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Abstract: Online rumors spread rapidly through social media, which is a great threat to public
safety. Existing solutions are mainly based on content features or propagation structures for rumor
detection. However, due to the variety of strategies in creating rumors, only considering certain
features cannot achieve good enough detection results. In addition, existing works only consider the
rumor propagation structure and ignore the aggregation structures of rumors, which cannot provide
enough discriminative features (especially in the early days of rumors, when the structure of the
propagation is incomplete). To solve these problems, this paper proposes a rumor detection method
with multimodal feature fusion and enhances the feature representation of the rumor propagation
network by adding aggregation features. More specifically, we built a graph model of the propagation
structure as well as the aggregation structure. Next, by utilizing the BERT pre-training model and
the bidirectional graph convolutional network, we captured the features of text content, propagation
structure, and aggregation structure, respectively. Finally, the multimodal features were aggregated
based on the attention mechanism, and the final result was obtained through the MLP classifier.
Experiments on real-world datasets show that our model outperforms state-of-the-art approaches.

Keywords: rumor detection; propagation structure; text feature; attention mechanism

1. Introduction

Social media platforms are typical places for misinformation to spread. Social media
platforms are frequently used by rumor-makers to spread false information. Rumors
are spread by rumor mongers to manipulate public events, which can lead to negative
consequences. For instance, in politics, rumors have influenced opinions on crucial matters,
such as Brexit [1] and the 2016 US presidential election [2]. The “information pandemic” [3]
brought on by rumors (in the context of the recent new crown outbreak) has resulted in
significant opposition to the suppression of the disease. Therefore, it is crucial to identify
and control rumors.

Many research studies have invested in rumor detection. The most direct and efficient
approaches involve fact-checking, which involves using known facts to validate the veracity
of the news. Known facts come from domain experts, authoritative media, popular science
websites, etc. By building a library of known facts, the news to be predicted is searched
for in the library, and if there is no similar content in the library, it is considered a rumor.
However, there are huge costs involved in building a library of known facts, so the coverage
of the library of known facts is often extremely limited [4].

The two primary categories of automated rumor detection techniques, aside from fact-
checking-based techniques, are content feature-based methods and propagation structure-
based methods. Most content feature-based methods take advantage of textual content,
such as user retweets and source tweets [5,6]. To extract text features, the majority of
them employ pre-trained models, such as word2vec [7], Glove [8], BERT [9], etc. BERT
(bidirectional encoder representation from transformers) is the encoder of a bidirectional
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transformer. The model uses two methods, masked LM and next sentence prediction, to
capture the representation of words and sentences, respectively. However, methods solely
based on text content cannot fit all rumor detection methods, mainly due to the following
reasons. Firstly, some rumors are created by imitating the sentence patterns and word
patterns of normal text. Secondly, adding real information to rumors makes it more difficult
for the classifier to judge.

Recently, researchers found that the propagation structures of rumors and truth are
significantly different. According to Vosoughi et al. [10,11], rumors spread more quickly,
deeply, and widely than the truth. As a result, recent research studies [12–15] have pre-
sented high-level representations from propagation structures to identify rumors. With
regard to encoders, deep learning algorithms are widely adopted due to their excellent
performances [16–18].

Methods based on propagation structures usually represent the spread of rumors as
graph or tree structures, with tweets acting as nodes and the interactions formed by retweets
and comments acting as edges. To extract features from the graph structure, existing
research studies are mainly divided into two types—RNN-based methods and CNN-based
methods. RNN-based techniques can capture sequential features from rumor propagation
structures [13], including long short-term memory (LSTM), gated recurrent unit (GRU), and
recurrent neural network (RvNN). However, RNN-based approaches ignore the correlation
between rumors and instead primarily concentrate on the sequential propagation patterns
of rumors. As a result, some researchers use convolutional neural networks (CNNs) to
extract the connection features of rumors [15]. However, the global propagation structural
relationships of graphs cannot be handled by CNN-based algorithms, although they can
capture relevant features of local neighbors [19].

