrival time of ith task

7 etlowi Execution lower bound time of ith task

8 etupi Execution upper bound time of ith task

9 dsizei Data size of ith task

10 respti Response time of ith task

11 dti Deadline time of ith task

12 leni Number of instructions of ith task

13 µij Membership of ith task to jth cluster center

14 vj Cluster center

15 α Error threshold

16 VXB Xie–Beni index

17 β Membership threshold

18 l fi Laxity time of ith task

19 EDFi Earliest deadline first of ith task

20 Qc type− c queue

21 l f max Maximum laxity time of head task of the queue

22 l f j
i

Laxity time of ith task of jth queue
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Table 3. Cont.

Sl. No. Notation Description

23 −−−→
Wb(t) Best agent

24 −→
A ,
−→
C Coefficient vectors

25 −→r Random vector value lies in [0, 1]

26 −→a Parameter controller

27 b Constant used for logarithmic spiral shape

28 l Random value in [−1, 1]

29 Wi Represents whale

30 c1 Processing cost per time unit for cloud

31 cc Communication cost per time unit for cloud

32 c f Communication cost per time unit for fog

33 e f Energy per unit for execution of the task in fog

34 eidle Energy used when fog node is idle

35 ec Energy per unit for execution of task cloud

36 ecomm Energy per unit for transmission of data

3.1. Process Flow Model

The process flow model shows how the tasks are executed in the cloud–fog model
by assigning limited resources of fog nodes. The following are presented and shown in
Figure 2.

1. Step-1: The end devices collect data and send task requests to the nearest fog node.
2. Step-2: The task requests transfer from fog node to the TCB.
3. Step-3: The resource usage, data size, arrival time, deadline, etc., are estimated.
4. Step-4: Tasks are classified into different types in the TCB, which can be buffered in

the waiting queue by running an algorithm for ordering the task.
5. Step-5: Tasks are transferred to the waiting queue for buffering.
6. Step-6: A set of tasks of the queues are transferred to the TOORA for further processing.
7. Step-7: TOORA makes a decision of task offloading so that task may execute in cloud

server or fog node.
8. Step-8: The tasks meant for offloading to the cloud are transferred to the cloud server.

The tasks are sent back to the end devices that are not achieved the deadline.
9. Step-9: An optimal resource allocation scheduler is run in the TOORA module to

optimally assign resources of the fog node to the task.
10. Step-10: As the result of the algorithm, the tasks are assigned to the fog nodes.
11. Step-11: Each task is processed in the respective node.
12. Step-12: After completion of task execution, the result is sent back to the end devices

through the fog node.

Figure 2. Process flow model of the architecture.
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3.2. Problem Formulation

We are considering a set of fog nodes F = { f1, f2, f3, . . . .., fm}, where every fog node
consists of set of containers fi = {ci1, ci2, ci3, . . . .., cik}, and each container contains set of
resource blocks cij =

{
r1

ij, r2
ij, r3

ij, . . . .., rl
ij

}
. The resource can be represented as the collection

of rl
ij = {CPU, bandwidth, memory}. The fog node has limited resource capacity. The total

resource of a fog node is

R f =
m

∑
i=1

k

∑
j=1

l

∑
l=1

rl
ij (1)

The allocated resource of a fog node cannot exceed than total resource of the fog node.
Let Pf i(t) be total tasks that process at t time in fog node fi where each task has different
resource requirement configuration (i.e, rTi ). The total resource requirement is

R(TP f i(t)) =
Pf i(t)

∑
i=1

rTi (2)

The constraint of resource allocation can be represented as follows:

R(TP f i(t)) ≤ R f (3)

Example: Suppose a fog node f1 has three containers c1, c2, and c3, and each container
has three resource requirement configurations r1

ij, r2
ij, and r3

ij. All the resource requirements
with different configuration of {CPU, bandwidth, memory} are represented as follows:

f1 =

 {800, 1000, 1200} {1100, 1400, 800} {1600, 1600, 1540}
{880, 980, 1090} {650, 200, 580} {1800, 1400, 1620}
{1600, 1100, 1520} {1040, 1500, 1040} {1300, 950, 1150}


Let one task with resource requirement of {800, 900, 1150} try to allocate the re-

source of fog node f1. There are several solutions to allocate the required resource of fog
node f1 (e.g., {800, 1000, 1200},{1600, 1600, 1540}, {1800, 1400, 1620}, {1600, 1100, 1520},
{1040, 1500, 1040}, and {1300, 950, 1150} ). By considering higher numbers of fog nodes,
the resource availability will be increased. If we consider another task with resource re-
quirements (e.g., {1900, 1800, 1200}), it may not be allocated in fog nodes and offloaded to
cloud server. Therefore, our task is making the decision that the task will be executed either
in the cloud server or a fog node and tasks will be optimally allocated the resources of fog
nodes that processed at time t.

4. Proposed Work

To solve the above problem, two modules—task clasification and buffering (TCB) and
task offloading and optimal resource allocation (TOORA)—are modeled. The working
process of these modules is given below.

