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Abstract: For the problem of low resolution of camera module lens surface defect image, small target
and blurred defect details leading to low detection accuracy, a camera module lens surface defect
detection algorithm YOLOv5s-Defect based on improved YOLOv5s is proposed. Firstly, to solve the
problems arising from the anchor frame generated by the network through K-means clustering, the
dynamic anchor frame structure DAFS is introduced in the input stage. Secondly, the SPP-D (Spatial
Pyramid Pooling-Defect) improved from the SPP module is proposed. The SPP-D module is used to
enhance the reuse rate of feature information in order to reduce the loss of feature information due
to the maximum pooling of SPP modules. Then, the convolutional attention module is introduced
to the network model of YOLOv5s, which is used to enhance the defective region features and
suppress the background region features, thus improving the detection accuracy of small targets.
Finally, the post-processing method of non-extreme value suppression is improved, and the improved
method DIoU-NMS improves the detection accuracy of small targets in complex backgrounds. The
experimental results show that the mean average precision mAP@0.5 of the YOLOv5s-Small-Target
algorithm is 99.6%, 8.1% higher than that of the original YOLOv5s algorithm, the detection speed
FPS is 80 f/s, and the model size is 18.7M. Compared with the traditional camera module lens
surface defect detection methods, YOLOv5s-Small-Target can detect the type and location of lens
surface defects more accurately and quickly, and has a smaller model volume, which is convenient for
deployment in mobile terminals, meeting the demand for real-time and accuracy of camera module
lens surface defect detection.

Keywords: deep learning; camera module; surface small target defect detection; YOLOv5;
attention mechanism

1. Introduction

The camera module is an important component of digital products such as smart-
phones and personal computers [1]. In order to produce high quality and high resolution
cameras, defect detection on the lens surface of camera modules is an essential process
in the production process. Due to the large gap between the camera module lens surface
defect features and the target features of the mainstream dataset, which are small target
features, the detection accuracy of traditional machine vision algorithms on the camera
module lens surface defect detection is not high. In the actual production process, the
camera module factory needs to go through a series of processing procedures, such as
FPC board cleaning, baking FPC board, wafer fixing, baking wafers, binding, focusing
and other processes [2]. As the industrial production workshop is not the ideal dust-free
environment, resulting in the module in the processing and installation process, there are
often dust, lint and other foreign objects falling on the surface of the camera lens, resulting
in the camera module lens surface white spots, white dots, scratches, hair filaments, foreign
objects and dirt and other defects, seriously affecting the imaging quality. At present, in the
actual production of enterprise, camera module defect detection mainly relies on manual
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inspection or traditional machine vision inspection technology [3]. For manual inspection,
it often produces low efficiency, low detection accuracy and high labor cost. The manual
inspection facilities commonly used are shown as Figure 1, where Figure 1a shows an eight
times magnifying glass and Figure 1b shows a chromaticity meter. As for the traditional
machine vision inspection technology, it can meet the requirements of industrial reality in
terms of accuracy and real-time. However, its adaptability to different features is less than
satisfactory, and the feature extraction ability for deep features is limited, which makes it
difficult to adapt to the complex and diverse defect requirements on the surface of camera
module lenses [4]. Therefore, how to quickly and accurately detect the defects on the lens
surface of camera modules is an urgent problem in the camera module production line.
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From the above analysis, it can be seen that camera module lens surface defect detec-
tion has high engineering significance and has become an important research topic in the
field of defect detection. Traditional machine vision detection algorithms can only extract
shallow features of the image, resulting in limited detection accuracy. Deep learning tech-
nology has excellent feature learning and feature expression capabilities, and can extract
features layer by layer, taking the strengths of the other to complement the weaknesses of
the other, effectively improving the accuracy of defect detection [5–7]. From the perspective
of scientific research, there is still no universal automatic detection algorithm for camera
module lens surface defect detection based on deep learning. Therefore, it is of high practi-
cal significance to study an algorithm for camera module lens surface defect detection both
in the engineering field and in the academic field of research. In view of this, this paper
carries out a study of a deep learning-based surface defect detection method for camera
module lenses.

