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Abstract: The widespread application of screen content images (SCIs) has met the needs of remote
display and online working. It is a topic that is challenging and worthwhile discussing in research
on quality assessment for SCIs. However, existing methods focus on extracting artificial features to
predict image quality, which are subjective and incomplete, or lack good interpretability. To overcome
these problems, we propose an effective quality assessment method for SCIs based on human visual
perceptual characteristics. The proposed method simulates the multi-channel working mechanism
of the human visual system (HVS) through pyramid decomposition and the information extraction
process of brains with the help of dictionary learning and sparse coding. The input SCIs are first
decomposed at multiple scales, and then dictionary learning and sparse coding are applied to the
images at each scale. Furthermore, the sparse representation results are analyzed from multiple
perspectives. First, a pooling scheme about generalized Gaussian distribution and log-normal
distribution is designed to describe the sparse coefficients with and without zero values, respectively.
Then the sparse coefficients are used to characterize the energy characteristics. Additionally, the
probability of each atom is calculated to describe the statistical property of SCIs. Since the above
process only deals with brightness, color-related features are also added to make the model more
general and robust. Experimental results on three public SCI databases show that the proposed
method can achieve better performance than existing methods.

Keywords: screen content images; no-reference image quality assessment; dictionary learning; sparse coding

1. Introduction

With the rapid development of mobile Internet and multimedia technology, screen
content images (SCIs) have been widely used in various interactive scenarios, such as
virtual screen sharing, online education, online meetings, cloud computing, and games [1].
Especially in the global outbreak of COVID-19, many normal work and lifestyle cannot be
carried out offline in order to prevent crowds from gathering, and people working at home
must transmit information through screen content. SCIs generally refer to the interface
presented on the screen of a digital viewing device, which usually contain computer-
generated content, such as text, computer graphics, etc., as well as content captured by
cameras. Examples of traditional natural images and SCIs are shown in Figure 1. In
contrast, SCIs typically consist of sharp edges, limited color variations, and repetitive
patterns, while natural images usually present smoother edges, rich colors, and complex
textures [2,3]. Similar to natural images, in the process of typical multimedia service chain,
such as capture, compression, transmission, decompression, and reconstruction, a series of
distortions will inevitably be introduced due to the interference of various factors, such as
broadband constraint, resolution limitation of hardware devices, and color and contrast
changes of remote sharing, which will lead to the decline of the perceived quality of SCIs
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at the receiving end [4–6]. Therefore, as a basic technology in image engineering, image
quality assessment (IQA) plays an irreplaceable role in the field of visual information
processing and communication, and has profound theoretical significance and important
application value.

Generally speaking, IQA methods can be divided into two categories: subjective and
objective methods. The former represents the most realistic human perception of images
and is the most reliable measure of visual quality among all available means. However,
this method is time-consuming and not suitable for real-time processing. Therefore, most
studies have focused on the automatic assessment of image quality, aiming to achieve the
replacement of human vision in objective ways. Due to its advantages of high efficiency,
stability, and integration, the objective research has gradually become a key topic in IQA
studies. However, since the modeling of human visual system (HVS) is a very complex
process, it is difficult to obtain the characteristics consistent with human vision. In addition,
because of the significant differences of perceptual attributes between SCIs and natural
images, the existing IQA methods for natural images cannot be directly applied to evaluate
the perceptual quality of SCIs [7,8]. Therefore, in order to better meet the needs of practical
applications, it is necessary to design an objective and accurate IQA method for SCIs that
can fully reflect the characteristics of human visual perception.

(a) (b) (c) (d)
Figure 1. Examples of traditional natural images and screen content images. (a,b): natural images
from LIVE. (c,d): screen content images from SIQAD.

