
Citation: Springer, T.; Linstead, E.;

Zhao, P.; Parlett-Pelleriti, C. Towards

QoS-Based Embedded Machine

Learning. Electronics 2022, 11, 3204.

https://doi.org/10.3390/

electronics11193204

Academic Editor:

Vijayakumar Varadarajan

Received: 31 August 2022

Accepted: 30 September 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Towards QoS-Based Embedded Machine Learning
Tom Springer *, Erik Linstead , Peiyi Zhao and Chelsea Parlett-Pelleriti

Fowler School of Engineering, Chapman University, Orange, CA 92866, USA
* Correspondence: springer@chapman.edu; Tel.: +1-951-751-2748

Abstract: Due to various breakthroughs and advancements in machine learning and computer
architectures, machine learning models are beginning to proliferate through embedded platforms.
Some of these machine learning models cover a range of applications including computer vision,
speech recognition, healthcare efficiency, industrial IoT, robotics and many more. However, there
is a critical limitation in implementing ML algorithms efficiently on embedded platforms: the
computational and memory expense of many machine learning models can make them unsuitable in
resource-constrained environments. Therefore, to efficiently implement these memory-intensive and
computationally expensive algorithms in an embedded computing environment, innovative resource
management techniques are required at the hardware, software and system levels. To this end, we
present a novel quality-of-service based resource allocation scheme that uses feedback control to
adjust compute resources dynamically to cope with the varying and unpredictable workloads of
ML applications while still maintaining an acceptable level of service to the user. To evaluate the
feasibility of our approach we implemented a feedback control scheduling simulator that was used
to analyze our framework under various simulated workloads. We also implemented our framework
as a Linux kernel module running on a virtual machine as well as a Raspberry Pi 4 single board
computer. Results illustrate that our approach was able to maintain a sufficient level of service
without overloading the processor as well as providing an energy savings of almost 20% as compared
to the native resource management in Linux.

Keywords: embedded machine-learning; edge intelligence; runtime resource management and
allocation; quality-of-service; feedback control

1. Introduction

Embedded systems can be found in nearly every modern electronic device ranging from
home appliances, medical devices, mobile devices, industrial equipment to office machines,
and automobiles. As a result, recent trends are now turning towards coupling these ubiqui-
tous embedded devices with machine-learning models to provide built-in device intelligence.
Most of this work has centered around embedded deep learning, which is a specific category
of machine learning that focuses on Deep Neural Networks (DNN) architectures.

DNNs are widely used in a number of embedded application areas including computer
vision [1–4], speech recognition [5,6], language processing [7,8], robotics, and healthcare [9].
However, due to the large volume of data required to create accurate models in many cases,
and the significant amount of computing resources needed to train the models, training is
usually performed in high-performance computing (HPC) environments. However, once
the model has been trained, initial research has shown that it can be effectively executed
on embedded processors or other resource constrained devices [10–14]. The running of
machine learning models on these embedded devices is commonly referred to as embedded
machine learning (EML) [15].

The implications of this approach are that through the effective utilization of EML
there is the potential for unlocking the processing of data within the billions of embedded
devices which are already available in a number of environmental settings (e.g., industrial

Electronics 2022, 11, 3204. https://doi.org/10.3390/electronics11193204 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193204
https://doi.org/10.3390/electronics11193204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0174-7002
https://doi.org/10.3390/electronics11193204
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193204?type=check_update&version=2

Electronics 2022, 11, 3204 2 of 17

factories, smart buildings, residential complexes . . .). This indicates that the processing of
data that is already being produced by these devices can now be exploited, most of which
is currently being under-utilized.

In addition to the potential for improved utilization of all these embedded devices,
there are other benefits to be gained from performing inference on the embedded devices
rather than using the conventional HPC-based approach.

• Lower Latency: EML is more efficient than traditional cloud-based ML where timeli-
ness is important. The reason is with EML there would no longer be the requirement
to transfer a large amount of network data to the cloud. As a result, EML could be
an ideal solution to support various real-time applications such as actuation which
require lower latencies in order for the control algorithms to perform correctly.

• Power Consumption: Many embedded system processors, such as microcontrollers,
are much more power-efficient than their HPC-based counterparts. For example,
a single Nvidia V100 GPU can consume approximately 300 watts of power per hour.

• Network Bandwidth: Running the machine learning models directly on the embedded
devices allows for the extraction features and analysis of data directly at the source of
the data. This eliminates the need for transferring large amounts of raw data to the
network edge or to cloud-based servers, which reduces network bandwidth.

• Privacy/Security: Since EML devices would not require an Internet connection there
would be no need to transfer and store the data in the cloud. This reduces the risk of
data breaches and security leaks providing a higher degree of protection

It is obvious that the broader impact for EML is significant and with over 38.2 billion
embedded processors projected to be sold in 2023, the potential benefit could impact practi-
cally every major industry. However, while some progress has been made in EML there are
still a number of challenges that require consideration in order for this technology to reach
its full potential. For one, it will be necessary to deploy the inference part of the machine
learning algorithm onto an embedded platform. This deployment has its own unique set
of challenges and requirements. For instance, most ML frameworks are not optimized for
embedded devices because the models are too large and computationally expensive for
resource constrained devices. Consequently, there has been a significant amount of research
that has focused on compressing the DNN models to fit into a specific embedded platform
and then subsequently mapped onto the appropriate processing element. However, man-
aging the diverse interfaces between the available hardware resources—which are often
numerous and heterogeneous in nature—becomes increasingly difficult when performed
offline or during design time. The reason is at runtime the amount of computing resources
available to a DNN can vary considerably due to the combination of diverse and dynamic
workloads concurrently running on the embedded platform.

Some of the challenges listed above suggest that in order to provide a more broad
based solution to EML a dynamic runtime approach is needed. Because different hardware
platforms have varying computing resources and specific DNNs have different performance
requirements various methods will be needed to adapt to the different DNN models for
specific hardware. Authors in [16] proposed that this hardware diversity can be solved
at design time by right-sizing the DNN for the specific target platform. For example,
the same DNN could run on one platform uncompressed while running a compressed
version on a different hardware platform. While design-time approaches can be used
to fit the model to the hardware at runtime the available computing resources could
vary considerably based on the number of applications running. As mentioned by Xun,
Lei et al. [16–19] current approaches for EML mainly focus on hardware or algorithm
optimizations. Other research [20–23] has focused on optimization opportunities in either
applications or hardware devices. However, it is important to explore other opportunities
of the system as a whole and not just the application or devices based upon the diversity of
computation on an embedded platform.

While various runtime management approaches exist in the literature for optimizing
system behavior, such as dynamic voltage and frequency scaling (DVFS), dynamic task

Electronics 2022, 11, 3204 3 of 17

mapping or thread migration, they are typically implemented for a specific platform or
specific applications. Therefore, in order to explore these opportunities, we present the
architecture for a new dynamic runtime resource allocation framework (QoS-EML) that can
be applied across a range of embedded platforms and machine learning applications. Where
the main contribution of this work is to provide a resource allocation scheme that utilizes
feedback mechanisms to monitor compute capacity and control quality-of-service (QoS)
levels to guarantee a certain level of system performance even when the task workload or
resource availability is not known a priori.

The details of QoS-EML are defined in this paper and organized as follows: Section 2
provides an overview of the resource allocation framework for EML. Section 3 provides
some implementation details while Section 4 discusses the results of QoS-EML with simu-
lated workloads. Section 5 discusses provides the details of implementing the framework
on a Raspberry Pi 4 as well as some application results running Tensorflow Lite. Section 6
discusses some related work where results are discussed and compared and Section 7
provides a summary of the work along with recommendations for future work.

2. Dynamic QoS-Based Resource Allocation for EML

Many EML applications could have varying or unpredictable execution rates. For
example, the runtime of inference execution could vary considerably depending upon the
compression level of the DNN model. Additionally, dynamic voltage and frequency scaling
(DVFS) techniques which are used to provide a balance between energy consumption and
performance that are widely used in modern architecture can also contribute to the varying
execution rates.

A primary limitation to providing a more dynamic approach is that most general-
purpose operating systems (e.g., Linux) provide timesharing scheduling algorithms where
the controlling executing rate is not supported. These time-sharing algorithms are best-
effort where tasks can easily overload the processor by simply creating enough processes.
Therefore, a service level control mechanism is important to be able to isolate the execution
rate of different applications, which means embedded applications may need to change their
QoS requirements during runtime. For instance, one model could have higher accuracy
requirements which may take longer to execute while another model may be able to
sufficiently sacrifice accuracy for performance. In order to address some of these limitations,
we provide a more dynamic QoS-based resource allocation approach.