2. Related Works

Defect Detection based on Machine Learning: Chang, C.F. [4] proposed an automatic
detection method for compact camera lenses using circular Hough transform, weighted
Sobel filter and polar transform, and used a machine learning support vector machine
method to obtain accurate detection results. To improve the accuracy and speed of optical
lens image thresholding segmentation in optical lens defect detection, Cao Yu et al. [8]
proposed a new particle swarm algorithm (PSO) and Otsu thresholding segmentation
algorithm, which improves the PSO weight factor update strategy and the global search
capability, and assigns the optimal position calculated to the Otsu algorithm, and finally
achieves the threshold segmentation of optical lens images. In order to improve the
defect detection accuracy of small size curved optical lenses, Pan, J.D. et al. [9] proposed a
comprehensive defect detection system based on transmission streak deflection method,
dark field illumination and light transmission, and the experimental results show that
the proposed system can be applied to the actual mass production of small size curved
optical lenses. For defect detection in electronic screens, Gao Yan et al. [10] designed
an image processing-based screen defect detection algorithm. Based on the new edge
detection algorithm, the defective part is detected by comparing the grayscale difference
between the normal and defective regions, thus different types of defects in the screen can
be located efficiently and accurately. Although the method basically meets the requirements
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of industrial sites in terms of detection speed and accuracy, the setting of many parameters
in the algorithm is highly dependent on manual experience, so it is difficult to be widely
promoted in the industrial inspection field. To improve the detection of fabric defects, Deng
Chao et al. [11] proposed a new algorithm based on edge detection. Fabric defects are
detected as the edges of normal texture by using the texture edges generated by the defects
and normal texture in the fabric image. Using the directionality of the Sobel operator,
the horizontal and vertical gradients of the fabric defects are enhanced, respectively, and
the horizontal and vertical gradients of the RGB image are computed for edge detection,
and the final detection is performed by image fusion and binarization. However, when
the fabric is wrinkled or the sample is not placed correctly, the detection accuracy will be
greatly decreased.

The above analysis shows that most of the traditional machine vision algorithms have
the following common problems: (1) the setting of parameters is highly dependent on man-
ual definition, and the detection algorithm cannot extract deep semantic information of the
image, which in turn limits the improvement of detection accuracy. (2) Traditional machine
vision algorithms lack a common, unified detection framework, and it is often needed to
combine multiple image processing algorithms to achieve accurate detection of the target.
(3) If the defect type is changed, the detection algorithm needs to be redesigned, and the
algorithm is poorly reusable, consuming too much manpower and material resources.

Defect Detection based on Deep Learning: With the industry’s increasingly stringent
requirements for defect detection accuracy and speed, more and more deep learning
algorithms are being applied to the field of industrial product surface defect detection.
Daniel W. et al. [12] conducted an earlier study on the use of convolutional neural networks
for defect classification and recognition. This method passes the acquired image feature
information into the backbone feature extraction network for processing to determine
whether the image to be detected contains defects. To improve the surface quality of
tiles, Xie, L.F. et al. [13] proposed an end-to-end CNN architecture called fused feature
CNN (FFCNN). In addition, an attention mechanism is introduced to focus on the more
representative parts and suppress the less important information. Experimental results
show that the developed system is effective and efficient for magnetic tile surface defect
detection. Aiming at the problems of low recognition rate and inaccurate localization of
small defects on the surface of industrial aluminum products with traditional detection
algorithms, Xiang Kuan et al. [14] proposed an improved deep learning network, Faster
RCNN, to detect surface defects on 10 types of aluminum products. Experiments show that
the average accuracy (mAP50) of the improved network for detecting surface defects of
aluminum products is 91.20%, which is 16% better than the original Faster RCNN network,
and its detection ability of small defects of aluminum products is stronger. However, it
needs to be further improved in the detection’s real-time performance.

Single-stage target detection algorithms are gradually being applied to the field of
industrial product inspection to improve production efficiency even further. For example,
Wu Tao et al. [15] used the K-means++ algorithm to determine the prior frame, and then
built an improved lightweight network based on the YOLOV3 detection architecture to
address the problems of low accuracy and slow detection rate of transmission line insulator
defects. The experimental results show that the method improves the image detection speed
of high-definition insulators and can complete insulator localization and defect detection.
Fan, CS et al. [16] proposed a real-time detection algorithm based on improved YOLOv4 to
address the problems of low detection accuracy and slow detection rate speed in cell phone
lens surface defect detection. YOLOv4′s cross-stage partial block and convolutional block
attention modules are combined to introduce channel attention and spatial attention to learn
the discriminative features of defects. Meanwhile, a new feature fusion network is being
designed to combine shallow details with deep semantics. Finally, the proposed model is
refined using a structural clipping strategy to improve detection speed without sacrificing
accuracy. In comparison to the YOLOv4, this algorithm significantly improves the accuracy
of defect detection and achieves real-time performance for industrial production. Guo
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Lei et al. [17] proposed a small target detection algorithm based on improved YOLOv5 to
address the problems of false detection, missed detection and insufficient feature extraction
capability of small targets in target detection. The algorithm applies the Mosaic-8 data
augmentation technique, which increases the network’s capacity for small target detection
by introducing a shallow feature map and modifying the loss function. In comparison to
the original YOLOv5 method, the experimental results demonstrate that the algorithm has
greater feature extraction ability and higher detection accuracy in small target detection.
Zhang, R. [18] suggested a high-precision WTB surface defect detection model SOD-YOLO
based on the UAV image analysis of YOLOv5 to address the problems of low accuracy of
wind turbine blade surface defect detection and long model inference time. The original
YOLOv5 was enhanced with a micro-scale detection layer, and the anchor was re-clustered.
In order to reduce the loss of feature information for defects such as small target defects, the
K-means algorithm and the CBAM attention mechanism are applied to each feature fusion
layer. The experimental results demonstrate that the improved algorithm SOD-YOLO can
detect the wind turbine blade surface defects quickly and effectively.