4.1. Task Classification and Buffering (TCB)

Due to computation incapability of end devices, the tasks are transferred to nearest fog.
The latency-sensitive tasks need to be processed first, thus these tasks are transferred to fog
node. As noted above, the fog nodes are limited in resources and prediction of resource
allocation is not immediately possible, that forced for buffering of tasks in the queue. If the
queue length is long, then the time complexity is high. Similar to [4], parallel virtual queues
are considered for buffering the same type of tasks into separate virtual queues, which
helps to reduce the time complexity, as shown in Figure 3.
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Figure 3. Queuing model.

Theorem 1. Parallel virtual queues reduce the time complexity.

Proof. If a single queue with length M is considered for buffering tasks, then the time
complexity for buffering all tasks is O(M). If we consider four types of tasks that can be
buffered in four separate virtual queues, then each queue length is O(M/4). So, the time
complexity is also decreased to O(M/4).

The real-time tasks T = {T1, T2, T3, . . . .., Tn} are streaming continuously from end de-
vices and transferred to fog nodes. Each Task Ti can be represented with {arrti, etlowi, etupi,
dsizei, leni, respti, dti}, where arrti, etlowi, etupi, dsizei, leni, respti, dti present arrival time,
execution lower bound time, execution upper bound time, data size, number of instructions,
response time, and deadline of the ith task, respectively. Assume that the tasks arrive at fog
nodes in equal time intervals. The arrti, dsizei, and dti of a task cannot be predicted before
the task’s arrival. The execution time of the task is also not predicted before completion of
the task. However, the upper and lower bounds of execution time (i.e., etlowi and etupi)
can be estimated using machine learning algorithms proposed in [49]. As per estimation,
etupi should not exceed dti − arrti. Here, we set etupi = dti − arrti. Taking the above
parameters of the task, the tasks can be classified into different types. The similar tasks
can be grouped using a clustering algorithm. The tasks are overlapping, hence the FCM
clustering algorithm is applied so that each task has a strong or weak association to the
clusters. For the set of tasks T, the association to each cluster can be calculated as follows:

Jm(U, V; T) =
n

∑
i=1

c

∑
j=1

(µij)
m∥∥Ti − vj

∥∥2 (4)

where n is the total tasks, m is the fuzziness index mε[1, ∞], and µij represents the mem-
bership of the ith task to jth cluster center. (U, V) can minimize Jm when m > 1 and∥∥Ti − vj

∥∥ > 2 for all i and j. Then µij is

µij = 1/
c

∑
k=1

( ∥∥Ti − vj
∥∥∥∥Tk − vj
∥∥
) 2

m−1

(5)

The cluster center can be calculated as

vj =
∑n

i=1
(
µij
)mTi

∑n
i=1
(
µij
)m (6)
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An iteration technique is applied until the minimum of Jm or minimum error criteria
are satisfied. An error threshold α can satisfy the condition, ‖Vt−1 −Vt‖err ≤ α. The tasks
are selected into a cluster using validity index. The Xie–Beni index [27,28] VXB is one of
widely used validity index is used here and can be defined as

VXB(U, V; T) =
∑c

j=1 ∑n
i=1 µ2

ij

∥∥Ti − vj
∥∥2

n

min︸︷︷︸
i 6=k

{∥∥vj − vk
∥∥} (7)

Fuzzy c-means cluster can classify the tasks for a given time interval t. As the tasks
are streaming continuously, dFCM [27] is used adaptively to update cluster centers. A new
cluster center is generated automatically with new cluster generation. Initially, cmin number
of clusters are generated, where cmin ≥ 2. Upon arrival of new tasks, the membership of
the present cluster is calculated. If the maximum membership value of the task exceeds or
equals to membership threshold value (β), then it takes a new cluster center and generates
a new cluster. Membership threshold (β) can avoid evaluation of cluster validity every
time the tasks arrive. If the tasks satisfy the cluster membership, then there is no need to
check for other, better clusters. The validity index is also evaluated when new centers are
dissimilar to old ones. Then β can have the condition

‖Vold −Vnew‖ > β (8)

Let C number of clusters are there in time t and maximum membership value of a task
is lower than β then validity of clusters C is compared with C− 2 to C + 2. The clusters
are generated using FCM and evaluated the validity index. The new cluster centers are
generated for deviated tasks. This process is repeated to get the cluster center of best validity
index until the arrival of tasks stop. The algorithm of task classification is as follows.

Algorithm 1 presents task classification using dFCM, which is discussed as follows. In
this paper, an algorithm is presented using number of lines, and here, we consider the line
number as a step. The parameters, such as threshold error α, membership threshold β, and
range of c (i.e., number of clusters) are initialized in step-1. Here we are considering that
tasks are coming in the same interval of time, hence tmax is considered as the last interval.
Time interval t is initialized with 0 in step-2, and the initial number of cluster c is cmin in
step-3. The following steps are computed until t reaches tmax:

• In step-5, take all the arrival tasks T in time t.
• Calculate c number of cluster centers, i.e., vj and µij, using Equations (6) and (5); in

steps 6 and 7.
• In steps 8–20, check if the maximum membership value (i.e., µij) of a task is more than

or equal to membership threshold value (i.e., β). If true, then update µij and vj until
‖Vt−1 −Vt‖err ≤ α, otherwise do steps 11–18 for c− 2 to c + 2 cluster centers. If no
changes in clusters generated before then, store values of vj, otherwise generate new
cluster for deviated tasks and update c. Then, update µij and vj until ‖Vt−1 −Vt‖err ≤
α in step-20.