2. Related Works

So far, there have been many full-reference (FR) quality assessment studies for SCIs
that are able to obtain good performance [9–16]. However, in many practical applications
(e.g., remote screen sharing systems and wireless transmission systems), it is often difficult
for us to obtain the original versions of distorted SCIs, making such FR methods more
limited. Therefore, we focus our research on no-reference (NR) approaches. Existing NR-
IQA methods for SCIs can be roughly divided into the following two categories: manual
feature extraction-based methods and machine learning-based methods. Gu et al. [17]
first proposed a blind quality measurement method (BQMS). Then, a unified framework
is concluded and four types of descriptive features are extracted to design an IQA model
(SIQE) [18]. Fang et al. [19] utilized histograms to represent statistical luminance and
texture features extracted from local normalization and gradient information, respectively.
Later on, an improved model (PQSC) [20] was proposed by using a more accurate local
ternary patterns (LTP) operator for texture feature extraction and introducing chromatic
descriptors. Zheng et al. [21] utilized the variance of local standard deviation to distinguish
sharp edge patches (SEPes) and non-SEPes of SCIs. Yang et al. [22] trained stacked
autoencoders (SAEs) by a completely unsupervised method to process quality-awareness
features extracted from pictorial and textual regions. The problem with these feature
extraction-based methods is that those features are obviously subjective and one-sided,
and cannot fully reflect the particularity of SCIs. The most typical machine-learning-based
approach is the application of neural networks, which provides end-to-end features for
better performance. Zuo et al. [23] proposed a framework based on a convolutional neural
network (CNN) to predict the quality scores of image patches. Yue et al. [24] attempted to
train a network with the entire image and divided the original image into prediction and
non-prediction parts according to the internal generation mechanism theory. Chen et al.
utilized a “normalization” module consisting of the up-sampling and convolutional layers,
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aiming to transform the SCIs to have more natural images-like features [25]. Jiang et al.
used multi-region local features to generate pseudo-global features, and proposed a novel
ranking loss to predict quality scores [26]. Neural networks make up for shortcomings of
manual feature extraction methods to a certain extent, but these methods are completely
black-box operations that lack interpretability and require a large amount of supervised
data, which can easily lead to overfitting if the sample size of the training set is insufficient.

The HVS is critical to the perception of visual signals, and, therefore, we must consider
relevant properties of the HVS when designing our model. When we observe the natural
world through our eyes, visual signals are transmitted through the lateral geniculate nu-
cleus (LGN) to the primary visual cortex (V1) for visual abstraction. During this process
different neurons on the retina and LGN are activated, and these response properties can be
successfully explained by the redundancy parsimony principle for interpretation [27]. More
theoretical studies have shown that for the perceptual information received by brains from
the external world, the primitive visual cortex uses sparse coding to represent them, which
is an effective strategy for the distributed representation of neural information popula-
tions [28]. In summary, in order to better reflect the characteristics of information processing
in HVS, we can use the sparse coding model to simulate the corresponding functions.

The applications of sparse coding in IQA designed for SCIs have also been extensively
studied. Existing research shows that algorithms based on sparse coding can achieve data
compression more efficiently, and we can use the redundancy property of dictionary to
capture intrinsic essential features of signals, which makes it easier to obtain the information
contained in signals and improves the effectiveness and completeness of artificial features.
Shao et al. [29] proposed a blind quality predictor (BLIQUP-SCI), which was based on the
BRISQUE [30] framework, and three features were extracted from both local and global
perspectives for SCIs, including gradient magnitude (GM) maps, Gaussian Laplace operator
response (GM-LOG) [31], and local binary patterns (LBP). Yang et al. [32] used features
based on sparse coding coefficients of the histogram of oriented gradient (HOG) to predict
image quality. Zhou et al. [33] achieved a fused representation of images by training local
and global feature dictionaries separately. Wu et al. [34] designed a sparse representation
model to extract local structural features and combined with global features consisting of
luminance statistical features and LBP features. The above algorithms utilize sparse coding
to deal with further local and global features, and optimize the artificial features to some
extent. To enhance the correlation between features, a tensor domain dictionary-based
BIQA method was proposed to better represent SCIs features and the working mechanism
of HVS [35].