Therefore, some researchers [20–22] have attempted to extract high-dimensional fea-
ture representations of rumor propagation structures using graph convolutional networks
(GCNs). A GCN is a graph-data version of CNN that can successfully capture global graph
features by aggregating node neighborhood data.

However, existing propagation-structure-based methods typically only consider the
top-to-bottom propagation of rumors when constructing a graph model, ignoring the
bottom-to-top aggregation of public opinions during the rumor-spreading process. Start-
ing with the source tweet, a top-to-bottom propagation network is built between tweets
through retweets or comments, as seen in the left part of Figure 1. On the other hand, all
comments or retweets are the public’s opinions on the previous tweet, and opinions are
continuously gathered from the bottom to the top, as shown in the right picture of Figure 1.
Existing methods often only consider the top-to-bottom propagation of rumors, which is
not comprehensive. By considering the aggregation structure of a rumor, we can capture
more discriminative rumor features. Considering the aggregation structure is helpful for
the enhancement of rumor features, especially in the early stage of rumor propagation,
when there are few tweets in the propagation network.
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Additionally, the methods based on the propagation structure cannot effectively utilize
the text features of the rumors, even though some existing methods use the text features
of tweets as the initialization features of the nodes and then use the graph convolutional
network method to extract the propagation structure features. However, the initialized text
features gradually fade away during the training process as the iterations increase.

This paper suggests a rumor detection method based on multimodal information fu-
sion that fully considers rumor text features, propagation structure features, and aggregate
structure features. First, we used the BERT pre-training model to extract the source tweet
text features of the event. Next, we built two graphs for the propagation structure and
aggregation structure, and the bidirectional graph convolutional network (Bi-GCN) [21] to
extract the propagation and aggregation structure features. Finally, we chose a multilayer
perceptron (MLP) to obtain the final result. MLP is a forward-structured artificial neural
network. The main contributions of this paper are as follows:

• We introduce an attention mechanism and suggest a multimodal information fusion-
based rumor detection method that fully integrates the text features and propagation–
aggregation structure features of rumors.

• We improved the rumor propagation network by including the aggregation structure,
which can more accurately distinguish rumors from the truth, particularly in the early
stages of rumors with an incomplete propagation structure.

• Two real-world Twitter datasets were used in the experiments, and the results show
that our method can identify rumors more accurately.

This paper is a continuation of previous work [22] presented at the Fifth ICET con-
ference. The previous version did not discuss the early detection of rumors. This paper
supplements the experiments of early detections of rumors, adds related work chapters,
and elaborates on the methodology and experimental process.

2. Related Work

Rumor detection methods are mainly divided into two categories—content feature-
based methods and propagation structure-based methods. The methods based on content
features mainly use the text content, picture content, video content, etc., of the original
tweet as the model input to detect fake news.

The main method is based on text content. For example, Ma et al. [12] applied deep
learning techniques to fake news detection. This method inputs each sentence of the text
into the recurrent neural network, uses the hidden layer vector of the recurrent neural
network to represent the news information, and inputs the hidden layer features into
the classifier to obtain the classification result. Yu et al. [14] used a convolutional neural
network to extract text features, and input the obtained embedding vector into the classifier
to obtain the final classification result. Vaibhav et al. [23] modeled news articles as graphs
with sentences as nodes and inter-sentence similarities as edges; they transformed the
fake news detection problem into a graph classification problem. Cheng et al. [24] used
a variational autoencoder (VAE) to self-encode text information to obtain the embedding
representation of news text, and multi-task learning of the obtained news vector to improve
the effectiveness of the model.

News or tweets contain textual as well as visual information, such as pictures and
videos. Traditional statistics-based methods use the number of attached images, image
popularity, and image type to detect fake news. However, these statistics-based features
cannot describe the semantic features of images.

With the rise of deep learning, a large number of works [25–28] are using convolutional
neural networks, such as VGG [29] or ResNet [30], to extract features from pictures; re-
searchers are using the extracted features to detect fake news. However, the existing image
forgery technology can change the semantic information of the image. The traditional
CNN-based model can only extract the pixel-level information of the image, and cannot
identify whether the image has been forged.
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However, existing rumor makers often write fake news in the same way as real news.
Therefore, it is not enough to distinguish fake news based on its content. Sociological
studies [10,11] have shown that the propagation of real news and fake news in social
networks is often different. Therefore, more researchers are using the propagation structure
of news to detect fake news.