• In step-21, compute validity index using Equation (7) and select best clusters with best
validity and assign to C′ in step-22.

• Update the time interval t with t+1 in step-23.
• Finally, return clusters of tasks in step-25.
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Algorithm 1 dFCM for task classification.
Input: Continuous streaming tasks T = {T1, T2, T3, . . . .., Tn}
Output: Cluster of tasks C′

1: Initialize µ, β, cmin, cmax, tmax, α;
2: t← 0;
3: c← cmin;
4: while t < tmax do
5: Take a list of arrival tasks T at time t;
6: Compute c number of vj using Equation (6);
7: Compute µij using Equation (5);
8: if max

(
µij
)
≥ β then

9: Update µij and vj until ‖Vt−1 −Vt‖err ≤ α;
10: else
11: for number of clusters from c − 2 to c + 2 do
12: if same number of clusters generated before then
13: Store values of vj;
14: else
15: Generate new cluster center for deviated tasks;
16: c← c + 1;
17: end if
18: end for
19: Update µij and vj until ‖Vt−1 −Vt‖err ≤ α;
20: end if
21: Compute validity index using Equation (7);
22: C′ ← Select clusters with best validity;
23: t← t + 1;
24: end while
25: Return clusters of task C′;

On basis of the number of clusters, that number of virtual queues are modeled for
buffering the tasks. The task can be buffered in the queue by comparing the level of
urgency that presents how much time a task can wait. The level of urgency of the task
can be determined multiple ways. Here, we are considering deadline and laxity time,
which are most useful for finding maximum waiting time from current time. The upper
bound execution time is considered as actual execution time of a task cannot predict before
completion of task. The waiting time of a task is calculated using laxity time as follows:

l fi = dti − (t + etupi) (9)

According to the lowest laxity time, the tasks can be buffered in different queues.
However, some tasks may have the same l fi; those tasks are then grouped, and the earliest
deadline first (EDF) time is considered for determining the waiting time. EDF of task i is
calculated as follows:

EDFi = dti − etupi (10)

The algorithm for buffering the tasks in different queues is given below.
Algorithm 2 presents the task buffering in the queue that is discussed here. The results

of Algorithm 1 are fed as the input of this algorithm (i.e., clusters of tasks). According to the
number of clusters C′, that number of queues are created (i.e., Q) in step-1. The following
steps are computed for each cluster C′.

• Compute l fi using Equation (9); for each task Ti in step-4.
• Sort all the tasks Ti according to l fi in ascending order in step-6.
• If any tasks have similar l fi, then group them and store them in LT in step-8.
• For each task of LT, compute EDFi using Equation (10), and sort the tasks according

to EDFi in ascending order in steps 10–13.
• Insert all the tasks Ti in queue Qi according to their l fi and EDFi in step-14.



Electronics 2022, 11, 3207 13 of 30

• Finally, return the queues Q in step-16.

Algorithm 2 Buffering task in queues.
Input:Cluster of tasks C′

Output:Tasks buffered in queues Q
1: Take number of queues with number of clusters C′;
2: for each cluster c in C′ do
3: for each tasks Ti in c do
4: Compute l fi using Equation (9);
5: end for
6: Sort all the tasks Ti according to l fi in ascending order;
7: if some tasks having same l fi then
8: LT ← tasks of same l fi;
9: end if

10: for each task LTi in LT do
11: Compute EDFi using Equation (10);
12: Sort the task LTi in LT according to EDFi in ascending order;
13: end for
14: Insert tasks of Ti in queue Qi according to their l fi and EDFi;
15: end for
16: Return Queues Q;

4.2. Task Offloading and Optimal Resource Allocation (TOORA)

The buffered tasks in virtual queues are going to be executed in either the cloud or fog
node. The head tasks of each virtual queue are checked in parallel as to whether they will
be executed in the cloud server or fog node or there may be a failure to achieve the deadline.
The laxity time (l f ) of the task is used to determine the participation of the number of tasks
of each queue for further operations.

The laxity time l fi of tasks in each queue are compared with the maximum laxity time
of the head task of the queues; if the laxity time l fi of the task is below or equivalent to
maximum laxity time of the head task, then those tasks are fetched for further processing,
which can be represented as follows:

l f max = max(l f j
HT) where HT ← head(Qj) and ∀ jε[1, c] (11)

l f j
i ≤ l f max where iεTi, jεQ and TiεQj (12)

The fetched tasks from queues are further processed in TOORA for deciding whether
the task will be offloaded or failed due to longer waiting time with three conditions
as follows:

• When l f j
i = 0, the deadline and executable upper bound time are nearly the same, so

the task cannot wait for longer time to execute in fog node. therefore, the task must be
moved to the cloud server for successful completion.

• When l f j
i < 0, the executable upper bound time is more than the deadline, thus,

the task cannot complete before the deadline and is sent back to end devices requesting
to increase the deadline.

• When l f j
i > 0, the task has enough time for executing successfully at the fog node

before the deadline.