In summary, current NR-IQA methods for SCIs are mainly considered from two
perspectives: on the one hand, the model is applied to extract artificial features directly from
the digital representation of images, which is highly subjective and largely depends on the
prior knowledge of the quality degradation mechanism of SCIs. On the other hand, neural
network-based methods do not have good interpretability, although they can achieve end-
to-end training and obtain deep abstract feature representations. Therefore, considering
the advantages and limitations of the above two types of approaches, this paper focuses
on combining machine learning and manual feature extraction and proposes a NR quality
assessment method for SCIs based on human visual perception characteristics. Specifically,
we adopt dictionary learning and sparse coding methods in machine learning to simulate
the information extraction process of human brains and then analyze the obtained sparse
coefficients from multiple perspectives to define artificial features. Compared with previous
algorithms, the proposed method extracts more comprehensive features. Additionally, we
also introduce a decomposition mechanism of visual channels before simulating brains
for sparse analysis to better capture the perception of image details towards human eyes
under different viewing conditions. Furthermore, special consideration is given to color
information by utilizing a closely related property of color perception as a description of
color features. Finally, support vector regression (SVR) is adopted to learn the IQA model
from perception features to human subjective scores. Experimental results have shown the
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performance improvement of the proposed method. In a word, the main contributions of
this paper are summarized as follows:

• Dictionary learning and sparse coding techniques were applied to obtain the quality
perception characteristics and enhance the effectiveness and objectivity of the fea-
ture extraction process. The original samples were transformed into suitable sparse
representation, which simplified the learning task and reduced complexity.

• The multi-channel decomposition mechanism of visual system was introduced. Due
to the HVS presenting different sensitivity to different frequency signals, details of
images under different viewing conditions were captured by introducing multi-scale
processing technique, which effectively improved the performance of the proposed
model in quality prediction.

• The results of sparse representation were described from several perspectives. Towards
the luminance component, a local pooling scheme based on generalized Gaussian
distribution and log-normal distribution was designed firstly by analyzing sparse
coefficients. Secondly, the overall quality representation was obtained by extracting
energy features of the image. Additionally, overall statistical features of SCIs about
dictionary atoms were adopted to reduce the information loss in feature aggregation
and effectively solve the one-sidedness of artificial features. Finally, we added the
image saturation attribute to describe the color information to make extracted features
more systematic and complete.

3. No-Reference Quality Assessment Model for Screen Content Images

Considering the characteristics of SCIs and HVS, a no-reference quality assessment
model for SCIs is proposed in this paper based on perceptual characteristics of the human
visual. The overall framework is shown in Figure 2. On the whole, the proposed method
firstly decomposes input images at multiple scales through Gaussian pyramids to simulate
the multi-channel working mechanism of HVS. The respective quality contribution is then
calculated at each scale, as shown in Figure 3, which contains four stages of dictionary
learning, sparse coding, feature extraction, and quality regression. The final quality score
Q is obtained by weighted fusion.

Figure 2. The framework of the proposed IQA method for SCIs. L2↓: down-sampling by factor 2
with low-pass filter. q1, q2, q3, q4, and q5: quality score of scale 1, 2, 3, 4, and 5. ⊗: weighted fusion.

Figure 3. The flowchart of image processing at each scale.

3.1. Multi-Scale Processing Technique

The multi-channel mechanism of HVS shows that neurons decompose visual informa-
tion into different channels, such as color, frequency, orientation, etc. [36]. According to the



Electronics 2022, 11, 3155 5 of 19

related research on the phenomenon of contrast sensitivity, human eyes are more sensitive
to distortion in the mid-frequency region than in the low-frequency smooth region and
the high-frequency texture region [37]. Thus, multi-scale processing is introduced into our
algorithm to improve the performance of the quality prediction. The degree of human
perception of image details depends on several viewing conditions, such as display resolu-
tion, viewing distance, sampling density, etc. To eliminate the effect due to perceptibility
differences as much as possible, the multi-scale processing technique simulates the working
mechanism of HVS by weighting the relative importance between different scales.

A Gaussian pyramid is a kind of multi-scale representation that applies Gaussian
blur and down-sampling several times to generate multiple sets of signals or images at
different scales for subsequent processing. The principle of the Gaussian pyramid is shown
in Figure 4. In this paper, a Gaussian pyramid is used to process the images, as shown
in Figure 2. The proposed model iteratively applies a low-pass filter and down-samples
the filtered image by a factor of 2. We denote the index of the original image as scale
1, and the index of the highest scale as scale M, so the result is obtained after a total of
M− 1 iterations. The quality score on the kth scale is denoted as qk, then the final quality
prediction score is obtained by combining the results on different scales:

Q =
M

∏
k=0

[qk]
αk (1)

where αk is used to adjust the relative importance of different scales, and we will discuss
the values of parameters in detail in Section 4.3.