At present, the research of applying deep learning detection algorithm to the field of
camera module lens surface defect detection has not been carried out deeply enough, and
there are mainly problems in the following aspects.

(1) The problem of limited number of training samples and uneven distribution of
sample data.

To obtain detection models with excellent performance, we need sufficient sample
data as a driver [19]. However, in engineering practice, the acquisition of defective samples
is not easy. In the actual production line, the images acquired by the inspection cameras are
mostly qualified products, while the proportion of defective images valid for training is
small, and the number of various types of sample data is unevenly distributed.

(2) Small target detection accuracy problem.

Current deep learning models perform well in mainstream datasets such as MS COCO
dataset, Pascal VOC, ImageNet, [20] etc., but often fail to meet detection standards in
industrial applications. Because most of the objects to be detected in mainstream datasets
are large and medium targets, official network models can detect them more easily and
achieve high detection accuracy. In practical industrial applications, the targets to be
detected are mostly small objects, and the detection accuracy of the official network model
is not ideal, so the network needs to be improved and optimized in a targeted way.

Since the detection targets of this topic are all small targets, which have certain
requirements on detection accuracy, speed and industrial site deployment, this paper
adopts YOLOv5s network model as the base network model. By improving and optimizing
it, the algorithm improves the detection and recognition ability of small target defects.

3. Methodology
3.1. Construction of Camera Module Lens Surface Defect Dataset

The images of camera module lens surface defects dataset collected in this paper
are mainly from industrial production workshops. Due to the production environment,
processing process and other factors, the camera module lens surface produces six kinds of
defects: white spots, white dots, scratches, hairy filaments, foreign matter and dirt. Among
them, white spots and dirt belong to block defects, white spots belong to point defects,
scratches and hairy filaments belong to strip defects, and foreign matter belongs to irregular
shape defects. The appearance of each defect is shown in Figure 2.
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To solve the problem of small and unevenly distributed defect sample data, this paper
adopts the image augmentation method to expand the defect samples. Image augmentation
refers to a series of random changes to the training images to produce similar but different
training samples, thus expanding the size of the dataset and improving the robustness
and generalizability of the model. Commonly used image augmentation methods include
cropping, flipping, panning, color gamut transformation, adding noise, rotation, etc.

PyQt5 was used to create an image expansion tool to expand the data of the defective
sample images, and some of the defective sample data after image expansion are shown in
Figure 3.
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3.2. Network Model

For YOLOv5 target detection network, four different network models are officially
given, namely YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Since the defect detection
target in this paper has higher contrast and more obvious features, and the computing
power of computer hardware equipment is limited, this paper uses the YOLOv5s network
model to perform camera module lens surface defect detection.

The YOLOv5s network structure mainly consists of four parts: input, backbone net-
work, neck network, and output [21–23], as shown in Figure 4, and the * in the figure
represents the meaning of the product.
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3.3. Optimization of Lens Surface Defect Detection Network for YOLOv5s-Small-Target
Camera Module
3.3.1. Improvement of YOLOv5s Input Stage: Introduction of Dynamic Anchor Boxes

YOLOv5s uses K-means clustering to generate anchor frames, using the bounding
box of the training dataset as a benchmark, and setting three anchor frames under three
different sizes of feature maps by FPN networks. However, the anchor frames generated
by using K-means method have the following problems: First, the K-means algorithm has
its own limitations; the K-Means algorithm is easily affected by the initial set values and
outliers, which can cause the instability of clustering results. Second, the three different
sizes of anchor frames are artificially set, and the targets to be detected in reality will not be
uniformly distributed according to these three sizes. This can lead to some degree of error,
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for example, the target which is originally small object is included in the anchor box for
detecting medium object, or the target which is originally medium object is included in the
anchor box for detecting large object. This can lead to a large loss in the subsequent training
process of the bounding box regression and increase the difficulty of model optimization.
Third, the anchor frame is generated before the training phase, and the anchor frame is
treated as a constant during the training phase. If the anchor box is not set reasonably, it
will increase the model loss and convergence difficulty during the training phase.

In order to reduce model loss and improve the accuracy of small target detection, the
concept of dynamic anchor frames is introduced in this paper. Specifically, by incorporating
the DAFS (Dynamic Anchor Feature Selection) module to solve the problems arising from
the generation of anchor frames by K-means clustering in the original YOLOv5s network.