For example, Liu et al. [31] regarded the spread of rumors and comment information
as a time series; they used RNN and CNN to model the sequence, splice two latent vectors
together, and input them into the classification layer to obtain the classification result.
Ma et al. [13] modeled the propagation process of rumors as a tree structure. This work
constructed a bottom-up propagation tree and a top-down propagation tree, and used
recurrent neural networks to extract node features in the tree to classify fake news. Song
et al. [32] modeled the news propagation graph as a dynamic graph. Considering the
dynamic changes of the news propagation process, the dynamic graph embedding vector
was obtained by using the dynamic graph neural network, which was input into the
classifier to obtain the classification result.

However, the existing methods did not consider the aggregation features of rumors,
which will lead to the loss of information. In addition, the existing methods cannot
aggregate the multimodal rumor features well.

3. Problem Statement

The definition of the dataset for rumor detection is C = {c1, c2, . . . , cm}, where ci is the
i-th event and m is the total number of events. ci =

{
ri, wi

1, wi
2, . . . , wi

ni−1, Gi

}
, where ni is

the number of posts in event ci, ri is the source post, wi
j is the j-th relevant responsive post,

and Gi = (Vi, Ei) is defined as a graph, where Vi =
{

ri, wi
1, wi

2, . . . , wi
n−1
}

represents the set
of nodes, and Ei =

{
ei

st
∣∣s, t = 0, . . . ni − 1

}
represents a forwarding or replying relationship

between two nodes.
For instance, there is a directed edge wi

1 → wi
2 , if wi

2 is a retweet of wi
1, which is

represented as ei
12. The adjacency matrix is defined as Ai ∈ {0, 1}ni∗ni . ei

st represents the
corresponding element value of the s-th row and t-th column of matrix Ai, i.e.:

ai
st =

{
1, if ei

st ∈ Ei
0, otherwise

We define Xi =
[

xi
0, xi

1, . . . , xi
ni−1

]
as the feature matrix composed of all tweets in

event ci, where xi
0 is the feature vector of the source tweet ri and xi

j is the feature vector of

other responded tweets wi
j. In this paper, we used the BERT pre-trained model to extract the

feature vector of each tweet’s content. Furthermore, a ground-truth label yi was connected
to each event ci. In this paper, yi ∈ {N, F, T, U}, stands for non-rumor, false rumor, true
rumor, and unverified rumor, respectively.

The objective of rumor detection is to learn a classifier from the dataset, i.e.:

f : C → Y

where C and Y, respectively, stand for the sets of events and labels.

4. Materials and Methods

Figure 2 depicts the general workflow of the model employed in this article. We
first extracted the text features from tweets using the BERT pre-training model, then we
extracted the propagation and aggregation features from rumors using Bi-GCN, and finally
we utilized a fully-connected neural network to obtain the result.
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fused multimodal features through the attention mechanism; finally, the results were obtained by the
fully-connected neural network classifier.

We will go into more detail about the model in this section. We exclude the subscript i
from the following part in order to better illustrate our methodology.

4.1. Text Feature Extraction

To extract the content features of rumor texts, the BERT [9] pre-training model was
used in this part. BERT can more effectively address the issue of polysemy, i.e., the output
of the model for the same word in different contexts is also different (in contrast to the
standard word2vec, Glove, and other approaches).

Figure 3 shows the pre-training model architecture of BERT. Each word’s embedding,
which is divided into three parts by the input layer (token embedding, segment embedding,
and position embedding) is one of them. Token embedding is a traditional word-embedding
method, such as the one-hot method. There are two embedded special tokens, [CLS] and
[SEP], at the start and end of the sentence, respectively. The sentence number to which the
word belongs to is labeled using segmentation embeddings. Positional embeddings are
used to represent the input sequence’s sequential features. The bidirectional transformer
allows the BERT pre-training model to learn how the context word affects the current word,
which improves the extraction of semantic deep features.
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We utilized the BERT pre-training model to extract the content features of each tweet
text in each event, which is represented as x0. We then used an additional two layers of
fully-connected layers to convert it into a v2-dimensional vector STEXT , in order to keep
its dimensions consistent with the dimensions of the propagation structure feature and
aggregation structure feature, which will be introduced later.