Figure 4. Diagram of the Gaussian pyramid principle.

3.2. Dictionary Learning

Dictionary learning is to capture the most common and essential features among
thousands of targets, which can facilitate further processing. A learned representation
matrix is used in the general model of dictionary learning to reflect the mapping relationship
between the original signal space and the sub-signal space. This important representation
matrix is the dictionary, and each column of the dictionary is called an atom. In the
implementation, the K-SVD algorithm [38] is adopted for dictionary learning to process
input images by using the sequential dictionary update method and completing one
dictionary update with K iterations, which has been widely used because of its good
performance in various image processing applications. Specifically, we construct an initial
dictionary through the dictionary learning objective function model:

min
D,xi

N

∑
i=1
‖yi − Dxi‖2

2 + λ ∑‖xi‖1 (2)

where the first term indicates that the linear combination of the dictionary matrix D ∈ Rp×K

and the sparse representation xi ∈ RK can restore the sample yi ∈ Rp as much as possible,
and the second cumulative term indicates that the measurement vector xi ∈ RK should
be as sparse as possible. The dictionary learned in this paper is shown in Figure 5, where
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each atom stands for a specific structural feature obtained from the training set, and its
corresponding sparse coefficients represent the strength of structural features. Depending
on the dictionary, we will obtain different reconstruction coefficients, that is, the values of
atoms in the dictionary will directly affect the reconstruction effect of the images.

Figure 5. The learned dictionary of the training set by using the K-SVD algorithm.

3.3. Sparse Coding

It has been shown that any given signal is sparse in some transform domain, which
means any given signal can be expressed by some dictionary and the corresponding sparse
representation [39–42]. From a biological point of view, sparse coding can be analogous
to a neuronal response, while the dictionary atoms being used can be considered as the
corresponding active neurons in the retina. Therefore, the existing metric with sparse
coefficients can be considered as a measure of degradation of image quality by exploring
the different responses given by the same neurons. Sparse coding aims to represent signals
with as few useful elements as possible and can, therefore, be well used to describe the
receptive fields of simple cells in V1 [28].

Sparse coding simplifies subsequent learning tasks and reduces model complexity by
representing the input signal as a sparse linear combination of atoms in a dictionary. In the
target dictionary space, sparse reconstruction coefficients can be used to generate effective
quality-aware features. In this paper, the optimal solution of Equation (2) is obtained
by OMP algorithm. All of the selected atoms are processed orthogonally at each step
of decomposition, which enables the faster convergence of the OMP algorithm with the
same accuracy requirements. We obtain the sparse coefficients matrix of each patch about
dictionary atoms, which will be directly used for feature generation in subsequent modules.
According to Equation (3), we can use the learned dictionary D ∈ Rp×K to perform a sparse
representation of the target image:

X = argmin‖xi‖0, s.t.‖Y− DX‖2
2 ≤ T (3)

where X = {xi}N
i=1 ∈ RK×N , Y = {yi}N

i=1 ∈ Rp×N denotes the input test SCIs, and T de-
notes the error threshold. We set T to 1 based on experimental comparison results and the
effect of different T values on performance will be analyzed in Section 4.3.

3.4. Feature Extraction

After obtaining the sparse representation of images, we can perform feature extraction
on the sparse coefficients of all patches, to explore the inherent features for subsequent
calculation of quality scores. Considering the characteristics of human visual perception
and the particularity of SCIs, five groups of features are selected to form the final feature
vector. First, we analyze the sparse coefficient values by adopting different pooling schemes
for zero and non-zero values separately to characterize their distribution. Second, we obtain
the overall image quality representation by extracting the energy features of the images
according to the relationship between sparse coefficient values and energy. Third, We
combine the statistical properties of dictionary atoms to obtain the statistical features of
images by calculating the probability of atoms in the dictionary. In addition, we add the
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image saturation property to describe color information of images, making the composition
of features more comprehensive and complete. These features will be described one by
one below.