The concept of DAFS model (Dynamic Anchor Feature Selection) was proposed by
Li et al. [24] in 2019, which is based on the ARM module. The authors point out that in
RefineDet, for any point on the feature map, using the optimized anchor frame of the ARM
module as input to the ODM leads to a mismatch problem between the perceptual field of
the point and the anchor frame, which instead reduces the detection capability of the model
in some cases. Therefore, the authors propose to dynamically adjust the points on the
feature map according to the shape size of the refined anchor frame on the detection part of
the network (ODM) to reduce this mismatch problem. Additionally, the authors propose
to replace TCB with Bidirectional Feature Fusion (BFF), which can fuse top-down and
bottom-up bidirectional paths, enabling each layer to receive information from different
layers above and below. The DAFS model is shown in Figure 5.
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In this paper, the dynamic anchor frame module is added on the basis of YOLOv5
network structure. The initial anchor frame is firstly generated by clustering with K-means
algorithm, then the ARM module is connected to the YOLOv5 backbone feature extraction
network through the BFF structure, then the feature map information is fine-tuned, and
finally the obtained dynamic refined anchor frames (Refined Anchors) are used as the a
priori frames for defective sample training. The structure of the model after adding the
dynamic anchor frames is shown in Figure 6.

3.3.2. Improving Spatial Pyramidal Pooling SPP Module

In order to reduce the feature information loss and improve the accuracy of small
target detection, this paper improves the SPP module and proposes the SPP-D module, thus
reducing the feature information loss caused by the maximum pooling of the SPP module.
The structure of the module before and after the improvement is shown in Figure 7.
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Unlike the SPP module, the improved SPP-D module requires intensive feature pooling
for each perceptual field before concatenating the features of four different perceptual fields.
Among them, the feature fusion operation enhances the feature information reuse rate and
reduces the feature information loss due to the maximum pooling operation. In YOLOv5s,
the SPP module is embedded only after the feature layer with the smallest feature map size.
When the size of the input image is the size, the SPP module is embedded after the special
middle layer with the feature map size in order to improve the expressiveness and feature
reuse of the features of size and size at the same time. In this paper, the SPP-D module
is embedded in layers 13 and 17 of the YOLOv5s network, i.e., after the first and second
concat operations in the network. The network structure diagram after adding the SPP-D
module is shown in Figure 8.
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3.3.3. Improvement of YOLOv5s Backbone Network: Incorporating the Attention
Mechanism Module

(1) The idea of attention mechanism in deep learning

Attention mechanism is a survival mechanism in biology. By adding an attention
mechanism module to a machine learning target detection task, the feature extraction ability
of a specific target is enhanced, which in turn improves the detection performance of the
network [25]. Commonly used attention mechanism modules are SENet [26] (Squeeze-and-
Excitation Networks), CBAM [27] (Convolutional Block Attention Module), and CA [28]
(Coordinate Attention).

(2) CBAM and CA Attention Mechanism Module

SENet is the basis of CBAM and CA attention mechanism modules. Before intro-
ducing CBAM and CA, it is necessary to elaborate on the principle of SENet attention
mechanism module.

Figure 9 shows the network structure of SENet attention mechanism module. SENet
mainly processes in the channel dimension, firstly, the input feature information is pooled
globally averaged in two dimensions, width and height, to obtain a 1 × 1 spatial feature
matrix, and then the weights of different channels are obtained through the processing
of fully connected layer and ReLU function. The specific calculation process is shown in
Equations (1) and (2):

zc = Fsq(xc) =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j) (1)

ẑ = T2(ReLU(T1(z))) (2)
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The SENet module implements the processing of global information through two
steps: squeezing and excitation. Equation (1) represents the squeezing operation, and
Equation (2) represents the processing of the ReLU activation function.

Finally, the weights obtained are normalized using the Sigmoid activation function,
and each channel value in the original feature map is recalculated by weighting the product.
As shown in Equation (3):

X̂ = X · σ(ẑ) (3)
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In essence, the SENet attention mechanism module mainly processes the information
of image channel dimensions and does not consider the location information. After the
action of the SENet module, the network pays more attention to the channel features that
are richer in semantic information and suppresses the less important channel features, thus
improving the detection performance of the model.