With our approach resource allocation includes both task mapping and task scheduling
for the embedded platform. Where the role of the task mapper is to assign tasks to be
executed on a particular processing unit while the task scheduler runs the scheduling
algorithms, which in our case is a non-preemptive earliest deadline first (C-EDF) scheduler.
The following sections are set aside to provide more details about the implementation of a
QoS-based resource allocation approach that uses feedback-based heuristics to guarantee
satisfactory performance for resource constrained devices.

Feedback Based Control Heuristics

One of the primary motivations for employing a feedback based approach is that
traditional compute platforms are “open loop” which means once resources are scheduled
they are unable to be adjusted to accommodate dynamic changes in the system. While open-
loop scheduling algorithms have been proven to perform well in dynamic systems where
workloads are well-defined, they typically perform do not perform as well in unpredictable
dynamic systems, such as robotic or machine learning applications, where workloads and
compute times are highly unpredictable.

A better solution to the traditional open-loop approach is to periodically monitor the
environment and then provide feedback to the system to provide satisfactory performance.
This type of feedback would then be able to deal with dynamic systems that are both
resource constrained and with unpredictable workloads. Furthermore, by applying these
feedback mechanisms (see Figure 1) the current resource capacity can be monitored so that

Electronics 2022, 11, 3204 4 of 17

specific QoS levels could be supported which can guarantee a certain level of performance
(e.g., overall system utilization, power consumption or deadline miss ratio).

Electronics 2022, 11, 3204 4 of 17

where workloads are well-defined, they typically perform do not perform as well in un-

predictable dynamic systems, such as robotic or machine learning applications, where

workloads and compute times are highly unpredictable.

A better solution to the traditional open-loop approach is to periodically monitor the

environment and then provide feedback to the system to provide satisfactory perfor-

mance. This type of feedback would then be able to deal with dynamic systems that are

both resource constrained and with unpredictable workloads. Furthermore, by applying

these feedback mechanisms (see Figure 1) the current resource capacity can be monitored

so that specific QoS levels could be supported which can guarantee a certain level of per-

formance (e.g., overall system utilization, power consumption or deadline miss ratio).

Figure 1. Generic Feedback Loop Structure.

A typical feedback mechanism consists of a controller, the target system to be con-

trolled (plant), monitors and actuators. The controller variable (y (t)) defines the output of

the system that is used by the controller to make adjustments. The set point variable (r)

represents the desired value for the controlled variable. The error (e (t)) is defined as the

difference between the set point and the controlled variable. The variable (u (t)) is the

value that is manipulated by the controller to change the value of the controlled variable.

Typically a proportional-integral-derivative (PID) controller is used to provide the

necessary control for feedback based scheduling. The basic time-domain form for PID

control is defined as:

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡) 𝑑𝑡 + 𝑘𝑑

𝑑

𝑑𝑡
 𝑒(𝑡)

𝑡

𝑜

 (1)

Determining the values for the proportional (𝑘𝑝), integral (𝑘𝑖), and derivative (𝑘𝑑)

components of the controller are known as PID controller tuning.

3. Feedback Control Based Resource Allocation Architecture

Our feedback control mechanism is based upon the FCS-EDF architecture initially

proposed by authors [20] and consists of several components: a task model, a controller,

an admission controller, a QoS actuator and a real-time scheduler. In Figure 2, an over-

view of the resource allocation architecture is provided.

Figure 2. QoS-Based Resource Allocation Architecture.

Figure 1. Generic Feedback Loop Structure.

A typical feedback mechanism consists of a controller, the target system to be con-
trolled (plant), monitors and actuators. The controller variable (y (t)) defines the output
of the system that is used by the controller to make adjustments. The set point variable
(r) represents the desired value for the controlled variable. The error (e (t)) is defined as the
difference between the set point and the controlled variable. The variable (u (t)) is the value
that is manipulated by the controller to change the value of the controlled variable.

Typically a proportional-integral-derivative (PID) controller is used to provide the
necessary control for feedback based scheduling. The basic time-domain form for PID
control is defined as:

u(t) = kpe(t) + ki

∫ t

o
e(t)dt + kd

d
dt

e(t) (1)

Determining the values for the proportional
(
kp
)
, integral (ki), and derivative (kd)

components of the controller are known as PID controller tuning.

3. Feedback Control Based Resource Allocation Architecture

Our feedback control mechanism is based upon the FCS-EDF architecture initially
proposed by authors [20] and consists of several components: a task model, a controller, an
admission controller, a QoS actuator and a real-time scheduler. In Figure 2, an overview of
the resource allocation architecture is provided.

Electronics 2022, 11, 3204 4 of 17

where workloads are well-defined, they typically perform do not perform as well in un-

predictable dynamic systems, such as robotic or machine learning applications, where

workloads and compute times are highly unpredictable.

A better solution to the traditional open-loop approach is to periodically monitor the

environment and then provide feedback to the system to provide satisfactory perfor-

mance. This type of feedback would then be able to deal with dynamic systems that are

both resource constrained and with unpredictable workloads. Furthermore, by applying

these feedback mechanisms (see Figure 1) the current resource capacity can be monitored

so that specific QoS levels could be supported which can guarantee a certain level of per-

formance (e.g., overall system utilization, power consumption or deadline miss ratio).

Figure 1. Generic Feedback Loop Structure.

A typical feedback mechanism consists of a controller, the target system to be con-

trolled (plant), monitors and actuators. The controller variable (y (t)) defines the output of

the system that is used by the controller to make adjustments. The set point variable (r)

represents the desired value for the controlled variable. The error (e (t)) is defined as the

difference between the set point and the controlled variable. The variable (u (t)) is the

value that is manipulated by the controller to change the value of the controlled variable.

Typically a proportional-integral-derivative (PID) controller is used to provide the

necessary control for feedback based scheduling. The basic time-domain form for PID

control is defined as:

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡) 𝑑𝑡 + 𝑘𝑑

𝑑

𝑑𝑡
 𝑒(𝑡)

𝑡

𝑜

 (1)

Determining the values for the proportional (𝑘𝑝), integral (𝑘𝑖), and derivative (𝑘𝑑)

components of the controller are known as PID controller tuning.

3. Feedback Control Based Resource Allocation Architecture

Our feedback control mechanism is based upon the FCS-EDF architecture initially

proposed by authors [20] and consists of several components: a task model, a controller,

an admission controller, a QoS actuator and a real-time scheduler. In Figure 2, an over-

view of the resource allocation architecture is provided.

Figure 2. QoS-Based Resource Allocation Architecture. Figure 2. QoS-Based Resource Allocation Architecture.

3.1. Task Model

The task model assumes that all tasks are soft real-time and independent. Each
task is defined as a 5-tuple: Ti = {Li, ETi, Ai, Si, Di}. Every task Ti has one or more
logical versions Li = (Ti1, Ti2, . . . Tik) where a task with multiple versions may or may
not have multiple implementations. ET = {ETi1, ETi2, . . . ETik} Defines the various
execution times for each version where ETi1 ≥ ETi2 ≥ . . . ≥ ETik define the execution
times for different versions. Ai = {Ai1, Ai2, . . . Aik} represents the accuracy of different
implementations. Dynamic DNNs for instance could have multiple configurations where
each version could have different execution times and accuracy levels based upon how the
model has been pruned. Different versions of each task are identified as the task’s QoS level

Electronics 2022, 11, 3204 5 of 17

where a version with a longer execution time and more precise accuracy is a higher QoS level
than another version with a shorter execution time with lower accuracy. The remaining
parameters Si and Di defines the task start time and relative deadline respectively.