4.2. Structure Feature Extraction

By using a bidirectional graph convolutional network (Bi-GCN), we extracted event
propagation and aggregation structure features. Compared with traditional GCN, Bi-GCN
can capture bidirectional neighbor features in the graph model. Based on the retweet and
respond relationship, we built a propagation structure graph for each event. Meanwhile,
we denoted the adjacency matrix and feature matrix as A ∈ {0, 1}n∗n and X, respectively.
A and X were the inputs of the model.

The Bi-GCN was made up of two components: a bottom-to-up graph convolutional
network (BU-GCN) and a top-to-down graph convolutional network (TD-GCN). Even
though their model structures were relatively similar, they had different adjacency matrices.
The adjacency matrix in TD-GCN is represented as ATD = A, whereas in BU-GCN, it is
represented as ABU = AT , which is the transposition of A. The feature matrix X is the same
for TD-GCN and BU-GCN.

The features of an event’s propagation structure and aggregation structure were
extracted based on TD-GCN and BU-GCN, respectively. To extract features in TD-GCN,
we utilized two graph convolutional layers (GCL); the calculation formula is as follows:

HTD
1 = σ

(
ATDXWTD

0

)
(1)

HTD
2 = σ

(
ATD HTD

1 WTD
1

)
(2)

where HTD
1 ∈ Rn∗v1 , HTD

2 ∈ Rn∗v2 is the output of the first layer and second layer GCL
of TD-GCN, known as the hidden states; the total number of nodes is n, the first layer’s
output dimension is v1, the second layer’s output dimension is v2. WTD

0 ∈ Rd∗v1 and
WTD

1 ∈ Rv1∗v2 are parameter matrices in TD-GCN. For the activation function, σ(·), we
employed the ReLU function. As shown in (3) and (4), the calculations of HBU

1 and HBU
2 in

BU-GCN are the same as HTD
1 , HTD

2 .

HBU
1 = σ

(
ABUXWBU

0

)
(3)

HBU
2 = σ

(
ABU HBU

1 WBU
1

)
(4)

The pooling layer’s input was made up of HTD
2 and HBU

2 . The propagation structure
feature and aggregation structures were read-out in the pooling layer using the average
pooling approach, as illustrated in (5) and (6):

STD = meanpooling
(

HTD
2

)
(5)

SBU = meanpooling
(

HBU
2

)
(6)

The operation of meanpooling in (5) and (6) is shown in Figure 4, where the feature
matrix was HTD

2 or HBU
2 , a sliding window of size n × 1 was set (shown by the dotted

line in Figure 4). The average of the elements in the window was calculated from the first
column, and the window was moved backward in turn; finally, a pooling result of size
1× v2 was made, i.e., the propagation structure feature STD and the aggregation structure
feature SBU .
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4.3. Attention Mechanism

The attention mechanism allows the model to focus on the key points, rather than
treating them equally. Many sequence-based [33] or image-based [34] tasks have shown the
effectiveness of attention mechanisms. In this paper, we faced the multimodal features of
text content, propagation structure, and aggregation structure, and we integrated them by
introducing an attention mechanism. In the learning procedure, we estimated the attention
coefficients adaptively for various types of information. We have:

S = ∑
t∈type

so f tmax(αt)·St (7)

where type ∈ {TEXT, TD, BU} is a set of the feature type; the elements in the set repre-
sent the text, propagation structure, and aggregation structure, respectively. Moreover,
so f tmax(αt) =

exp(αt)
∑i exp(αi)

, where αt is a free parameter needed to be estimated. The rumor’s
final feature is S.

4.4. Rumor Classification and Training

Compared with other classifiers, MLP classifiers have better recognition rates and
faster classification speeds. So, the MLP classifier and a SoftMax layer were used to calculate
the event’s predicted label ŷ:

ŷ = So f tmax(FC(S)) (8)

ŷ is a four-dimensional vector, with each element’s value representing the likelihood
that the event belongs to the corresponding class.