The SENet attention mechanism mainly processes image feature information in the
channel dimension. Unlike the SENet attention mechanism, the CA attention mechanism
module embeds the location information into the channel attention based on the SENet
module. the CA attention mechanism module can improve the feature representation
capability of the lightweight network by transforming any intermediate feature tensor
in the network and then outputting a feature tensor with the same size and enhanced
representation. The execution of the CA attention mechanism module is shown in Figure 10.
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As can be seen from Figure 10, the CA attention mechanism module adds attention
to the location information on top of considering the channel attention information. First,
the global average pooling of the input image in both width and height directions is
performed to realize the feature aggregation in both width and height directions and obtain
the feature maps in these two directions. The specific calculation method is shown in
Equations (4) and (5):

zh
c (h) =

1
W ∑

0≤j≤W
xc(h, j) (4)

zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w) (5)

Then, the obtained feature maps are stitched in both width and height directions,
and then processed by the 2D convolution module to obtain the reduced-dimensional
feature maps. Then, the feature map is further reduced by the 2D convolution operation
after the batch normalization and nonlinear activation function processing. Finally, the
reduced-dimensional feature map is fed into the Sigmoid function to obtain the feature
map shaped as shown in Equation (6):

f = δ(F1(zh, zw)) (6)

A convolution kernel of size 1× 1 is used to convolve the feature map f to obtain the
feature maps Fh and Fw with the same number of channels as the original one. Then, after
the Sigmoid activation function, the attention weight gh in the height and the attention
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weight gw in the width direction are obtained. The specific calculation formula is shown in
Equations (7) and (8):

gh = σ(Fh( f h)) (7)

gw = σ(Fw( f w)) (8)

Finally, the weights gh on the height and gw on the width are used for the generation of
the new feature maps. Specifically, the new feature map with attention weights is obtained
by using the weighted product calculation. The specific calculation method is shown in
Equation (9):

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (9)

(3) CBAM attention mechanism

The specific structure of the CBAM convolutional attention mechanism module is
shown in Figure 11. As can be seen from the figure, CBAM performs feature aggregation
in both channel and spatial dimensions, and mainly consists of two sub-modules, the
channel attention module and the spatial attention module, in which the red box is the
channel attention mechanism module and the blue box is the spatial attention mechanism
module [29].
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The execution process of CBAM convolutional attention mechanism is as follows:
firstly, the input image information enters the channel attention mechanism module for
convolutional processing to reduce the dimensionality of the feature map. Then, the nor-
malized weights are obtained using batch normalization and Sigmoid function. Finally, the
original feature map is recalibrated by weighted summation [30]. The specific calculation
of the channel attention mechanism module is shown in Equation (10):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc

avg))+W1(W0(Fc
max)))

(10)
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After completing the feature determination on the channel dimension, the feature
information goes to the spatial attention mechanism module for global maximum pooling
(GMP) and global average pooling (GAP) processing. Then the feature map of dimension
1× 1× C/r is obtained by convolution and ReLU activation function module. Then, after
a convolution process with dimension 1× 1, the feature map dimension returns to the
original dimension. Finally, the feature maps in the channel dimension and the spatial
dimension are weighted and combined to realize the recalibration of the feature maps
in both channel and spatial dimensions. The specific calculation of the spatial attention
mechanism module is shown in Equation (11):

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))
= σ

(
f 7×7([Fs

avg; Fs
max])

) (11)

After processing by the CBAM convolutional attention mechanism module, the re-
calibrated feature map acquires weights in both channel and space dimensions, which
significantly improves the association of features in both channel and space dimensions
and is more conducive to extracting effective features of the target to be detected.

(4) Attention Module Add Location

In this paper, the Attention mechanism module is added to BottleNeck, the backbone
feature extraction network of YOLOv5s, as shown in Figure 12, and the * in the figure
represents the meaning of the product. After the Attention mechanism module is added,
all C3-n modules in the backbone feature extraction network will perform the weighted
product operation, which leads to a significant improvement in the detection performance
of the final trained network model for the target of interest.
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3.3.4. Improved Non-Extreme Value Suppression Post-Processing Method DIoU-NMS

In the post-processing process of target detection, Non-Maximum-Suppression (NMS)
post-processing method is usually used for target frame screening [31,32]. However, this
method has a drawback that NMS only analyzes by overlapping regions, so it is easy to
produce false suppression for targets of small size, resulting in missed detection. In order to
solve this problem, the post-processing method of non-extreme suppression is improved by
borrowing the idea of DIoU loss function. The traditional NMS post-processing method is
replaced by the improved DIoU-NMS post-processing method, where DIoU is the function
Distance-IoU.
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The DIoU loss function is defined by the following equation:

RDIoU =
ρ2(b, bgt)

l2 (12)

where b is the prediction frame; bgt is the true frame. ρ2(b, bgt) is the distance between the
centroids of the predicted and real boxes. l is the diagonal distance of the minimum outer
rectangle of the 2 boxes.

Assuming that the model detects a candidate frame set as Hi, the definition of pi
for the DIoU-NMS method update formula for the prediction frame M with the highest
category confidence is shown in Equation (13):

pi =

{
pi , IoU − RDIoU(M, Hi) < ε
0 , IoU − RDIoU(M, Hi) ≥ ε

(13)

where RDIoU(M, Hi) is the value of RDIoU with respect to M and Hi. ε is the threshold
value set manually by the NMS operation. pi. is the classification score for different defect
categories. IoU is the intersection ratio and i is the number of anchor boxes for each grid.