3.2. PI Controller

In order to implement the feedback loop, a few control variables will need to be
identified which are the controlled variable, the set point and the manipulated variable.
The controlled variable defines the quantity of the output that is measured and controlled.
The controlled variable in our case is processor utilization U(t) defined over a time window
((t − 1)W, tW)) where W is the sampling window and t is called the sampling instant. The
utilization U(t) at the tth sampling moment represents the amount of time that the processor
is busy over the sampling window ((t − 1)W, tW)). The set point represents the desired
value for the controlled variable where the difference is between the current value and the
set point. In our case, the set point would be a percentage of overall processor utilization
defined as U(t). The manipulated variable is the value that can be changed dynamically by
the scheduler to affect the controlled variable. In this case, the manipulated variable is the
total estimated processor utilization defined as B(t) = ∑

i
Ui[Li(t)] which represents all the

tasks in the system, where Ti is a task with a QoS level of Li(t) in the tth sampling window.
This feedback control loop is invoked every sampling instant t, the controller then

calculates the control input defined as DB(t) which represents the change in total estimated
requested utilization based upon the processor utilization error E(t) = US(t)−U(t). The
controller uses a PI (Proportional-Integral) control function to compute the control input
defined as:

DB(t) = KP(E(t) + KI

t

∑
j=0

E(j)) (2)

The controller is tuned based upon the Root Locus Technique [24] with the following
control parameters: KP = 0.5, KI = 0.1. Algorithm 1 based on the design in [20] provides
the pseudo-code of the controller mechanism.

3.3. QoS Actuator

The QoS actuator modifies the requested utilization in the system by adjusting the
QoS levels of the accepted tasks. For example, consider that the QoS level of task Ti changes
from Tij to Tik then the requested utilization would change by ETij − ETik, where ETij
and ETik are the estimated processor requirements of Tij and Tik, respectively. Algorithm 2
which is based on [25] and extended to support DVFS provides the pseudo-code for the
QoS Actuator Mechanism. After the requested utilization has been calculated the actuator
submits the task to the ready queue. The role of the scheduler is to determine which of
the processing cores to execute the task. The decision on which core to use is to measure
core utilization and typically the core that is the most idle is selected to run the task. The
actuator also performs dynamic voltage and frequency scaling (DVFS) which is a power
saving technique that adjusts the power and speed of the processor to optimize resource
allocation. The idea is to trade off computation performance for energy savings because
there is usually no additional benefits from faster task allocation just as long as it is before
the task’s deadline.

DVFS, which is a common power saving technique, provides the capability to adjust
the power and speed settings on various chips and peripheral devices to optimize the
allocation of power. Most modern operating systems provide support for DVFS where a
limited number of discrete voltage and frequency levels are offered. For example, the Ad-
vanced Configuration and Power Interface (ACPI) defines four processor states: operating
state (C0), halt state (C1), stop-clock state (C2) and sleep state (C3). The C-states with the
higher numbers mean less energy is consumed, while the core is in the operating state (C0)
it operates within a range of power performance states identified as P-states. In the P0 state,
a core operates at the highest frequency and voltage level while the other P-states provide

Electronics 2022, 11, 3204 6 of 17

less performance but require less energy as well. It is also important to note that DVFS
is offered on a per-core or per-chip basis, however per-core is not as prevalent so for the
intent of this paper we only consider per-chip DVFS.

Algorithm 1. PI Controller

Input: processor utilization set point US during sampling period ((t − 1)W, tW)
utilization control parameter Kp

Output: The processor utilization adjustment DB during sample window
1: U = get processor utilization for sampling period

// PI control function

2: DB(t) = KP((US(t)−U(t)) + KI
t

∑
j=0

(US(j)−U(j)))

// increase system load if low utilization by tunable load factor f
3: if DB(t) ≥ 0 then
4: DB(t) = DB(t) + f
5: end if

// call the QoS Actuator to adjust utilization levels of tasks
5: DB′ = QoSActuator(DB(t))

// adjust DB(t) if not fully accommodated for by the QoS Actuator
6: if DB′ ! = 0 then
7: DB(t) = DB(t)− DB′

8: end if

Algorithm 2. QoS Actuator

Input: requested processor utilization change DB(t)
Output: The processor utilization adjustment〖DB〗̂ ’ based upon task QoS settings
1: 〖DB〗̂ ’ = DB(t)
2: if〖DB〗^’ < 0 then
3: while〖DB〗^’ < 0 and LowQosLevel Task Exist do
4: T_i = SelectLowQoSLevelTask()

// change task QoS level from current level (j) to new level (k)
5: ChangeQoSTaskLevel (T_i, j, k)
6: 〖DB〗̂ ’ =〖DB〗̂ ’ −〖ET〗_ik+〖ET〗_ij
7: end while
8: else
9: while〖DB〗̂ ’ > 0 and HighPrio Task Exist do
10: T_i = SelectHighQoSLevelTask()

// change task QoS level from current level (j) to new level (k)
11: ChangeTaskQoSLevel (T_i, j, k)
12: 〖DB〗̂ ’ =〖DB〗̂ ’ −〖ET〗_ik+〖ET〗_ij
13: end while
14: end if

// Adjust voltage and frequency levels of core(s)
15: +V = CheckVoltageLevels()
16: if〖DB〗̂ ’ > +V then
17: IncreaseVoltFreq(coren)
18: end if
19: if〖DB〗̂ ’ < −V then
20: DecreaseVoltFreq(coren)
21: end if

DVFS scaling is performed by checking the total estimated processor utilization calcu-
lated by the controller and tested against two threshold values +V and −V. If DB(t) > +V
then that indicates that the processing core (s) frequency and voltage should be increased.
If DB(t) < −V then that implies that the cores are under-utilized which indicates that the
voltage and frequency should be decreased to conserve energy. It is important to find an

Electronics 2022, 11, 3204 7 of 17

optimal threshold value for V, where it should be large enough to limit frequent voltage
switching. The common guidelines are that voltage switching should only be performed
due to a high value of DB as well as a relatively large value of the integral component
which indicates the error value has been larger for a longer interval.

3.4. Real-Time Scheduler

The primary function of the scheduler is to schedule the tasks in the system. For
our architecture, all tasks are assumed to be soft real-time so a certain number of missed
deadlines are acceptable but a task executed after its deadline is of no value to the user.
Furthermore, tasks are non-cooperating independent tasks and not preempted during their
runtime. This is due in part to the fact that EML applications typically utilize other co-
processors, such as a GPU, which are considered non-preemptive due to the high overhead
associated with context switching.

There are a number of non-preemptive scheduling algorithms, such as first-come-first-
serve (FCFS), which are not optimal. For our work, we have chosen the non-preemptive
earliest deadline first (EDF) policy known as Clairvoyant EDF [26] which has been shown
to be near-optimal for non-preemptive tasks. The basic idea behind C-EDF is sometimes it
may not be necessary to dispatch a task that is ready to run but rather delay it—known
as inserted idle time. The question is how do you know when to idle a task? There are
situations that can be identified where postponing tasks can be beneficial.

For example, if we have two tasks Ti and Tj where Si < Sj but Di > Dj should Ti
should be postponed? In order to make that determination we need to identify the time
interval during which the task must execute to be defined as:

[
smin

i , smax
i
]

where smin
i = Si

and smax
i = Di − ETik. Note that the interval is not fixed in that the smin

i value could be
increased if a task is postponed, while smax

i could be decreased if another task Tj cannot
start as late. In order to support postponement, CEDF utilizes two queues, the ready queue
and a critical queue. The ready queue contains the tasks that have arrived and are ready
for execution ordered by their deadlines. The critical queue contains all the tasks according
to their smax

i parameters. The following example shown in Figure 3 is provided to illustrate
how the C-EDF algorithm works. (Note: C-EDF only requires the ETi, Si and Di parameters
as the other QoS settings are already determined by the controller and actuator).

Electronics 2022, 11, 3204 8 of 17

Figure 3. C-EDF Scheduling Example.

Consider the following task set defined as: 𝑇1 = (25, 0, 45), 𝑇2 = (4, 3, 25) and 𝑇3 =

(10, 6, 25). The CEDF algorithm would order the tasks in a critical queue based upon 𝑠1
𝑚𝑎𝑥

= 20, 𝑠2
𝑚𝑎𝑥 = 21, 𝑠3

𝑚𝑎𝑥 = 15 so the critical queue would be ordered: 𝑇3, 𝑇1, 𝑇2. At time 0 task

𝑇1 the postpone test 𝑠𝑖
𝑚𝑖𝑛 + 𝐸𝑇𝑖 > 𝑠𝑗

𝑚𝑎𝑥 is executed and since 0 + 25 > 15 𝑇1 will be post-

poned to time 6 + 10 = 16. Because 𝑠𝑖
𝑚𝑖𝑛 + 𝐸𝑇1 > 𝑠𝑗

𝑚𝑎𝑥the 𝑠𝑗
𝑚𝑎𝑥 parameters will have to

be updated for all tasks that satisfy the condition 𝑠𝑖
𝑚𝑖𝑛 + 𝐸𝑇1 > 𝑠𝑗

𝑚𝑎𝑥 with regard to 𝑇1.