Algorithm 3 can be represented as follows for task offloading:
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Algorithm 3 Task offloading at fog node.
Input:Tasks in C′-type queues
Output:Tasks at fog node NFc, cloud NCc and Failure task NFailc

1: for j = 1 to C′ do
2: Compute l f max using Equation (11);
3: end for
4: for j = 1 to C′ do
5: for Ti of Qj do

6: if l f j
i ≤ l f max then

7: Remove Ti from Qj;
8: TE← Ti;
9: end if

10: end for
11: end for
12: for i in TE do
13: if l f j

i == 0 then
14: NCc ← i;
15: else if l f j

i < 0 then
16: NFailc ← i;
17: else
18: NFc ← i;
19: end if
20: end for
21: Return Queues NCc, NFc and NFailc;

Algorithm 3 presents the task offloading at the fog node, which can distinguish the
tasks of different types of queues. It takes all the tasks of C′-type queues and considers the
tasks that are eligible for processing at that time. The number of tasks from each queue can
be considered by computing steps 1–11. First, maximum laxity time of the head tasks of
queues is computed in steps 1–3; next, the tasks from all C′-type queues whose laxity time
is less than or equal to l f max are selected and stored in TE list in steps 4–11. In steps 12–20,
for each task in TE, check if laxity time of the ith task is equal to zero, then that task will
send to the cloud server; if laxity time of the ith task is less than zero, then that task is
marked as a failure and sent back to end devices for increasing the deadline; otherwise
it will be executed in fog node. Finally, the tasks for fog node, the cloud, and failure are
returned in step-21.

According to parallel virtual queues, let the number of tasks of type-c queue in time
slot t be Qc(t) and Qc(0) = 0. The tasks leave the queue when tasks are allocated resources
in fog node or moved to the cloud server. The current length of type-c queue in a given
time can be evaluated based on total tasks arrived and removed from the queue at the
previous time slot. If Nc is total tasks of type-c that arrived, then the length of the queue
can be evaluated as follows:

Qc(t + 1) = max[Qc(t) + Nc(t)− NCc(t)− NFc(t)− NFailc(t), 0] (13)

where NCc(t), NFc(t), and NFailc(t) contain total tasks that are moved to the cloud, tasks
allocated for resources at fog node, and tasks that are failed at time slot t.

To improve throughput and avoid starvation of tasks, the length of the Qc(t) can be
controlled using a Lyapunov function as follows:

LD(t) =
1
2

[
C′

∑
c=1

Qc(t)

]2

(14)
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The Lyapunov drift, a difference of the Lyapunov function of two slots, can be defined
as follows:

∆LD(t) = LD(t + 1)− LD(t) (15)

Applying Equations (13)–(15), we can rewrite as follows:
∆LD(t) 6 B(t)−∑C′

c=1 Qc(t)[NFc(t) + NCc(t) + NFailc(t)− Nc(t)]
where B(t) = 1

2 ∑C′
c=1[NFc(t) + NCc(t) + NFailc(t)− Nc(t)]

2

The conditional expected Lyapunov drift can be represented as follows:

E
[

∆LD(t)
∣∣Qu(t)

]
6 B−

C′

∑
c=1

Qc(t)E
[
(NFc(t) + NCc(t) + NFailc(t)− Nc(t))

∣∣Qu(t)
]

where Qu(t) =
C′

∑
c=1

Qc(t), E
[

B(t)
∣∣Qu(t)

]
≤ B and B > 0

(16)

On basis of Lyapunov drift theory, if ∆LD(t) is equivalent to zero or non-positive value,
then the queue length is stable. The stability of queue depends on ∑C′

c=1 Qc(t). Although
NCc(t), NFc(t), and NFailc(t) can influence the value of Equation (16), the number of tasks
in NCc(t) and NFailc(t) are independent of tasks containing NFc(t). The tasks of NFc(t)
are allocated to the available resources of fog nodes and satisfied the following:

maximize
C′

∑
i=1

Qc(t)NFc(t),

s.t.
n

∑
i=1

(NFc(t) + NF
′
c(t))r

l
ij ≤ R f

(17)

where NF
′
c(t) is the total ongoing tasks that cannot be released the resources in time t.

The objective of our work is to satisfy Equation (17) and optimally allocate the resources.
Most of the time meta-heuristic algorithms gives a near-optimal solution for the resource
allocation problem [15,17]. Here, we are considering a meta-heuristic algorithm named
whale optimization algorithm (WOA) [50]. The main strategy of WOA is the hunting
behavior of one species of whale called Humpback. Humpback whales use the unique
feeding method named bubble-net feeding to create circle around the prey and spread
bubbles, so that the prey move to nearer surface of the ocean, as shown in Figure 4. The
WOA get optimum solution using enclosing, bubble-net and explore methods.

In WOA, the random generated whale population are considered for optimization.
These whales try to explore the location of prey and enclose them with bubble-net. During
enclosing method, the whales upgrade their locations depending on best agent (i.e., target
prey) as follows:

−→
D = |−→C ⊗

−−−→
Wb(t)−

−−→
W(t)| (18)

−−−−−→
W(t + 1) =

−−−→
Wb(t)−

−→
A ⊗−→D (19)

where
−→
D is the position vector difference of best agent (Wb(t)) and whales (W(t)), t is the

present iteration, ⊗ is used for element-wise multiplication, and
−→
A and

−→
C are coefficient

vectors and computed as

−→
A = 2−→a ⊗−→r −−→a (20)
−→
C = 2⊗−→r (21)

where every iteration decreases −→a from 2 to 0 linearly, and random vector −→r value lies in
[0, 1]. The control parameter −→a can be improved as −→a = 2(1− t

Tmax
) (where Tmax is the

maximum iterations).
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Figure 4. Whale hunting method.