The DIoU-NMS method takes into account the distance, overlap area and aspect ratio
between the prediction frame and the real frame, determines that the two prediction frames
with more distant centroid distance may be located on different detection objects, and then
combines the intersection ratio of the prediction frame and the real frame with the centroid
distance. On the one hand, the IoU loss can be optimized, and on the other hand, the
learning of guideline centroids can return the prediction frames more accurately.

The structure diagram of the improved YOLOv5s-Small-Target network model is
shown in Figure 13, and the * in the figure represents the meaning of the product.

Electronics 2022, 11, 3189 14 of 23 
 

 

hand, the learning of guideline centroids can return the prediction frames more 

accurately. 

The structure diagram of the improved YOLOv5s-Small-Target network model is 

shown in Figure 13, and the * in the figure represents the meaning of the product. 

 
Figure 13. Structure diagram of the improved YOLOv5s-Small-Target network model. 

4. Experimental Results and Analysis 

The camera module lens surface defect detection dataset produced in this paper 

contains 12,000 defect sample images, and these defect sample images are randomly 

divided into training set, validation set and test set in the ratio of 7:2:1, including 8400 

images in the training set, 2400 images in the validation set and 1200 images in the test 

set. In order to comprehensively verify the testing effectiveness of the three YOLOv5 

improvement strategies used in this paper, ablation experiments are conducted on the 

produced camera module lens surface defect dataset to judge the actual effectiveness of 

each improvement point. 

In order to make the model converge as much as possible, the number of iterations 

was set to 2000. In order to increase the training speed as much as possible and also 

combine with the computer hardware configuration, after several attempts, the batch size 

was set to 8. In order to balance the training speed and the quality of the training sample 

images, the input image size was set to 640 × 640. After repeated debugging with several 

training sessions, the initial learning rate lr was set to 0.01 and the momentum was set to 

0.937 in order to obtain the optimal network model. The results of the ablation 

experiments are shown in Table 1. 

Table 1. YOLOv5s ablation experiment. 

CBAM DAFS Precision Recall mAP@0.5 mAP@[0.5:0.95]  

/ / 92.2% 92.8% 91.5% 89.2% 

✓ / 95.4% 95.6% 94.8% 90.8% 

/ ✓ 94.8% 93.7% 93.4% 89.9% 

✓ ✓ 95.8% 95.9% 96.2% 94.8% 

Row 1 of Table 1 indicates the base performance of the original YOLOv5s on the 

dataset, and the average detection accuracy is 91.5%. After the introduction of CBAM and 

DAFS, respectively, it can be seen that CBAM improves the detection results more 

Figure 13. Structure diagram of the improved YOLOv5s-Small-Target network model.

4. Experimental Results and Analysis

The camera module lens surface defect detection dataset produced in this paper con-
tains 12,000 defect sample images, and these defect sample images are randomly divided
into training set, validation set and test set in the ratio of 7:2:1, including 8400 images in
the training set, 2400 images in the validation set and 1200 images in the test set. In order to
comprehensively verify the testing effectiveness of the three YOLOv5 improvement strate-
gies used in this paper, ablation experiments are conducted on the produced camera module
lens surface defect dataset to judge the actual effectiveness of each improvement point.
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In order to make the model converge as much as possible, the number of iterations was
set to 2000. In order to increase the training speed as much as possible and also combine
with the computer hardware configuration, after several attempts, the batch size was set
to 8. In order to balance the training speed and the quality of the training sample images,
the input image size was set to 640 × 640. After repeated debugging with several training
sessions, the initial learning rate lr was set to 0.01 and the momentum was set to 0.937 in
order to obtain the optimal network model. The results of the ablation experiments are
shown in Table 1.

Table 1. YOLOv5s ablation experiment.

CBAM DAFS Precision Recall mAP@0.5 mAP@[0.5:0.95]

/ / 92.2% 92.8% 91.5% 89.2%
3 / 95.4% 95.6% 94.8% 90.8%
/ 3 94.8% 93.7% 93.4% 89.9%
3 3 95.8% 95.9% 96.2% 94.8%

Row 1 of Table 1 indicates the base performance of the original YOLOv5s on the
dataset, and the average detection accuracy is 91.5%. After the introduction of CBAM
and DAFS, respectively, it can be seen that CBAM improves the detection results more
significantly, with significant improvements in Precision, Recall, and AP, while the im-
provement performance of DAFS is slightly weaker. The analysis suggests that this is
related to the different functions of the two modules. The attention mechanism aims to
improve the network’s ability to extract important features, which is expressed in the
improvement of accuracy, while the DAFS dynamic anchor frame module speeds up the
regression of the prediction frame and improves the regression accuracy, so there is only a
small improvement in the detection accuracy. After introducing both CBAM and DAFS
modules, the detection network achieves the best results, with an average accuracy mAP
improvement of 4.7% compared to the original network.