Therefore, 𝑇1 will be inserted into the critical queue making it the last task in the critical

queue. Due to this new condition tasks before 𝑇1 will need to have their 𝑠𝑗
𝑚𝑎𝑥 updated

to [𝑠𝑖
𝑚𝑖𝑛, 𝑠𝑖

𝑚𝑎𝑥]. In this example only 𝑇2 is affected so it will get 𝑠𝑗
𝑚𝑎𝑥 = 20. Due to this

new condition, the processor would idle until time 3 when 𝑇2 arrives. The pseudo-code

for the C-EDF scheduler is presented below (Algorithm 3).

Algorithm 3. C-EDF Scheduler

Input: ready task queue Rq[n] and critical task queue Cq[n]

 Output: C-EDF schedule

// iterate through each core on processor chip

1: for core1 to coren do

2: 𝑇𝑖 = First(Rq[corei])

3: DeQueue(𝑇𝑖 , Rq[corei])

4: 𝑇𝑗 = First(Cq[corei])

5: if 𝑠𝑖
𝑚𝑖𝑛 + 𝐸𝑇𝑖 > 𝑠𝑗

𝑚𝑎𝑥 and 𝑇𝑖 ≠ 𝑇𝐽 and 𝑠𝑗
𝑚𝑖𝑛 ≤ 𝑠𝑗

𝑚𝑎𝑥 then

6: if 𝑠𝑖
𝑚𝑖𝑛 + 𝐸𝑇𝑖 > 𝑠𝑖

𝑚𝑎𝑥 then

7: DeQueue(𝑇𝑖, Cq[corei])

8: EnQueue(𝑠𝑖
𝑚𝑖𝑛 + 𝐸𝑇𝑖, 𝑇𝑖, Cq[corei])

9: end if

10: 𝑠𝑖
𝑚𝑖𝑛 = 𝑠𝑗

𝑚𝑖𝑛 + 𝐸𝑇𝑗

11: set timer 𝑇𝑖 → 𝑠𝑖
𝑚𝑖𝑛

12: else

13: DeQueue(𝑇𝑖, Cq(corei])

14: Dispatch 𝑇𝑖, to corei

15: end if

16: end for

4. Simulation

Our resource allocation architecture was modeled using a simulation framework that

was implemented on a VM configured with two cores running the 32-bit Raspbian (ver-

sion 10) operating system. The simulation framework was based upon the FECSIM [25]

soft real-time simulator (Figure 4). The simulator consists of five components: a set of

Sources that are used to generate the task sets, the Scheduler that emulates the C-EDF

scheduler which controls the execution of tasks; the Monitor that records the controlled

Figure 3. C-EDF Scheduling Example.

Consider the following task set defined as: T1 = (25, 0, 45), T2 = (4, 3, 25) and
T3 = (10, 6, 25). The CEDF algorithm would order the tasks in a critical queue based upon
smax

1 = 20, smax
2 = 21, smax

3 = 15 so the critical queue would be ordered: T3, T1, T2. At time
0 task T1 the postpone test smin

i + ETi > smax
j is executed and since 0 + 25 > 15 T1 will be

postponed to time 6 + 10 = 16. Because smin
i + ET1 > smax

j the smax
j parameters will have

to be updated for all tasks that satisfy the condition smin
i + ET1 > smax

j with regard to T1.
Therefore, T1 will be inserted into the critical queue making it the last task in the critical
queue. Due to this new condition tasks before T1 will need to have their smax

j updated to[
smin

i , smax
i
]
. In this example only T2 is affected so it will get smax

j = 20. Due to this new
condition, the processor would idle until time 3 when T2 arrives. The pseudo-code for the
C-EDF scheduler is presented below (Algorithm 3).

Electronics 2022, 11, 3204 8 of 17

Algorithm 3. C-EDF Scheduler

Input: ready task queue Rq[n] and critical task queue Cq[n]
Output: C-EDF schedule
// iterate through each core on processor chip
1: for core1 to coren do
2: Ti = First(Rq[corei])
3: DeQueue(Ti, Rq[corei])
4: Tj = First(Cq[corei])
5: if smin

i + ETi > smax
j and Ti 6= TJ and smin

j ≤ smax
j then

6: if smin
i + ETi > smax

i then
7: DeQueue(Ti, Cq[corei])
8: EnQueue(smin

i + ETi, Ti, Cq[corei])
9: end if
10: smin

i = smin
j + ETj

11: set timer Ti → smin
i

12: else
13: DeQueue(Ti, Cq(corei])
14: Dispatch Ti, to corei
15: end if
16: end for

4. Simulation

Our resource allocation architecture was modeled using a simulation framework
that was implemented on a VM configured with two cores running the 32-bit Raspbian
(version 10) operating system. The simulation framework was based upon the FECSIM [25]
soft real-time simulator (Figure 4). The simulator consists of five components: a set of
Sources that are used to generate the task sets, the Scheduler that emulates the C-EDF
scheduler which controls the execution of tasks; the Monitor that records the controlled
variables (i.e., utilization and miss ratio); and the QoS Actuator that adjusts the QoS levels
of the tasks and to perform frequency scaling (DVFS).

Electronics 2022, 11, 3204 9 of 17

variables (i.e., utilization and miss ratio); and the QoS Actuator that adjusts the QoS levels

of the tasks and to perform frequency scaling (DVFS).

Figure 4. QoS-EML Simulator.

In order to analyze the performance of our approach, we need to model overall sys-

tem utilization via load profiles. One specific load profile used in control theory is known

as the step load. In terms of real-time systems, the step load represents a worst-case load

variation profile. The Step-Load defined as 𝑆𝐿(𝐿𝑛, 𝐿𝑚) jumps instantaneously from a nom-

inal load 𝐿𝑛 to a load 𝐿𝑚 then stays constant after the jump. The workload used by the

step-load profile is based on the task workload described in [25]. The workload consists

of a number of tasks defined by the task model described in Section 3. Each task is defined

to have four QoS levels (0.25, 0.50, 0.75, 1.0) where each level represents a percentage of

the requested execution time. The estimated execution time 𝐸𝑇𝑖 [2] of task 𝑇𝑖 at QoS level

3 uses a uniform distribution range [0.2, 0.8] ticks where 𝐸𝑇𝑖[2] = 0.75 ∗ 𝐸𝑇𝑖[3], 𝐸𝑇𝑖[1] =

0.50 ∗ 𝐸𝑇𝑖[3] and 𝐸𝑇𝑖[0] = 0.25 ∗ 𝐸𝑇𝑖[3]. The actual execution time is defined as 𝐴𝑇𝑖[𝑗]

of task 𝑇𝑖 at QoS level j uses a normal distribution defined as 𝑁(𝐴𝑇𝑖 , 𝐴𝑇
𝑖

1

2) where the av-

erage execution time equals 𝐴𝑇𝑖[𝑗] = 𝐺𝑎𝑥𝐸𝑇𝑖[𝑗] with 𝐺𝑎 = 2.0 is defined as the execution

time factor which means the estimated execution time is double the average execution time.

All the QoS levels of a task 𝑇𝑖 are assigned the same relative deadline 𝐷𝑖 = 1.0(𝐹𝑖 + 1.0) ∗

 𝐸𝑇𝑖[3], where 𝐹𝑖 is a normal distribution in the range [1,10]. The start time 𝑆𝑖 of task 𝑇𝑖

follows an exponential distribution with an average start time of 𝑆𝑖 = 𝐷𝑖.

To analyze the performance of the feedback controller we generated a step load to

stress the system. (Note: the actuator was disabled for this test so as not to bias the tuning

parameters). The average CPU utilization and miss ratio are illustrated in Figure 5. As

shown in the graph CPU utilization is saturated at 1.0 (100%) after the utilization re-

quested by the step load profile exceeds 100%. The miss ratio remains at zero until the

requested utilization starts to exceed 90%. As a result, the demonstrated steady state per-

formance of the controller indicates that the controller is tuned adequately.

Figure 4. QoS-EML Simulator.