During model training, we minimized the cross-entropy between predictions and
ground truth for all events. Additionally, to prevent the overfitting issue, we added the L2
regular term throughout the training process. The definition of the loss function L is:

L = ∑
|C|

∑
i∈{0,1,2,3}

−yilogŷi + βL2 (9)

where β is the coefficient of the regular term and |C| is the total number of events. The
value ŷi and yi are each element of ŷ and y, representing the probability that the event
belonged to the corresponding class.

5. Experiment Results

In this section, we show the experimental results of our approaches on two real-world
datasets.

5.1. Datasets

On two real-world datasets, Twitter15 and Twitter16 [35], we evaluated our suggested
methodology. The datasets came from Twitter, one of the most popular social media
platforms in the world. We created a propagation graph for each event in both datasets,
using nodes to represent tweets and edges to represent their relationships with retweets or
comments. The labels of each event in Twitter15 and Twitter16 were annotated according
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to the authenticity labels of articles on rumor-debunking websites (such as snopes.com,
Emer-gent.info, and so on), whereas Ma et al. [35] refined the labels from binary classes.
They have been expanded to quaternary classes: non-rumor (N), false rumor (F), true
rumor (T), and unverified rumor (U). Table 1 shows the comprehensive statistics for the
two datasets.

Table 1. Statistics of the datasets.

Statistic Twitter15 Twitter16

# of posts 331,612 204,820
# of events 1490 818

# of True rumors 374 205
# of False rumors 370 205

# of Unverified rumors 374 203
# of Non-rumors 372 205

Avg. # of posts/event 223 251
Max # of posts/event 1768 2765
Min # of posts/event 55 81

5.2. Experimental Settings

This paper chooses the following baseline models for the comparative experiments:
DTC [36]: A rumor detection approach that employs decision tree as a classifier and

obtains credibility based on handcrafted features.
SVM-RBF [37]: A rumor detection method that uses post statistics as features and an

SVM model with an RBF kernel for classification.
SVM-TS [38]: A linear SVM classifier used to generate time series models with hand-

crafted features.
SVM-TK [35]: A rumor propagation structure-based SVM classifier with a propagation

tree kernel.
RvNN [13]: A rumor detection approach that uses a tree-structured recurrent neu-

ral network with a GRU unit to learn rumor representation via the rumor propagation
structure.

PPC_RNN+CNN [31]: A rumor detection model that uses rumor propagation paths
to learn rumor representations by combining RNN and CNN.

The features used by each model are quite different; we describe them in detail in
Table 2.

Table 2. Comparison of the features of all methods.

Method Handcrafted
Feature Text Content Propagation

Feature
Aggregation

Feature

DTC X - - -
SVM-RBF X - - -
SVM-TS X - - -
SVM-TK - - X -
RvNN - X X -

PPC_RNN+CNN - X X -
Ours - X X X

We separated the two datasets into five parts at random and performed a five-fold
cross-validation. The parameters of the model suggested in this study were updated using
stochastic gradient descent, and the model was optimized using the Adam method with a
learning rate of 0.002. Each node in Bi-GCN had an output dimension of 196 dimensions,
which was also the output dimensions of the event text features, propagation structure
features, and aggregation structure features. The training process was repeated 200 times,
and the training ended when the validation loss stops reduced after 10 iterations.
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5.3. Confusion Matrix and Metrics

The experiment in this paper is a four-classification problem, and its confusion matrix
is shown in Table 3.

Table 3. Confusion matrix.

Ground
Truth

Predicted Value

N F T U Total

N A11 A12 A13 A14 N1
F A21 A22 A23 A24 N2
T A31 A31 A33 A34 N3
U A41 A42 A43 A44 N4

Total M1 M2 M3 M4 -

Each value in Table 3 indicates the number of events in a category that are predicted
to be a certain value. For example, A12 indicates the number of events with true labels as
non-rumors (N), but were predicted to be false rumors (F).