3.4.1. Distribution of Sparse Coefficient Values

First, we investigate the distribution characteristics of sparse coefficients by analyzing
their values to design a suitable pooling scheme. Since the sparse coefficients contain a
large number of zero values and a small number of non-zero coefficients with positive and
negative values, the process of reconstructing images using a small number of atoms is
realized, which greatly improves the efficiency of image reconstruction. Depending on
whether the sparse coefficients contain zero values, the frequency distribution histograms
show different characteristics. Thus, we will analyze the regularity of sparse coefficients
from these two perspectives in this paper. Taking Figure 1c as an example, Figure 6 shows
the histogram of all sparse coefficients for atom 1 of the learned dictionary. We can observe
that the distribution of sparse coefficients exhibits symmetry and it reaches a very sharp
peak at zero with a heavy tail, which can be well approximated by the generalized Gaussian
distribution (GGD) [43]. The general definition of GGD is:

f (x; α, β) =
α

2×β×Γ
(

1
α

) exp−
(
|x|
β

)α

(4)

β = α

√√√√Γ
(

1
α

)
Γ
( 3

α

) (5)

where Γ() represents the gamma function, which is denoted as:

Γ(z) =
∫ ∞

0
exp(−t)t(z−1)dt, z > 0 (6)

Figure 6. Histogram of all sparse coefficients for atom 1 of the learned dictionary.

The GGD model parameters (α, β) are estimated with the method in [44]. The constant
α controls the shape and β determines the width of the model. Since the histograms of
sparse coefficients and the corresponding GGD model parameters are subject to different
distortions, these model parameters can be effectively used for distortion differentiation
in quality assessment tasks. Figure 7 shows several sets of GGD parameters fitted by the
histogram of sparse coefficients, where the y-axis represents log β and the x-axis represents
α. We can find that there is large discrimination in model parameters for different image
distortion types. A similar trend is observed for other atoms. Therefore, the GGD model
parameters for each atom of the dictionary form a good set of features for distortion
identification, which is denoted as f ggd, f ggd =

[
f ggd
1,α , f ggd

1,β , . . . , f ggd
K,α , f ggd

K,β

]
.
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Figure 7. Distortion discrimination based on the GGD parameters fitted by the histogram of sparse
coefficients for atom 1 of the learned dictionary. The legend represents the pristine image and the cor-
responding distortion type for each set of parameters, including Gaussian Noise (GN), Gaussian Blur
(GB), Motion Blur (MB), Contrast Change (CC), JPEG compression (JPEG), JPEG2000 compression
(J2K), and Layer Segmentation based Coding (LSC).

Since atoms with zero coefficients are not involved in the sparse reconstruction of each
patch, and test images are reconstructed with partial non-zero sparse coefficient values, the
main features of each image can still be accurately characterized [35]. Therefore, we choose
non-zero sparse coefficient values as the target object for the next pooling scheme. Figure 8
shows the histograms of sparse coefficients with original and absolute non-zero values.

(a) (b)

Figure 8. Histogram of non-zero sparse coefficients for atom 1 of the learned dictionary. (a) coefficients
with non-zero values, (b) coefficients with absolute non-zero values.

From Figure 8, it can be seen that values of absolute non-zero sparse coefficients
usually follow a log-normal distribution with the probability density function:

f (x, µ, δ) =
1√
2πδ

exp
[
− 1

2δ2 (ln x− µ)2
]

(7)

where µ and δ are the mean and standard deviation of the logarithm of the variables.
Therefore, our statistical feature model can be represented by the mathematical expectation
of this log-normal distribution:

f lnd = eµ+δ2/2 (8)

where f lnd =
[

f lnd
1 , . . . , f lnd

K

]
denotes feature vectors of all atoms in the learned dictionary.
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3.4.2. Sparse Coefficients and Image Energy

We further consider energy distribution of the overall image. As mentioned above,
all atoms in the learned dictionary can be directly used as basic elements to characterize
images. Using the dictionary D ∈ Rp×K, each patch can be sparsely represented as follows:

Y = DX =
N

∑
i=1

Dxi (9)

where N is the patch number and X ∈ RK×N denotes the sparse coefficient matrix of
Y ∈ Rp×N . Following the derivation in [45], we can compute the energy ε of the sparse
coefficients for each image patch as:

ε = ‖xi‖2
2 =

K

∑
j=1

∣∣xi,j
∣∣2 (10)

where i ∈ {0, 1, . . . , N}.
Therefore, the energy of each patch can be represented by the corresponding sparse

coefficients. If an image is divided into N equal-sized patches, the degree of distortion of
the image can be measured by calculating the average energy of all patches. By pooling the
energies of all patches, we can obtain the quantity of visual information υI of an image:

υI =
1
N

N

∑
i=1

εi (11)

where N is the number of patches contained in the test image. Figure 9 shows three images
distorted by Gaussian Blur, and the distortion level increases gradually from Figure 9a–c,
which means visual information contained in images is gradually reduced. Through
calculation, we can obtain υi of these three images to be 5.01, 4.73, and 4.31, which is
following this decreasing trend.

(a) (b) (c)
Figure 9. The quantity of visual information contained in images with different distortion levels, the
distortion levels from (a–c) increase gradually. (a) υI = 5.19, q’ = 17447.85, (b) υI = 4.62, q’ = 13406.79,
(c) υI = 4.32, q’ = 9794.33.

Since different image patches possess different structural information [46], we need to
normalize the energy of each patch with the content change value σ:

q =
ε

σ
(12)

σ =
1
P

P

∑
m=1

(
λm − λ̄

)2 (13)

where P is the number of pixels contained in a patch, λm is the pixel value, and λ̄ is the
average pixel value of an 8× 8 image patch. Then, the quality calculation for the entire
image can be expressed as:
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q′ =
1
N

N

∑
i=1

qi (14)

The calculated results are shown in Figure 9, which are 17447.85, 13406.79, and 9794.33,
respectively. We denote this result as the energy feature f e.

3.4.3. Statistical Features of Dictionary atoms

Natural scene statistical information has been widely studied and applied to process
natural images, but cannot be directly used for SCIs due to their computer-generated parts.
As mentioned above, only the non-zero sparse coefficients are needed to be considered when
reconstruction, which means the image reconstruction process can be achieved with different
numbers of partial dictionary atoms. We count the occurrence numbers of each atom with
different distortion types for Figure 1c,d. The result is shown in Figures 10 and 11. Comparing
Figures 10a and 11a, it can be seen that when using the same dictionary to reconstruct
images with different contents, the occurrence numbers of each atom in the dictionary are
also different. Thus, the statistical features of the dictionary can be used to distinguish
different images.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 10. Histograms of occurrence number of each atom for image in Figure 1c with different
distortion types. (a) Pristine image, (b) GN, (c) GB, (d) MB, (e) CC, (f) JPEG, (g) J2K, (h) LSC.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 11. Histograms of occurrence number of each atom for image in Figure 1d with different
distortion types. (a) Pristine image, (b) GN, (c) GB, (d) MB, (e) CC, (f) JPEG, (g) J2K, and (h) LSC.

In addition, we further compare and analyze the occurrences of each atom in the
dictionary for the same original image with different distortion types. From Figure 11 we
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can observe that the distribution of occurrences of all atoms has a certain similarity on the
whole, but there are still subtle differences due to different types of distortion. This finding
shows that statistical features also have the ability to distinguish types of distortion. In
summary, there is a certain statistical law in the sparse space of SCIs, which means we can
describe the statistical features by counting occurrence numbers of atoms in the dictionary
to characterize the changes in quality.

As we know, the occurrence numbers of all atoms are different according to the size of
different images. To eliminate this kind of variability, this paper describes the statistical
characteristics of SCIs by calculating the probability of atoms. Specifically, the occurrence
number of each atom is calculated based on the sparse coefficient vector X ∈ RK×N , and
then the probability value is obtained by normalization process, which is expressed as:

f s =
ni

∑K
i=1 ni

(15)

where f s =
[

f s
1 , . . . , f s

K
]

represents the statistical feature vectors of all atoms, and ni repre-
sents the occurrence number of the ith atom in the test image.