Equations (20) and (21) balance the exploration and exploitation. When
−→
A ≥ 1, explo-

ration occurs, and exploitation occurs when
−→
A < 1. During exploitation, the probability

of getting location solutions can be avoided by taking parameter
−→
C as a random value in

[0, 2].
The bubble-net method has two approaches: shrinking enclosing and spiral updating.

The shrinking enclosing can be achieved by taking
−→
A in [−1, 1] with a linear decreasing

value of −→a in each iteration. The spiral updating inspired with helix-shaped movement of
Humpback whales is applied to update the position of the best agent and the whales as
follows: −→

D′ = |
−−−→
Wb(t)−

−−→
W(t)| (22)

−−−−−→
W(t + 1) =

−→
D′ ⊗ ebl ⊗ cos(2πl) +

−−−→
Wb(t) (23)

where a random generated l value lies in [−1, 1] and b is a constant used for logarithmic
spiral shape.

The shrinking enclosing and spiral updating are performed simultaneously as whales
move around the prey using both approaches. This behavior can be modeled by taking
each approach with 50% probability as follows:

−−−−−→
W(t + 1) =

{ −−−→
Wb(t)−

−→
A ⊗−→D i f prob < 0.5

−→
D′ ⊗ ebl ⊗ cos(2πl) +

−−−→
Wb(t) i f prob ≥ 0.5

(24)

where prob ∈ [0, 1]. When the coefficient vector
−→
A is greater than 1, the explore method

is applied in which the whale location is replaced with a random whale rather than best
agent. Thus, the algorithm can extend the search to a global search and can be represented
as follows:

−→
D = |−→C ⊗

−−−−−→
Wrand(t)−

−−→
W(t)| (25)

−−−−−→
W(t + 1) =

−−−−−→
Wrand(t)−

−→
A ⊗−→D (26)
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The bubble-net attach exploits the local solution from the current solution; whereas explore
method tries to get a global solution from the population.

Here, we are considering WOA for allocating resources of fog nodes. Our whale
optimized resource allocation (WORA) algorithm begins with generating a population
of whales. Each whale denotes a random solution for a resource allocation problem.
The fitness of each whale is calculated using a fitness function and selects a best solution
with minimum fitness value as the current best agent. After this, the whales begin searching
the global solution by updating each whale values of A, C, a, l,rob in each iteration. Where
A and C are random coefficients, a is decreasing from 2 to 0 linearly, prob is [0, 1], and l is
[2, 0]. Distance function is the most important function in WOA, which is designed for a
continuous problem. As resource allocation problem is a discrete problem, the distance
function can be modified. Whale creation, fitness function, and distance function as per our
model is discussed below.

• Whale creation: In our algorithm, each whale denotes a solution to the resource
allocation problem. If we have a set of resources R = r1

0,0, r2
1,0, r0

1,1 and a set of re-
quest tasks T = T0, T1, then the whale can be represented as a random combina-
tion of resource with task W = [{r1

0,0, T0}, {r2
1,0, T1}]. The resource is represented as

[ f , c, r, CPU, bw, mem], where f , c, r, CPU, bw, and mem represent fog node, container
of the fog node, resource block of the container, CPU usage, bandwidth, and available
memory, respectively. The task can be represented as [id, CPU, bw, mem], which de-
note task identification number, requirement of CPU usage, bandwidth, and memory.
For example,
R = {[0, 0, 1, 800, 1000, 1200], [1, 0, 2, 750, 1800, 1080], [1, 1, 0, 1800, 2400, 1620]}
T = {[0, 600, 500, 500], [1, 700, 800, 1000]}
Then a whale can be generated as follows:

W1 =
[
{[0, 0, 1, 800, 1000, 1200], [0, 600, 500, 500]}
{[1, 0, 2, 750, 1800, 1080], [1, 700, 800, 1000]}

]
W2 =

[
{[0, 0, 1, 800, 1000, 1200], [1, 700, 800, 1000]}
{[1, 0, 2, 750, 1800, 1080], [0, 600, 500, 500]}

]
W3 =

[
{[1, 0, 2, 750, 1800, 1080], [0, 6, 150, 500]},
{[1, 1, 0, 1800, 2400, 1620], [1, 700, 800, 1000]}

]
In a similar fashion, all the whales are generated.

• Fitness function: For each whale, the fitness function is the optimal resource allocation
to the task and can be calculated as

f =
len(W)

∑
k=1

{
(rl

ij[cpu]− Ti[cpu]) + (rl
ij[bw]− Ti[bw]) + (rl

ij[mem]− Ti[mem])
}

len(W)
(27)

The whale with minimum fitness is the optimum solution. Hence, the goal of the
algorithm is the minimization of the fitness function.
The population can be generated by the collection of whales with their corresponding
fitness.

pop =
{
[w1, w1( f )], [w2, w2( f )], . . . [wp, wp( f )]

}
(28)

• Distance function: The most important function of WOA is the distance function.
As three parameters (i.e., CPU usage, bandwidth, and memory) are considered, the dis-
tance function can be redefined as follows:

CPUD = |−→C ⊗Wi[CPU]−Wj[CPU]|
bwD = |−→C ⊗Wi[bw]−Wj[bw]|

memD = |−→C ⊗Wi[mem]−Wj[mem]|
−→
D = [CPUD, bwD, memD]

where i 6= j (29)
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CPUD′ = |Wi[CPU]−Wj[CPU]|
bwD′ = |Wi[bw]−Wj[bw]|

memD′ = |Wi[mem]−Wj[mem]|
−→
D′ = [CPUD′ , bwD′ , memD′ ]

where i 6= j (30)

The WORA algorithm is given below.
Algorithm 4 presents assignment of fog resources to the tasks contained in NF. We

initialize the whale population Wi where i = 1, 2, 3, . . . P, time t is 0, and the maximum
iteration is Tmax in step-1. The best search agent Wb(t) that has minimum fitness value is
identified in step-2. While t is less than Tmax, steps 3–21 are performed as follows:

• For each whale, steps 4–16 are performed. The value of A, C, a, l, and prob are found
in step 5.

• If prob is less than 0.5, then check the absolute value of A in steps 6 and 7. If the abso-
lute value of A is less than 1, then update D and Wi using Equations (18), (19), and (29)
in step 8. Otherwise, select a random whale Wrand and update D and Wi using Equa-
tions (25), (26), and (29) in steps 10 and 11.

• If p is greater than 0.5, then update D′ and Wi using Equations (22), (23), and (30) in
step 14.

• After updating, amend Wi that goes beyond the search space in step 17. Then compute
the fitness of all Wi and update the best search agent with minimum fitness in steps 18
and 19.

• Increment t by 1 in step 20.

Algorithm 4 Whale optimized resource allocation (WORA) algorithm.

Input: Set of resources R and tasks for fog node NF where NF = ∑C′
c=1 NFc

Output: Best solution for resource allocation Wb

1: Initialize the whale population pop with Wi, where i = 1, 2, . . . P, iteration t = 0,
maximum iteration Tmax;

2: Identify the best search agent Wb(t);
3: while t < Tmax do
4: for k = 1 to P do
5: Amend A, C, a, l and prob;
6: if prob < 0.5 then
7: if |A| < 1 then
8: Amend D and Wi by Equations (18), (19) and (29);
9: else

10: Choose a random whale Wrand;
11: Amend D and Wi by Equations (25), (26) and (29);
12: end if
13: else
14: Amend D′ and Wi by Equations (22), (23) and (30);
15: end if
16: end for
17: Amend Wi that goes beyond the search space;
18: Compute fitness of whale Wi;
19: Update Wb of best search agent;
20: t← t + 1;
21: end while
22: Return Wb;

Finally, return the best search agent that has optimal resource allocation to the tasks in
step 22.

The complexity of an algorithm measures both space and time complexity. The space
complexity is the amount of space occupied by the algorithm. In the WORA algorithm,
the space complexity is related to the population size and the dimension of the problem.
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The population size is P and the dimension of the problem is D. Then, the space complexity
is O(P ∗ D). In WORA, D = 3 for {CPU, bw, mem}, thus the space complexity is O(P).

For time complexity, three major processes (i.e., initialization of the best whale, main
loop for updating, and return of best solution) are considered. In WORA, Tmax is the
maximum iterations.

Initializing the best whale takes O(P) times. The main loop updates the parame-
ters, the whale that goes beyond the search space, and the optimum solution. The time
complexity of these three stages are as follows:

Time required for updating the parameters is O(P ∗ D);
Time required for searching whales beyond the search space is O(P);
Time for updating of optimal solution is O(P);
Time required for main loop is the sum of above the operations Tmax(O(P) + O(P ∗

D) + O(P)) ∼= O(P) where D = 3 and ignored;
The time required for last step O(1).
Therefore, total time complexity of WORA algorithm is O(P).
The following lemmas [51] are required for optimal convergence of the algorithm:

Lemma 1. The population {W(t), t = 1, 2, ....} of WOA supports Markov chain which is finite and
homogeneous.

Lemma 2. The population {W(t), t = 1, 2, ....} of WOA absorb Markov process.

Lemma 3. If an individual of WOASU is stuck in local optima lp(t) in the tth iteration, the tran-
sition probability of population {W(t), t = 1, 2, ....} is

P
(

Wi(t + 1) = lp(t + 1)
∣∣Wi(t) = lp(t)

)
=

{
1 lp(t) = lp(t + 1)
0 lp(t) 6= lp(t + 1)

(31)

Lemma 4. The probability of convergence of WOASU algorithm towards the global optimal solution
cannot possible.

Lemma 5. If an individual of WOAEP is stuck in the local optima lp(t) in the tth iteration,
the transition probability of population {W(t), t = 1, 2, ....} is

P
(

Wi(t + 1) = lp(t + 1)
∣∣Wi(t) = lp(t)

)
=

{
1 lp(t) = lp(t + 1) i f A = 0 or C = 1
0 lp(t) = lp(t + 1) i f A 6= 0 and C 6= 1

(32)

Lemma 6. The WOAEP can converge in probability to the global optimum.

Lemma 7. WOA can converge in probability to the global optimum.