We compare models using accuracy and F1 values of each class. The accuracy refers to
the closeness of the predicted value to its “true value”, which is a commonly used and an
effective evaluation indicator. The calculation formula is as follows:

Accuracy =
A11 + A22 + A33 + A44

N1 + N2 + N3 + N4
(10)

The F1 value is an indicator used in statistics to measure the performance of a classifica-
tion model. It takes into account both the precision and recall of the classification model.

In the binary classification, the formula for calculating the F1 value is:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2 ∗ (Precision ∗ Recall)

Precision + Recall
=

TP
TP + FN+FP

2
(13)

where TP is true positive, FP is false positive, and FN is false negative. In the multi-
classification problem in this paper, the formula used for calculating the F1 value of each
category can be obtained by a simple derivation. The final F1 value calculation formula is
as follows:

N − F1 =
A11

A11 + (M1−A11)+(N1−A11)
2

(14)

F− F1 =
A22

A22 + (M2−A22)+(N2−A22)
2

(15)

T − F1 =
A33

A33 + (M3−A33)+(N3−A33)
2

(16)

U − F1 =
A44

A44 + (M4−A44)+(N4−A44)
2

(17)

5.4. Comparative Experiment

All approaches were tested in comparative experiments on the Twitter15 and Twitter16
datasets, and the findings are given in Tables 4 and 5. The experimental results demonstrate
that the approach in this work is superior to other baseline methods, with accuracies of
83.6% and 85.1%, respectively, and the influence on the F1 value is also superior among
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these models. It shows that our method can effectively distinguish rumor and truth by
aggregating multimodal features.

Table 4. Rumor detection results on Twitter15.

Twitter15

Method ACC.
N F T U

F1 F1 F1 F1

DTC 0.452 0.414 0.365 0.715 0.332

SVM-RBF 0.301 0.214 0.158 0.481 0.239

SVM-TS 0.537 0.781 0.476 0.395 0.462

SVM-TK 0.745 0.794 0.651 0.750 0.742

RvNN 0.741 0.691 0.773 0.817 0.630

PPC_RNN+CNN 0.485 0.357 0.513 0.372 0.712

Ours 0.836 0.840 0.805 0.903 0.831

Table 5. Rumor detection results on Twitter16.

Twitter16

Method ACC.
N F T U

F1 F1 F1 F1

DTC 0.491 0.316 0.209 0.460 0.591

SVM-RBF 0.633 0.680 0.106 0.184 0.381

SVM-TS 0.615 0.767 0.437 0.560 0.544

SVM-TK 0.738 0.718 0.775 0.856 0.725

RvNN 0.728 0.634 0.692 0.820 0.731

PPC_RNN+CNN 0.531 0.576 0.536 0.385 0.683

Ours 0.851 0.810 0.844 0.917 0.856

Furthermore, we can see that models SVM-TK and RvNN, which considered event
propagation structural features, performed significantly better than other methods that
ignored propagation structures, indicating that the propagation structures of rumor events
are indeed different from those of ordinary events and are sufficient in the process of
rumor detection. Considering the propagation structures of rumors helps to improve
detection accuracy.

In addition to traditional text content features and propagation structure features, our
method also extracts aggregation structure features. The experimental results show that
adding aggregation structure features can detect rumors more accurately.

5.5. Ablation Study

We conducted an ablation study to see whether each module contributed to the model
and which module contribute more. In other words, we demonstrate that text features,
propagation structure features, and aggregation structure features can all benefit from
rumor identification. Our proposed model’s main modules are BERT, TD-GCN, and BU-
GCN, which stand for extract text features, propagation structure features, and aggregation
structure features, respectively. Based on the whole model, we systematically removed the
above modules and compared their changes in accuracy and the F1 value for each category.
Figures 5 and 6 show the experiment results.
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The following conclusions can be drawn from the results of the ablation experiments
shown in Figures 5 and 6. After removing any module, all indicators decreased, demon-
strating that each module in our model has a beneficial effect on rumor recognition results,
suggesting that each feature is essential. The indicators declined the most after removing
the TD-GCN module, showing that the propagation structure feature had the biggest
impact on rumor detection.