In order to analyze the performance of our approach, we need to model overall system
utilization via load profiles. One specific load profile used in control theory is known as the
step load. In terms of real-time systems, the step load represents a worst-case load variation
profile. The Step-Load defined as SL(Ln, Lm) jumps instantaneously from a nominal load Ln

Electronics 2022, 11, 3204 9 of 17

to a load Lm then stays constant after the jump. The workload used by the step-load profile
is based on the task workload described in [25]. The workload consists of a number of
tasks defined by the task model described in Section 3. Each task is defined to have four
QoS levels (0.25, 0.50, 0.75, 1.0) where each level represents a percentage of the requested
execution time. The estimated execution time ETi [2] of task Ti at QoS level 3 uses a uniform
distribution range [0.2, 0.8] ticks where ETi[2] = 0.75 ∗ ETi[3], ETi[1] = 0.50 ∗ ETi[3] and
ETi[0] = 0.25 ∗ ETi[3]. The actual execution time is defined as ATi[j] of task Ti at QoS level

j uses a normal distribution defined as N
(

ATi, AT
1
2

i

)
where the average execution time

equals ATi[j] = GaxETi[j] with Ga = 2.0 is defined as the execution time factor which means
the estimated execution time is double the average execution time. All the QoS levels of
a task Ti are assigned the same relative deadline Di = 1.0(Fi + 1.0) ∗ ETi[3], where Fi is a
normal distribution in the range [1,10]. The start time Si of task Ti follows an exponential
distribution with an average start time of Si = Di.

To analyze the performance of the feedback controller we generated a step load to
stress the system. (Note: the actuator was disabled for this test so as not to bias the tuning
parameters). The average CPU utilization and miss ratio are illustrated in Figure 5. As
shown in the graph CPU utilization is saturated at 1.0 (100%) after the utilization requested
by the step load profile exceeds 100%. The miss ratio remains at zero until the requested
utilization starts to exceed 90%. As a result, the demonstrated steady state performance of
the controller indicates that the controller is tuned adequately.

Electronics 2022, 11, 3204 10 of 17

Figure 5. Total Utilization/Miss-Ratio with Step-Load (No QoS).

There has been a considerable amount of work in applying feedback control mecha-

nisms to real-time scheduling. As a result, there are a number of methods that have been

applied for tuning PID-based controllers used for real-time systems. One approach is to

tune the controller by running a large number of experiments that simulate the data. The

issue here is that you need a large number of experiments to properly tune control param-

eters. Another method for tuning is to use a model that represents the real scheduling

system. This is the approach that the authors in [20] took where they used a liquid tank

model of the scheduling system. A third approach adopted by the same authors and pre-

sented in a different paper [20,27] was to establish a baseline of the control parameters

and then adjust the parameters using a simulation tool such as MATLAB. This was the

same method we adopted for our approach since they used an EDF scheduler which is

very similar to the C-EDF scheduler. Note: that other scheduling algorithms such as rate

monotonic (RM) or deadline monotonic (DM) or even different workload characteristics

could affect the control parameters which may require a re-tuning.

To evaluate the service levels and DVFS performance of QoS-EML we set the control

parameters (based upon the tuning analysis done in [20,28]) to 𝐾𝑃 = 0.5 for the propor-

tional component, 𝐾𝐼 = 0.1 for the integral component and a utilization threshold of U(t)

= 0.30. Step Loads were applied according to Table 1 for testing the adaptability of the

system to respond to differing QoS levels.

Table 1. Step-Load Utilization Parameters.

Time Ln Lm

t = 0.0 0.00 0.30

t = 1.0 0.30 0.90

t = 3.5 0.90 0.65

t = 5.5 0.65 0.45

t = 8.5 0.45 0.90

The performance of QoS-EML is illustrated in Figure 6a as it relates to overall system

utilization and task miss ratio. Notice at t = 0 the controller is activated and utilization is

requested at 30% then at t = 1.0 requested utilization is increased to 90% causing missed

deadlines as the QoS Actuator adjusts the execution times of the tasks to meet the thresh-

old. The CPU utilization remains settles to a steady state around t = 1.5 and remains stable

until the next Step-Load at t = 3.5 though no deadlines are missed because overall resource

utilization decreases. A few deadlines are missed again at t = 8.5 as the system adjusts to

the new utilization demands and then stabilizes around t = 9.0. The performance of DVFS

Figure 5. Total Utilization/Miss-Ratio with Step-Load (No QoS).

There has been a considerable amount of work in applying feedback control mecha-
nisms to real-time scheduling. As a result, there are a number of methods that have been
applied for tuning PID-based controllers used for real-time systems. One approach is
to tune the controller by running a large number of experiments that simulate the data.
The issue here is that you need a large number of experiments to properly tune control
parameters. Another method for tuning is to use a model that represents the real schedul-
ing system. This is the approach that the authors in [20] took where they used a liquid
tank model of the scheduling system. A third approach adopted by the same authors and
presented in a different paper [20,27] was to establish a baseline of the control parameters
and then adjust the parameters using a simulation tool such as MATLAB. This was the
same method we adopted for our approach since they used an EDF scheduler which is
very similar to the C-EDF scheduler. Note: that other scheduling algorithms such as rate
monotonic (RM) or deadline monotonic (DM) or even different workload characteristics
could affect the control parameters which may require a re-tuning.

Electronics 2022, 11, 3204 10 of 17

To evaluate the service levels and DVFS performance of QoS-EML we set the control
parameters (based upon the tuning analysis done in [20,28]) to KP = 0.5 for the proportional
component, KI = 0.1 for the integral component and a utilization threshold of U(t) = 0.30.
Step Loads were applied according to Table 1 for testing the adaptability of the system to
respond to differing QoS levels.

Table 1. Step-Load Utilization Parameters.

Time Ln Lm

t = 0.0 0.00 0.30
t = 1.0 0.30 0.90
t = 3.5 0.90 0.65
t = 5.5 0.65 0.45
t = 8.5 0.45 0.90

The performance of QoS-EML is illustrated in Figure 6a as it relates to overall system
utilization and task miss ratio. Notice at t = 0 the controller is activated and utilization is
requested at 30% then at t = 1.0 requested utilization is increased to 90% causing missed
deadlines as the QoS Actuator adjusts the execution times of the tasks to meet the threshold.
The CPU utilization remains settles to a steady state around t = 1.5 and remains stable
until the next Step-Load at t = 3.5 though no deadlines are missed because overall resource
utilization decreases. A few deadlines are missed again at t = 8.5 as the system adjusts
to the new utilization demands and then stabilizes around t = 9.0. The performance of
DVFS is illustrated in Figure 6b where the CPU frequencies are adjusted based upon the
utilization reference points of the QoS Actuator. To simulate the power performance, we
utilize the energy model from [23] where dynamic power consumption is defined as:

Pdynamic = CV2 f (3)

where C represents the capacitance of the processor, V defines the supply and f denotes the
clock frequency. It is assumed that the linear increase of voltage leads to a linear increase of
clock frequency applied to Equation (3) then Pdynamic = V3. The energy consumption for
the task is equal to the execution time multiplied by the power consumption where,

Energyexe = Pdynamic × texecution (4)

So, to determine a baseline unit if a one-second task is set to the lowest frequency (1.0)
then when the frequency of the clock is increased to 1.5× then the task will consume
2.25× more energy related to the baseline. In order to simulate the power consumption,
we modeled 7 common frequency steps of the Intel Xeon E5620 Intel processor. The QoS
adjustments of the power levels and clock frequency shown in Figure 6b demonstrate that
when utilization requests increase, the clock levels increase to meet increased demand as
well as when demand decreases, power levels decrease accordingly.

Electronics 2022, 11, 3204 11 of 17

Electronics 2022, 11, 3204 11 of 17

is illustrated in Figure 6b where the CPU frequencies are adjusted based upon the utiliza-

tion reference points of the QoS Actuator. To simulate the power performance, we utilize

the energy model from [23] where dynamic power consumption is defined as:

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝑉2𝑓 (3)

where C represents the capacitance of the processor, V defines the supply and 𝑓 denotes the

clock frequency. It is assumed that the linear increase of voltage leads to a linear increase of

clock frequency applied to Equation (3) then 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑉3. The energy consumption for the

task is equal to the execution time multiplied by the power consumption where,

𝐸𝑛𝑒𝑟𝑔𝑦𝑒𝑥𝑒 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑥 𝑡𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (4)

So, to determine a baseline unit if a one-second task is set to the lowest frequency

(1.0) then when the frequency of the clock is increased to 1.5× then the task will consume

2.25× more energy related to the baseline. In order to simulate the power consumption,

we modeled 7 common frequency steps of the Intel Xeon E5620 Intel processor. The QoS

adjustments of the power levels and clock frequency shown in Figure 6b demonstrate that

when utilization requests increase, the clock levels increase to meet increased demand as

well as when demand decreases, power levels decrease accordingly.