In the WORA algorithm, each whale represents random combination of resource with
task as W =

[{
r1

0,0, T0

}
,
{

r2
1,0, T1

}]
. The valid whales, where the amount of [CPU, bw, mem]

of resource is more than the requested task, can be considered for generating the popula-
tions. The fitness function, Equation (27), calculates the average minimum difference of
requested resource to allocated resource. Thus, the best whale is the whale that has the
minimum fitness value. Using Lemmas 1–7, it is proved that WOA with spiral updating or
enclosing method with probability of 50% can converge to a global optimum. Even if WOA
is trapped to local optima by executing spiral updating mechanism, it can be come out
from local optima using the enclosing mechanism. The WORA algorithm also adopts both
spiral updating and enclosing method with 50% probability. Hence, the WORA algorithm
can converge to global optima with probability to a point in infinite iterations.

The whole process of Algorithms 1–4 of our work is shown in the flowchart in Figure 5.
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Figure 5. Flowchart of the algorithm.

5. Performance Evaluation

This section provides simulation setup, metrics performance, and evaluation of WORA
compared with other algorithms.

5.1. Simulation Setup

We used python for implementing and evaluating our proposed algorithm. The hard-
ware or software taken for the simulation is given in Table 4. We assumed different resource
configurations for the different containers of the fog. Each fog has different resource con-
figurations, hence each resource of the containers of fog is also different. The tasks are
configured randomly. Table 5 gives a detailed configuration of cloud–fog infrastructure
and tasks.

Table 4. Hardware/software specification.

Sl. No. Hardware/Software Configuration

1 System Intel® Core ™ i5-4590 CPU @
3.30 GHz

2 Memory (RAM) 4 GB
3 Operating System Windows 8.1 Pro

We performed extended simulations with varied number of tasks and fog nodes in
the system. The results of WORA are compared with SJF, FLRTS [30], and MOMIS [4]. We
considered 3 to 20 fog nodes and 8 to 700 tasks.
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Table 5. Resource configuration of cloud–fog infrastructure and task.

Name Values

CPU rate of cloud 44,800 MIPS
Bandwidth of cloud 15,000 Mbps

Memory of cloud 40,000 MB
CPU rate of fog 22,800 MIPS

Bandwidth of fog 10,000 Mbps
Memory of fog 10,000 MB

Arrival time of tasks (arrtimei) [0, 10] ms
Execution lower bound of task (etlowi) [1, 6] ms
Execution upper bound of task (etupi) [0, 6] + etlow ms

Execution time (eti) ([etlow, etup]) ms
Data size of task [10, 500] MB

deadline max(et, 20) + arrtime
resptime arrtime + etlow

No. of Instructions (leni) [10, 1700] MI
Bandwidth required for task [10, 1800] Mbps

Memory required for task [10, 1800] MB
CPU required for task [10, 2200] MIPS

5.2. Performance Metrics

Here, the algorithm considered cost, energy consumption, makespan, and completion
of task ratio as the performance metrics. All are defined below.

• Cost: Cost is the amount of monetary cost for processing the tasks in cloud and fog
nodes. The cloud charges cost for both processing and communication, whereas the
fog node only charges a cost for communication [1]. The cost of the system is defined
as follows:

cost =
n

∑
i=1

{
c1 ∗ eti + cc ∗ (dsi +

leni
bwc

) i ∈ NCc

c f ∗ eti i ∈ NFc
(33)

• Energy consumption: The total amount of energy consumed to execute all the tasks of
a system is represented with Energy consumption metric. The total energy consumed
in fog nodes is summed of the energy consumption for executing tasks and utilization
of energy of the fog nodes being idle. When tasks are executed in the cloud, then total
energy is summed of consumed energy for the execution of the task and also energy
for transferring the task and data. The total consumed energy is as follows:

energy =
n

∑
i=1

{
e f ∗ eti + eidle i ∈ NFc

ec ∗ eti + ecomm ∗ (dsi +
leni
bwc

) i ∈ NCc
(34)

• Makespan: The time required for completing all the tasks in the system is represented
as Makespan [30]. It can be computed as

makespan = max︸︷︷︸
i

(respi + eti)) i ∈ [NCc, NFc] (35)

• Task completion ratio: Task completion ratio is the ratio of total tasks successfully
completed within the deadlines.

Taskcompletionratio =
∑C′

c=1(NCc + NFc)

∑C′
c=1(NCc + NFc + NFailc)

(36)

The parameters for evaluating the metrics are given Table 6.
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Table 6. Simulation parameters and values setup.

Parameters Values

Processing cost per time unit for cloud (c1) 0.5 G$/s
Communication cost per time unit for cloud (cc) 0.7 G$/s
Communication cost per time unit for fog (c f ) [0.3, 0.7] G$/s

Energy per unit for execution of the task in fog (e f ) [1, 5] w
Energy used when fog node is idle (eidle) 0.05 w

Energy per unit for execution of task cloud (ec) 10 w
Energy per unit for transmission of data (ecomm) 2 w

5.3. Performance Analysis

Several experiments were carried out with different scenarios. When three fog nodes
are considered where each fog node has three containers and each container has three
resource blocks, Figure 6 shows the cost, energy consumption, makespan, and task comple-
tion ratio of varying tasks.

Figure 6. Cost, energy consumption, makespan, and task completion ratio in three fog nodes.