To analyze the impact of two improvement points of DAFS and DIoU-NMS on the
detection results, some of the test results are visualized as shown in Figure 14. Figure 14a
shows some of the detection results of the original YOLOv5s+DAFS, and it can be seen that
the network has missed detection when the target is too small, and some of the detection
frames are not very accurate. Figure 14b is the DIoU-NMS post-processing method obtained
by improving the non-extremely suppressed post-processing method on the basis of (a), and
the regression accuracy of the detection frame is significantly improved in the same image
compared with Figure 14a, but the same problem of missed detection exists. Figure 14c
shows the detection results with the CBAM module, and compared to Figure 14b, the
missed white point defects are detected while maintaining a high detection accuracy.
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In this paper, we use YOLOv5s as the basic defect detection algorithm. In order to
solve the problem of low accuracy of small target defect detection, we add the CBAM
convolutional attention mechanism module to the original YOLOv5s to improve it. The
evaluation results of the improved YOLOv5s-Small-Target network model are shown in
Figure 15a–e.

Electronics 2022, 11, 3189 16 of 23 
 

 

 

 
 

(a)  (b)  

  
(c)  (d)  

 
(e)  
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the precision and recall rate are improved very steadily. After the model reaches 

saturation, its precision rate, which is shown in Figure 16a, can be maintained steadily 
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Figure 15. Performance evaluation results of the improved YOLOv5s-Small-Target model. (a) P
(precision) curves. (b) R (recall) curve. (c) PR (Precision-recall) curve. (d) F1 score curve. (e) Im-
proved YOLOv5s-Small-Target algorithm training results (loss function, precision, recall, and
mAP transform).
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Figure 16 shows the results of each evaluation of the improved YOLOv5 model. After
2000 epochs, the model reaches the convergence state. During the training of the model,
the precision and recall rate are improved very steadily. After the model reaches saturation,
its precision rate, which is shown in Figure 16a, can be maintained steadily around 99%;
the recall rate, shown in Figure 16b, can be maintained steadily around 100%. The mean
average precision and the reconciled mean average precision also remain at a high level, and
the mean average precision, as shown in Figure 16c, can be stably maintained around 99%;
the reconciled mean average precision, as shown in Figure 16d, can be stably maintained
around 0.96.
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The best detection model obtained from the training have been used for the defect
detection of camera module lens, and some of the detection results are shown in Figure 17.
The detection accuracy of white spot defects is basically maintained at about 93%, and the
detection accuracy of white spots, scratches and dirty defects is as high as 96%, and there
is no leakage and false detection. Therefore, the test experiment has achieved relatively
satisfactory results.
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To further validate the testing effectiveness of the YOLOv5s-Small-Target algorithm
used in this paper on camera module lens surface defect detection, it is compared with the
single-stage SSD algorithm and the YOLOv3+MobileNet lightweight network. The number
of model training is set to 300, the batch size is set to 8, and all three algorithms do not use
pre-trained models. The specific experimental results are shown in Figures 18–21.
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From the experimental results in Figures 18–21, we can see that the accuracy P of
the YOLOv5s-Small-Target algorithm designed in this paper is as high as 99%, which is
better than the SSD and YOLOv3 algorithms in terms of model fitting speed and accuracy.
The main reason for this result is that the detection objects in this paper are mostly small
targets, and the improved algorithm contains a CBAM attention module, which improves
the ability to detect small targets, so the comprehensive performance of the improved
algorithm is improved.

In order to further analyze the defect detection performance of the improved YOLOv5s-
Small-Target algorithm in this paper, a longitudinal comparison test and a cross-sectional
comparison test are conducted for the camera module lens surface defect dataset.

(i) Longitudinal comparison experiment

The test results of YOLOv5s-Small-Target algorithm were compared with Faster R-
CNN, SSD 300 (VGG16), SSD 512 (VGG16), and RetinaNet algorithms in terms of accuracy P,
recall R, average precision and inference time while keeping all parameters set consistently,
and the specific experimental data are shown in Table 2.

Table 2. Comparison of detection results of each algorithm.

Model Name Accuracy P Recall Rate R mAP@0.5 Reasoning Time (ms)

SSD 300 (VGG16) 0.835 0.867 0.840 9.8
SSD 512 (VGG16) 0.862 0.883 0.851 27

RetinaNet 0.912 0.924 0.893 20.6
Faster R-CNN 0.983 0.991 0.985 106

YOLOv5s-Small-Target 0.960 1.00 0.996 10.5

From Table 2, the improved YOLOv5 algorithm has the highest average precision and
the fastest inference speed among the single-stage detection algorithms. Compared with the
two-stage Faster R-CNN, the improved recall and average precision are not much different
from them, but in terms of inference speed, the improved YOLOv5 algorithm inferred each
image 95.6 ms faster than the Faster R-CNN, which also meets the requirement in terms
of speed.