(a)

(b)

Figure 6. (a): Utilization Load/Deadline Miss Ratio via Step-Load, (b): Power/Frequency Levels via

Step-Load.
Figure 6. (a): Utilization Load/Deadline Miss Ratio via Step-Load, (b): Power/Frequency Levels
via Step-Load.

5. Implementation

This section introduces some of the implementation details involved in getting QoS-EML
running on an embedded environment. For our compute platform we used a Raspberry Pi 4,
Cortex-A72 64-bit SoC running the Raspbian OS. Our resource allocation mechanism was
implemented as a loadable kernel module via the standard programming interface provided
by the Linux kernel. Using a loadable scheduler approach is likely the most straightforward
mechanism for the prototyping of a real-time scheduler. As an example authors in [29] uti-
lized this approach to “pre-plant” several hooks (functions) in the original Linux scheduler.
For our work, we use some of those same functions with other functions added to support
multiprocessor real-time scheduling.

In order to further simplify the prototyping and testing, we leveraged the Linux Testbed
for Multiprocessor Scheduling in Real-Time Systems (LITMUSRT) [28]. The LITMUSRT

testbed was chosen because it supports a modular plugin approach for proof-of-concept
testing, provides a fairly robust set of instrumentation tools and offers a port for the Raspbian
OS. In order to create a new scheduler, the code must be registered with the LITMUSRT

kernel. The code is registered as follows:

Electronics 2022, 11, 3204 12 of 17

static struct sched_plugin cedf_plugin = {
.plugin_name = “C-EDF”,
.schedule = “cedf_schedule”,
.admit_task = cedf_admit_task

}

static int __init init_cedf(void) {
return register_sched_plugin($cedf_plugin);

}

module_init(init_cedf);
The scheduler plugins for LITNUSRT require the initialization macro module_init(. . .)

which is used by the compiler to identify the function to call during initialization. The
initialization function init_cedf(. . .) contains the code to initialize the C-EDF scheduler. To
register the scheduler plugin LITMUSRT requires a pointer to the sched_plugin structure.
This structure defined as cedf_plugin(. . .) provides the kernel with a list of callback
functions to be executed during the schedule and admit_task events. The primary list of
functions used by the schedule and admit_task events is provided below:

static struct task_struct* cedf_schedule(
struct task_struct * prev);

static void cedf_finish_switch(struct task_struct *prev);

static void cedf_task_new(struct task_struct * task,
int on_rq, int is_scheduled);

static void cedf_task_wake_up(struct task_struct *task);

static void cedf_task_block(struct task_struct *task);

static void cedf_task_exit(struct task_struct * task);

static long cedf_activate_plugin(void);

static long cedf_deactivate_plugin(void);
Similar to the standard Linux loadable scheduler approach that uses the function

do_fork(. . .) which is called when the fork() syscall is invoked LITMUSRT utilizes the
following function:

static long litmus_fork(struct task_struct *task)

where task is the newly created task. Other functions that deal with QoS-based feedback are
implemented in functions such as cedf_admit_task(. . .) and cedf_schedule (. . .) along
with other separate helper functions such as link_task_to_cpu(. . .) which links a task to a
CPU or preempt (. . .) which enforces task preemption.

Our experiments focused on a couple of specific areas: the PI controller to limit resource
saturation, the QoS actuator to be able to adjust to changing workload requirements and DVFS
to be able to adjust the power consumption of the platform. The experiments were done using
two different TensorFlow Lite models; an object detection model and a pose estimation model.
For object detection, we used the COCO SSD MobileNet V1 model that can recognize up to
80 different objects. For pose estimation, we used the Posenet_mobileenet_v1_100_257x257
model which can recognize key features such as elbows, knees and ankles in an image.
Figure 7a provides a screenshot of the object detection model while Figure 7b provides the
screenshot for the pose detection model. Both models were provided by Q-engineering [30].

Electronics 2022, 11, 3204 13 of 17

Electronics 2022, 11, 3204 13 of 17

static long cedf_activate_plugin(void);

static long cedf_deactivate_plugin(void);

Similar to the standard Linux loadable scheduler approach that uses the function

do_fork(…) which is called when the fork() syscall is invoked LITMUSRT utilizes the fol-

lowing function:

 static long litmus_fork(struct task_struct *task)

where task is the newly created task. Other functions that deal with QoS-based feed-

back are implemented in functions such as cedf_admit_task(…) and cedf_schedule (…)

along with other separate helper functions such as link_task_to_cpu(…) which links a task

to a CPU or preempt (…) which enforces task preemption.

Our experiments focused on a couple of specific areas: the PI controller to limit re-

source saturation, the QoS actuator to be able to adjust to changing workload require-

ments and DVFS to be able to adjust the power consumption of the platform. The experi-

ments were done using two different TensorFlow Lite models; an object detection model

and a pose estimation model. For object detection, we used the COCO SSD MobileNet V1

model that can recognize up to 80 different objects. For pose estimation, we used the Po-

senet_mobileenet_v1_100_257x257 model which can recognize key features such as el-

bows, knees and ankles in an image. Figure 7a provides a screenshot of the object detec-

tion model while Figure 7b provides the screenshot for the pose detection model. Both

models were provided by Q-engineering [30].

(a) (b)

Figure 7. (a): Object Detection, (b): Pose Detection.

In order to verify the performance of QoS-EML we ran the two models shown above

and then monitored their performance. We used mpstat to monitor the overall system uti-

lization and the lm_sensors tool to monitor CPU frequency and power. As shown in Figure

8a,b we started both the models at time 0, then at 50 s we stopped the second pose estima-

tion model and let the object detection model run for the remaining 50 s. For the power

performance, we choose a threshold of approximately 80 °C because the Raspberry Pi 4

would normally throttle back CPU performance to reduce power at that temperature (Fig-

ure 8a). For utilization performance, we choose the set-point of 85% based on the control-

ler performance analysis performed in the previous section. Notice how in Figure 8b the

recorded utilization stabilizes around the set-point as compared to the test run with stand-

ard Linux where the recorded utilization hovered around 95%. We did recognize that the

Figure 7. (a): Object Detection, (b): Pose Detection.

In order to verify the performance of QoS-EML we ran the two models shown above
and then monitored their performance. We used mpstat to monitor the overall system
utilization and the lm_sensors tool to monitor CPU frequency and power. As shown in
Figure 8a,b we started both the models at time 0, then at 50 s we stopped the second pose
estimation model and let the object detection model run for the remaining 50 s. For the
power performance, we choose a threshold of approximately 80 ◦C because the Raspberry
Pi 4 would normally throttle back CPU performance to reduce power at that temperature
(Figure 8a). For utilization performance, we choose the set-point of 85% based on the
controller performance analysis performed in the previous section. Notice how in Figure 8b
the recorded utilization stabilizes around the set-point as compared to the test run with
standard Linux where the recorded utilization hovered around 95%. We did recognize
that the overall utilization slightly exceeds the 85% set-point but we attribute that to other
unrelated system tasks which are not currently controlled by QoS-EML.

Electronics 2022, 11, 3204 14 of 17

overall utilization slightly exceeds the 85% set-point but we attribute that to other unre-

lated system tasks which are not currently controlled by QoS-EML.

(a)

(b)

Figure 8. (a): Power Performance, (b): System Utilization.

6. Related Work

While there has been some recent research into the area of QoS for EML applications

most of that work has focused on research management for network-based architectures

as opposed to running on a specific target. For example, the authors in [31] studied how

the problem of resource management in a wireless network could be optimized to im-

prove user experiences for wireless virtual reality applications. Other work [32,33] fo-

cused on developing a QoS model used to predict the resources that may be required for

a cloud-based software service. Then, the authors incorporate a feedback loop to adjust

allocated resources for the cloud software services using the QoS model to predict the

necessary resources. The authors in [34] took a slightly different approach where they ap-

plied the Genetic machine learning algorithm to optimize the resources needed by the

application based upon pre-defined QoS requirements.