The proposed WORA algorithm is analyzed and compared with other three algorithms
considering the metrics that we have taken. Figure 7 compares expenditure of cost of WORA
with the other three algorithms with different numbers of fog nodes with 500 tasks. With an
increase in fog nodes, the resource blocks are increased. Hence, a larger number of tasks
are assigned to the fog nodes and a small number of tasks are transferred to the cloud for
execution, which reduces the cost. The SJF algorithm forwards tasks to the cloud while the
required resource is unavailable in the fog layer. The deadline as well as transmission delay
of the task are considered in FLRTS. The tasks with a soft deadline or minimal latency are
forwarded to the cloud. Therefore, less tasks are executed at the fog nodes in the FLRTS
algorithm, which can increase the cost. Most of the tasks are assigned with resources of
fog nodes in the MOMIS algorithm. Hence, the cost of the system is nearer of our WORA
algorithm. The proposed WORA algorithm saves 23.89% of the average cost of FLRTS and
17.24% of the average cost of MOMIS algorithm.
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Figure 7. Computation of cost for fog with 500 tasks.

Figure 8 shows the computation of energy consumption with the number of fog
nodes handling 500 tasks. It can be observed that increasing fog nodes can reduce energy
consumption, because most of the tasks are executed in fog nodes where less tasks are
moved to the cloud. When comparing the average energy consumption, it is observed that
the WORA algorithm consumes 23.8% less energy than MOMIS and 30.76% less energy
than FLRTS.

Figure 8. Computation of energy consumption for fog with 500 tasks.

When considering makespan with the number of fog nodes handling 500 tasks in
Figure 9, it is observed that with an increase in fog nodes, the makespan is decreased.
Instead of waiting for resources, the tasks are executed when fog nodes increases, which
decreases the makespan. It is also observed that our WORA algorithm performed 6.8%
better than MOMIS and 9% better than FLRTS in terms of makespan.
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Figure 9. Computation of makespan for fog with 500 tasks.

When 500 tasks are executed in different fog nodes from 5 to 20, Figure 10 shows that
our WORA algorithm performed 3.51% better than MOMIS and 5.4% better than FLRTS in
terms of successful completion ratio of task.

Figure 10. Compuatation of successful completion of task ratio for fog with 500 tasks.

When 15 fog nodes are considered with tasks varying from 100 to 700, Figure 11 shows
that cost increased with increasing tasks. Our WORA algorithm saves 10.3% of the average
cost of MOMIS and 21.9% of the average cost of FLRTS. Similarly, the WORA algorithm
saves 18.57% of the average energy of MOMIS and 30.8% of the average energy of FLRTS,
shown in Figure 12. Figure 13 shows that WORA performed 6.4% better than MOMIS and
12.9% better than FLRTS in terms of makespan. The successful completion of tasks within
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the deadline is shown in Figure 14, where it is observed that WORA is 2.6% better than
MOMIS and 4.3% better than FLRTS.

Figure 11. Computation of cost of tasks with 15 fog nodes.

Figure 12. Computation of energy consumption of tasks with 15 fog nodes.
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Figure 13. Computation of makespan of tasks with 15 fog nodes.

Figure 14. Computation of success completion ratio of tasks with 15 fog nodes.

In our WORA algorithm, whale optimization algorithm is used for resource allocation.
The tasks have arrived at different time intervals. Figure 15 shows the minimum fitness
value in different time intervals for numbers of tasks in three fog nodes.
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Figure 15. Minimum fitness value of tasks with arrival time intervals.

6. Conclusions

In this work, two modules—task classification and buffering (TCB) and task offloading
and optimized resource allocation (TOORA)—are modeled for buffering the tasks in several
queues according to their types, using the enhanced least laxity time the tasks are transferred
to the cloud or fog. Considering the resource demand and deadline constraints of the
tasks, a WOA is applied to assign the task to the optimal resource block of the fog node.
The simulation results of our WORA algorithm evaluate metrics such as cost, energy
consumption, makespan, and successful completion ratio of tasks and compare them with
the standard SJF algorithm and existing algorithms such as MOMIS and FLRTS. When
500 tasks are executed in different fog nodes (e.g., 5 to 20), the results show that the WORA
algorithm saves 23.89% of the average cost of FLRTS and 17.24% of the average cost of
MOMIS. In terms of energy consumption, the WORA algorithm consumed 23.8% less
energy than MOMIS and 30.76% less energy than FLRTS. Similarly, the WORA algorithm
performed 6.8% better than MOMIS and 9% better than FLRTS in terms of makespan; and
the WORA algorithm performed 3.51% better than MOMIS and 5.4% better than FLRTS
in terms of successful completion ratio of the task. Similarly, when 100 to 700 tasks are
executed in 15 fog nodes, it was observed that the WORA algorithm performed 3.51%
better than MOMIS and 5.4% better than FLRTS in terms of successful completion ratio of
the task, saving 18.57% of the average energy of MOMIS and 30.8% of the average energy
of FLRTS. WORA performed 6.4% better than MOMIS and 12.9% better than FLRTS in
terms of makespan and 2.6% better than MOMIS and 4.3% better than FLRTS in terms of
successful completion ratio of the task. In the future, we will consider other metrics, such
as throughput and delay rate for evaluating the performance of the algorithm. We also
expand our research for virtual machine (VM) migration to balance the resource allocation.
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