(ii) Cross-sectional comparison experiment

In order to further verify the performance of the improved algorithm for lens surface
defect detection in this paper, it is compared and analyzed with the mainstream YOLO
series target detection algorithm, and the specific experimental results are shown in Table 3.
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Table 3. Comparison of detection results of each algorithm.

Model Name Accuracy P Recall Rate R mAP@.5 Model Size/M Reasoning Time (ms)

YOLOv3 0.866 0.879 0.854 67.2 17.5
YOLOv3+SPP 0.873 0.891 0.860 75.8 16

YOLOv5s 0.922 0.928 0.915 14.4 9.6
YOLOv5m 0.942 0.949 0.945 42.5 14.4

YOLOv3+MobileNetV2 0.812 0.824 0.806 44.0 11.3
YOLOv5s-Small-Target 0.960 1.000 0.996 18.7 10.5

As can be seen from Table 3, the improved YOLOv5s-Small-Target has the best overall
performance, with an accuracy of 96.0%, 1.8% higher than YOLOv5m; a recall rate of 100%,
5.1% higher than YOLOv5m; an average precision of 99.6%, 5.1% higher than YOLOv5m,
maintaining a high detection accuracy; and an average inference time per image is 10.5 ms,
which is 7.0 ms, 5.5 ms, 3.9 ms, and 0.8 ms faster than YOLOv3, YOLOv3+SPP, YOLOv5m,
and YOLOv3+MobileNetV2, respectively. In terms of model size, YOLOv5s model has
the smallest size, but its accuracy, recall, and average precision values are lower. The
improved model after incorporating the attention mechanism has an increase in model size
and inference time, but the accuracy, recall, and average precision have increased by 3.8%,
7.2%, and 8.1%, respectively.

Figure 22 shows the comparison of YOLOv5s-Small-Target model with other YOLO
models in terms of number of parameters. The number of parameters of the improved algo-
rithm has increased, but the detection accuracy has been improved substantially. Therefore,
in comprehensive industrial field camera module lens surface defect detection accuracy
and detection of real-time requirements, while considering the mobile deployment of the
algorithm at a later stage, the YOLOv5s-Small-Target improved algorithm performs better.
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Overall, although the YOLOv5s-Small-Target model shows some growth in vol-
ume and inference time, the accuracy, recall and mean average precision mAP values
of the YOLOv5s-Small-Target algorithm are 3.8%, 7.2% and 8.1% higher than the original
YOLOv5s algorithm. Therefore, the YOLOv5s-Small-Target algorithm has the best overall
performance compared to other algorithms when considering the requirements of camera
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module lens surface defect detection accuracy and real-time, as well as the difficulty of
mobile deployment of the model.

A camera module lens surface defect detection visualization system is designed and
implemented, in which the YOLOv5s-Small-Target network model based on the LibTorch
framework is deployed. An example graph of the operation results of the camera module
lens surface defect detection system under the GPU RTX 3070 configuration is shown in
Figure 23.
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5. Conclusions and Future Works

To solve the problem of low accuracy of the current network model for small target
defect detection, a camera module lens surface defect detection algorithm YOLOv5s-Defect
based on improved YOLOv5s is proposed. Compared with the original YOLOv5s, the
YOLOv5s-Small-Target algorithm makes four improvements: (1) introducing the dynamic
anchor frame structure DAFS in the input stage; (2) improving the spatial pyramid SPP
module to obtain the SPP-D module; (3) incorporating the CBAM attention mechanism
module in the backbone network; (4) using the improved DIoU-NMS non-maximal suppres-
sion instead of non-maximal suppression (NMS) as the bounding box regression method in
the regression box screening stage. Meanwhile, in order to alleviate the problem of uneven
distribution of the number of defective sample pictures on the surface of the camera module
lens, a PyQt5-based image broadening tool is produced to perform data enhancement on
the defective samples.
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The experimental results show that the mean average precision mAP@0.5 of the
YOLOv5s-Small-Target algorithm is 99.6%, 8.1% higher than that of the original YOLOv5s
algorithm, the detection speed FPS is 80 f/s, and the model size is 18.7M. Compared
with YOLOv5s algorithm, YOLOv5s-Small-Target can detect the type and location of lens
surface defects more accurately and quickly, which can meet the requirements of real-time
and accuracy of camera module lens surface defect detection. Although the performance
improvement is achieved, there is still much room for improvement in detection accuracy
for detection scenarios where multiple defects overlap each other, which can be considered
in terms of obtaining richer datasets, such as using generative adversarial networks to
obtain more image samples containing overlapping defects.
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