There is other research work related to resource allocation for embedded devices that

are not necessarily focused on network-centric solutions. Researchers R. David et al. [35]

introduced a machine learning framework for running deep-learning models on resource-

constrained devices. Their software framework utilized an interpreted alternative which

authors claimed are more suited for embedded machine learning application as opposed

to the traditional compiled approach. Named TensorFlow Lite Micro and based upon the

TensorLite framework it was designed to run on embedded devices with only a few kilo-

bytes of memory. To identify just some of the work [36–38] there has also been a significant

amount of research in designing custom hardware for machine learning applications.

Known as machine learning accelerators these are customized hardware processing ele-

ments specifically designed to optimize machine learning applications. While highly ef-

Figure 8. (a): Power Performance, (b): System Utilization.

Electronics 2022, 11, 3204 14 of 17

6. Related Work

While there has been some recent research into the area of QoS for EML applications
most of that work has focused on research management for network-based architectures as
opposed to running on a specific target. For example, the authors in [31] studied how the
problem of resource management in a wireless network could be optimized to improve
user experiences for wireless virtual reality applications. Other work [32,33] focused on
developing a QoS model used to predict the resources that may be required for a cloud-
based software service. Then, the authors incorporate a feedback loop to adjust allocated
resources for the cloud software services using the QoS model to predict the necessary
resources. The authors in [34] took a slightly different approach where they applied the
Genetic machine learning algorithm to optimize the resources needed by the application
based upon pre-defined QoS requirements.

There is other research work related to resource allocation for embedded devices that
are not necessarily focused on network-centric solutions. Researchers R. David et al. [35]
introduced a machine learning framework for running deep-learning models on resource-
constrained devices. Their software framework utilized an interpreted alternative which
authors claimed are more suited for embedded machine learning application as opposed to
the traditional compiled approach. Named TensorFlow Lite Micro and based upon the Ten-
sorLite framework it was designed to run on embedded devices with only a few kilobytes of
memory. To identify just some of the work [36–38] there has also been a significant amount
of research in designing custom hardware for machine learning applications. Known as ma-
chine learning accelerators these are customized hardware processing elements specifically
designed to optimize machine learning applications. While highly effective, the problem
with a customized hardware approach is that these processing elements are tightly coupled
to a specific platform and cannot be applied to general-purpose embedded systems.

The general problem of allocating compute resources to embedded systems and not
specifically for EML applications has been studied for years. The primary research path
has been to apply QoS-based constraints to embedded real-time systems. Specifically, it’s
an optimization problem in finding the allocation of tasks to resources that can satisfy some
QoS requirements as well as maximize benefits. The problem is that most of this work is
theoretical and only tested through simulation. Another issue is that this work is typically a
priori based resource allocation, so if any of the system parameters change then the resource
allocation model has to be recalculated. However, there has been other work to apply a
dynamic approach to real-time management [39]. These dynamic approaches typically
apply some type of feedback mechanism used to adapt to changes in the system. While
these methods can effectively allocate tasks to resources there is no provision on how tasks
are actually scheduled once they are assigned to the resource.

There has been some recent work that examines how machine learning models can
be adapted to run on resource-constrained devices and the tradeoffs between hardware
performance metrics, such as power, accuracy and speed. For example, authors in [40]
conducted a review of research work that focused on the use of machine learning models
for Advanced Driver Assistance Systems (ADAS). Other work [16] examined some of the
design challenges involved in deploying a deep neural network onto mobile and embedded
targets. Authors in this paper identified both design time and run time challenges. They
concluded that custom designed DNNs could be deployed on a variety of hardware
platforms to meet hardware performance constraints while runtime challenges would
require an adaptive approach in order to optimize local computing resources. Our work in
QoS-EML used this paper as a roadmap on how to address some of the challenges associated
with running machine learning applications on embedded devices. We took both a design
time and runtime approach. At design time a particular DNN model could have multiple
implementations or instances where a less accurate model would use less memory and
compute resources than a more accurate one. While this would require multiple instances
of the same model, which would require extra storage space thus defeating the purpose
of limited memory requirements, additional implementations of the same DNN model

Electronics 2022, 11, 3204 15 of 17

could be stored in permanent storage such as flash and only swapped in when needed.
Other recent methods used to limit the memory footprint could be to employ dynamic
DNNs [18] where the model has only one implementation but multiple configurations.
Depending upon the resources available applications could select a configuration that
requires less or more resources depending upon the QoS requirements identified by the
user. To address some of the runtime challenges we incorporated a QoS-based approach
that utilized feedback to dynamically adjust to workload demands and currently available
computing resources. This generic approach allowed for the same DNN model to run in a
virtual machine with only minor changes to the OpenCV application as opposed to running
on the actual hardware with functional accelerators (e.g., GPU). The idea is if you can
tolerate the application to run slower and/or with less accuracy (e.g., QoS requirements)
then the framework is generic enough to run on a wide range of embedded platforms.

7. Conclusions

In this paper, we presented a QoS-based framework that utilized feedback to solve
allocation and scheduling problems with uncertainty in task workload and execution times
in embedded platforms. We have shown that our proposed approach provides sufficient
QoS guarantees even in the case of processor overloads as well as significant power savings
as part of the DVFS algorithm in the QoS actuator. It also introduced very modest energy
and latency overheads that have a limited impact on the operation and overall performance
of the system. In addition to the experiments presented in this paper, the framework has
also been used to explore the potential for variable rate execution of tasks where instead of
having multiple instances of the same task we assign varying execution rates to the same
instance based upon the user’s service level guarantees.

The work presented here can be extended in a number of ways. Currently, only
aperiodic tasks are supported so periodic tasks could be incorporated. To investigate
further energy savings, a dynamic power management scheme (DPM) could be examined
to determine when and for how long the processor should be in an active or idle state, and
could also be integrated into the scheme. The C-EDF real-time scheduler could be extended
to support cooperating tasks which may need to share resources or communication. Other
work could be done in determining the effectiveness of porting QoS-EML to other operating
systems such as VxWorks.

Author Contributions: Conceptualization, T.S. and E.L.; methodology, T.S.; software, T.S.; writing—
original draft preparation, T.S., E.L., P.Z. and C.P.-P.; writing—review and editing, T.S., E.L., P.Z.
and C.P.-P.; supervision, T.S. and E.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Szegedy, C.; Liu, W.; Jia, P.Y.; Reed, S.S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolu-

tions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference Computer Vision Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

3. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-scale evolution of image classifiers.
In Proceedings of the 34th International Conference Machine Learning ICML, Sydney, Australia, 6–11 August 2017; pp. 4429–4446.

4. Tan, M.; Le, Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th
International Conference Machine Learning ICML 2019, Long Beach, CA, USA, 10–15 June 2019; pp. 10691–10700.

5. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep
neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag. 2012, 29, 82–97. [CrossRef]

6. Chan, W.; Jaitly, N.; Le, Q.V.; Vinyals, O. Listen, attend and spell. In Proceedings of the 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016.

http://doi.org/10.1109/MSP.2012.2205597

Electronics 2022, 11, 3204 16 of 17

7. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s
neural machine translation system: Bridging the Gap between human and machine translation. arXiv 2016, arXiv:1609.08144.

8. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch.
J. Mach. Learn. Res. 2011, 12, 2493–2537.

9. Haj, R.B.; Orfanidis, C. A discreet wearable long-range emergency system based on embedded machine learning. In Proceedings
of the 2021 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops),
Kassel, Germany, 22–26 March 2021.

10. Saracco, R. TinyML: A Glimpse into a Future of Massive Distributed AI, IEEE Future Directions. Available online: https://cmte.
ieee.org/futuredirections/2021/01/25/tinyml-a-glimpse-into-a-future-of-massive-distributed-ai/ (accessed on 2 March 2022).