The contribution ranking of the three modules in the model for the rumor detection
results was: TD-GCN, BERT, and BU-GCN. That is to say, the contributions of different
types of features to the results of rumor recognition are ranked from high to low as text
feature, propagation structure feature, and aggregation structure feature.

5.6. Early Detection

We found that the early detection of rumors is significantly improved by fusing
aggregated structures. Fake news is easily forwarded and spread by a large number of
users on social media, causing serious impacts in a short period of time. Therefore, the
earlier it is detected, the more the negative impacts can be avoided. However, in the early
days of rumor spreading, the available spread of data is limited. In order to verify that the
method in this paper improved the effect of the early detection of rumors, we used a small
number of early rumor data, as shown in Figure 7, to compare the two methods: (1) The
method using only the propagation structure (PS); (2) the method to fuse the propagation
and aggregation structures (PS+AS). The results are shown in Tables 6 and 7. The ratio
column in the table indicates the ratio of the propagation structure used during training.
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Table 6. Early detection results of rumors on Twitter15.
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N F T U
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Table 7. Early detection results of rumors on Twitter16.

Ratio Method ACC.
N F T U

F1 F1 F1 F1

10%
PS 0.620 0.606 0.614 0.691 0.628

PS+AS 0.674 0.651 0.673 0.747 0.663

30%
PS 0.708 0.662 0.681 0.763 0.674

PS+AS 0.753 0.736 0.728 0.802 0.721

50%
PS 0.771 0.731 0.745 0.807 0.726

PS+AS 0.802 0.743 0.760 0.837 0.758

60%
PS 0.795 0.743 0.759 0.858 0.766

PS+AS 0.820 0.762 0.796 0.870 0.790

80%
PS 0.837 0.785 0.820 0.890 0.819

PS+AS 0.847 0.806 0.831 0.910 0.831

From the experimental results of early detection, it can be seen that the method
considering the aggregated structure is significantly better than the method that only
considers the propagation structure. Moreover, the lower the ratio, the more obvious
the performance differences. This shows that considering the aggregation structure can
effectively enhance rumor features and improve the distinction between real information
and rumor features.

5.7. Classifier

In this paper, a fully-connected neural network with four layers was chosen as the
classifier, and the model structure was 192 × 96 × 48 × 4. In this section, we evaluate
the effects of different model topologies on the performance of rumor detection through
experiments. Layers 2, 3, 5, and 6 had the following model structures, as illustrated in
Figure 8: 192 × 4, 192 × 96 × 4, 192 × 96 × 48 × 24 × 4, 192 × 96 × 48 × 24 × 12 × 4.



Electronics 2022, 11, 3200 13 of 15

Each evaluation indicator was the most effective when the model structure had four layers.
This is because when the model structure is too simple, the model under-fits, and when the
model structure is too complex, the model slightly over-fits. All of them contributed to a
decline in the model performance.
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6. Conclusions

In this paper, we propose a new rumor detection method and compared it with existing
methods; we fully considered the aggregation structures of rumors when extracting rumor
features. Moreover, through the attention mechanism, the content features of rumor text,
propagation structure, and aggregation structure were integrated. More discriminative
rumor features were obtained by this method. Among them, we used the BERT pre-training
model to extract text features, TD-GCN to extract propagation structural features, and BU-
GCN to extract aggregation structural features. The comparative experimental results show
that the proposed method can detect rumors more accurately than the existing methods.
The ablation study results show that each module of our method has a positive effect on
the detection results. The experiments of early detection show that the method considering
the aggregation structure can deal with the early detection of rumors more effectively.

Rumor detection is currently a research hotspot in academia, and there are still many
problems that need to be solved, for example, (1) how to detect false information in
visual information (considering that social media tweets contain a large number of visual
information); (2) how to accurately detect rumors in the early stages of a rumor (so as
to cut off the spread of the rumor as soon as possible); (3) how to establish an effective
mechanism so that the model can provide reasons for making judgments while giving the
rumor detection results (so that the detection results are more convincing). In future work,
we will conduct more in-depth research on the above issues.
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