11. Ibrahim, A.; Valle, M. Real-Time Embedded Machine Learning for Tensorial Tactile Data Processing. IEEE Trans. Circuits Syst. I
Regul. Pap. 2018, 65, 3897–3906. [CrossRef]

12. Suresh, V.M.; Sidhu, R.; Karkare, P.; Patil, A.; Lei, Z.; Basu, A. Powering the IoT through embedded machine learning and LoRa.
In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 349–354.
[CrossRef]

13. Lee, J.; Stanley, M.; Spanias, A.; Tepedelenlioglu, C. Integrating machine learning in embedded sensor systems for Internet-of-
Things applications. In Proceedings of the 2016 IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 290–294. [CrossRef]

14. Andrade, L.; Prost-Boucle, A.; Pétrot, F. Overview of the state of the art in embedded machine learning. In Proceedings of the 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1033–1038.
[CrossRef]

15. Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [CrossRef]
16. Xun, L.; Tran-Thanh, L.; Al-Hashimi, B.M.; Merrett, G.V. Optimising resource management for embedded machine learn-

ing. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France,
9–13 March 2020; pp. 1556–1561.

17. Yang, T.J.; Howard, A.; Chen, B.; Zhang, X.; Go, A.; Sandler, M.; Sze, V.; Adam, H. Netadapt: Platform-aware neural network
adaptation for mobile applications. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 285–300.

18. Xu, Z.; Yu, F.; Liu, C.; Chen, X. Reform: Static and dynamic resource-aware dnn reconfiguration framework for mobile device.
In Proceedings of the 56th Annual Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019; p. 183.

19. Tann, H.; Hashemi, S.; Bahar, R.; Reda, S. Runtime configurable deep neural networks for energy-accuracy trade-off. In Proceedings of the
International Conference on Hardware/Software Codesign and System Synthesis, ACM, Pittsburgh, PA, USA, 2–7 October 2016; p. 34.

20. Stankovic, J.A.; Lu, C.; Son, S.H.; Tao, G. The Case for Feedback Control Real-Time Scheduling. In Proceedings of the EuroMicro
Conference on Real-Time Systems, York, UK, 9–11 June 1999.

21. Donyanavard, B.; Mück, T.; Rahmani, A.M.; Dutt, N.; Sadighi, A.; Maurer, F.; Herkersdorf, A. Sosa: Self-optimizing learning
with self-adaptive control for hierarchical system-on-chip management. In Proceedings of the International Symposium on
Microarchitecture (MICRO), ACM, Columbus, OH, USA, 12–16 October 2019; pp. 685–698.

22. Moazzemi, K.; Maity, B.; Yi, S.; Rahmani, A.M.; Dutt, N. Hesslefree Heterogeneous systems leveraging fuzzy control for runtime
resource management. ACM Trans. Embed. Comput. Syst. 2019, 18, 74.

23. Winter, J.A.; Albonesi, D.H.; Shoemaker, C.A. Scalable Thread Scheduling and Global Power Management for Heterogeneous
Many-Core Architectures. In Proceedings of the 19th International Conference on Parallel Architectures and Compilation
Techniques, Galveston, TX, USA, 11–15 September 2010.

24. Franklin, G.F.; Powell, J.D.; Workman, M.L. Digital Control of Dynamic Systems, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1998.
25. Lu, C.; Stankovic, J.A.; Tao, G.; Son, S.H. Design and Evaluation of a Feedback Control EDF SchedulingAlgorithm. In Proceedings

of the IEEE Real-Time Systems Symposium, Phoenix, AZ, USA, 1–3 December 1999.
26. Ekelin, C. Clairvoyant non-preemptive EDF scheduling. In Proceedings of the 18th Euromicro Conference on Real-Time Systems

(ECRTS’06), Dresden, Germany, 5–7 July 2006; pp. 7–32. [CrossRef]
27. Lu, C.; Stankovic, J.A.; Son, S.H.; Tao, G. Feedback Control Real-Time Scheduling: Framework, Modeling, and Algorithms.

Real-Time Syst. 2002, 23, 85–126. [CrossRef]
28. LITMUSRT. Available online: https://www.litmus-rt.org/ (accessed on 4 April 2022).
29. Liu, X.; Goddard, S. Supporting dynamic QoS in Linux. In Proceedings of the RTAS 2004, 10th IEEE Real-Time and Embedded

Technology and Applications Symposium, Toronto, ON, Canada, 25–28 May 2004; pp. 246–254. [CrossRef]
30. Q-engineering Last Updated December 2021. Available online: https://qengineering.eu/install-tensorflow-2-lite-on-raspberry-

pi-4.html (accessed on 4 April 2022).
31. Chen, M.; Saad, W.; Yin, C. Virtual Reality Over Wireless Networks: Quality-of-Service Model and Learning-Based Resource

Management. IEEE Trans. Commun. 2018, 66, 5621–5635. [CrossRef]
32. Chen, X.; Lin, J.; Ma, Y.; Lin, B.; Wang, H.; Huang, G. Self-adaptive resource allocation for cloud-based software services based on

progressive QoS prediction model. Sci. China Inf. Sci. 2019, 62, 219101. [CrossRef]
33. Chen, X.; Wang, H.; Ma, Y.; Zheng, X.; Guo, L. Self-adaptive resource allocation for cloud-based software services based on

iterative QoS prediction model. Future Gener. Comput. Syst. 2020, 105, 287–296. [CrossRef]

https://cmte.ieee.org/futuredirections/2021/01/25/tinyml-a-glimpse-into-a-future-of-massive-distributed-ai/
https://cmte.ieee.org/futuredirections/2021/01/25/tinyml-a-glimpse-into-a-future-of-massive-distributed-ai/
http://doi.org/10.1109/TCSI.2018.2852260
http://doi.org/10.1109/WF-IoT.2018.8355177
http://doi.org/10.1109/ISSPIT.2016.7886051
http://doi.org/10.23919/DATE.2018.8342164
http://doi.org/10.1109/ACCESS.2019.2912200
http://doi.org/10.1109/ECRTS.2006.7
http://doi.org/10.1023/A:1015398403337
https://www.litmus-rt.org/
http://doi.org/10.1109/RTTAS.2004.1317270
https://qengineering.eu/install-tensorflow-2-lite-on-raspberry-pi-4.html
https://qengineering.eu/install-tensorflow-2-lite-on-raspberry-pi-4.html
http://doi.org/10.1109/TCOMM.2018.2850303
http://doi.org/10.1007/s11432-018-9750-2
http://doi.org/10.1016/j.future.2019.12.005

Electronics 2022, 11, 3204 17 of 17

34. Devarasetty, P.; Reddy, S. Genetic algorithm for quality of service based resource allocation in cloud computing. Evol. Intel. 2021,
14, 381–387. [CrossRef]

35. David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. Tensorflow lite
micro: Embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811.

36. Lee, K.H.; Verma, N. A Low-Power Processor With Configurable Embedded Machine-Learning Accelerators for High-Order and
Adaptive Analysis of Medical-Sensor Signals. IEEE J. Solid-State Circuits 2013, 48, 1625–1637. [CrossRef]

37. Giri, D.; Chiu, K.-L.; di Guglielmo, G.; Mantovani, P.; Carloni, L.P. ESP4ML: Platform-Based Design of Systems-on-Chip for
Embedded Machine Learning. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, 9–13 March 2020; pp. 1049–1054. [CrossRef]

38. Murmann, B.; Bankman, D.; Chai, E.; Miyashita, D.; Yang, L. Mixed-signal circuits for embedded machine-learning applica-
tions. In Proceedings of the 2015 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
8–11 November 2015; pp. 1341–1345. [CrossRef]

39. Judd, R.; Drews, F.; Lawrence, D.; Juedes, D.; Leal, B.; Deshpande, J.; Welch, L. QoS-based resource allocation in dynamic real-time
systems. In Proceedings of the 2005, American Control Conference, Portland, Oregon, 8–10 June 2005; Volume 3, pp. 1745–1751.
[CrossRef]

40. Borrego-Carazo, J.; Castells-Rufas, D.; Biempica, E.; Carrabina, J. Resource-Constrained Machine Learning for ADAS: A Systematic
Review. IEEE Access 2020, 8, 40573–40598. [CrossRef]

http://doi.org/10.1007/s12065-019-00233-6
http://doi.org/10.1109/JSSC.2013.2253226
http://doi.org/10.23919/DATE48585.2020.9116317
http://doi.org/10.1109/ACSSC.2015.7421361
http://doi.org/10.1109/ACC.2005.1470220
http://doi.org/10.1109/ACCESS.2020.2976513

	Introduction
	Dynamic QoS-Based Resource Allocation for EML
	Feedback Control Based Resource Allocation Architecture
	Task Model
	PI Controller
	QoS Actuator
	Real-Time Scheduler

	Simulation
	Implementation
	Related Work
	Conclusions
	References