3.4.4. Image Color Features

Color information is very attractive to HVS. Existing IQA algorithms for natural
images show that the color information contained in an image is also affected to varying
degrees when its quality is impaired [47–49]. Saturation and hue are properties of color,
which are sensitive to color changes and, therefore, are useful to IQA investigations. In the
proposed method, we consider the color characteristics of SCIs. We denote an image as
I = {R, G, B}, thus the image saturation S and hue H can be calculated by:

S = 1− 3×M
U

(16)

H = tan−1

(√
3× (R− G)

R + G− 2B

)
(17)

where M = min(R, G, B) and U = R + G + B are denoted as the minimum value and the
sum of R, G, and B, respectively. Apparently, the hue values of black and white pixels
are zero, which need to be first removed before the color features extraction of input SCIs.
Then, calculate the saturation of pixels with hue, and take their mean and quantile values,
which are denoted as our image color features f c.

3.5. Quality Regression

In summary, the final vector representation f of this paper is obtained by combining
the above five sets of features, where f =

[
f ggd, f lnd, f e, f s, f c

]
. The number of dictionary

atoms K is set to 128 in this paper, so each input image contains a total of 517 dimensions
in its feature vector.

After obtaining the extracted feature vectors, the support vector regression (SVR) is
applied to realize the quality regression at each scale. Specifically, an SVR model trained by
the training subset is utilized to obtain the quality score of the testing subset. In this paper,
we use SVR with a radial basis function (RBF) kernel as the mapping function to realize the
transformation from feature vectors to human subjective quality scores.

4. Results
4.1. SCI Database and Assessment Criteria

In this paper, a total of three public SCI databases are selected for comparative exper-
iments to validate the effectiveness of the proposed method: SIQAD [1], SCID [10], and
QACS [50]. SIQAD contains 980 distorted SCIs generated from 20 reference images with
a resolution range between 626× 612 and 832× 728, including a total of seven distortion
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types with seven degradation levels: GN, GB, MB, CC, JPEG, J2K, and LSC. SCID consists of
40 reference images and 1800 distorted SCIs with a resolution of 1280× 720. Each reference
image in SCID is degraded by nine distortion types (GN, GB, MB, CC, JPEG, J2K, Color Sat-
uration Change (CSC), High Efficiency Video Coding-Screen Content Coding (HEVC-SCC),
and Color Quantization with Dithering (CQD)) and five degradation levels. QACS contains
24 reference images and 492 distorted SCIs with three types of resolutions: 2560× 1440,
1920× 1080 and 1280× 720, and includes two types of distortion: HEVC and SCC.

Meanwhile, to validate the performance of the proposed method, three widely used
criteria are employed to calculate the correlation between subjective and objective scores:
Pearson Linear Correlation Coefficient (PLCC), Spearman Rank-order Correlation Coef-
ficient (SRCC), and Root Mean Squared Error (RMSE) [51]. PLCC estimates the quality
prediction accuracy, SRCC examines the quality prediction monotonicity, and RMSE mea-
sures the prediction consistency. In general, higher values of PLCC and SROCC while the
lower value of RMSE indicates better performance.

Furthermore, a non-linear logistic regression process was performed to map the
dynamic range of the scores from IQA models to a common scale according to the video
quality experts group (VQEG):

Q̃ = β1

[
1
2
− 1

1 + exp[β2(Q− β3)]

]
+ β4Q + β5 (18)

where Q is the objective score calculated by an IQA model, Q̃ is the corresponding mapped
score, and β1, β2, β3, β4, β5 are the parameters to be fitted by minimizing the sum of squared
differences between the objective and subjective evaluation scores.

In the specific implementation, a dataset is randomly divided into non-overlapping
training subset and testing subset, where 80% of the data are selected for training and the
remaining 20% for testing. After the optimal model is trained on the training subset, the
prediction performance is tested on the test subset. This process is repeated 1000 times and
the average values of all prediction results become the measurement of final performance.

4.2. Performance Comparison and Analysis
4.2.1. Overall Performance Comparison

To evaluate the performance of the proposed method, we first compare it with the
following FR-IQA methods, which include three classical methods designed for natural
images (PSNR, SSIM [52], and GMSD [53]), and eight state-of-the-art methods designed for
SCIs (GSS [9], ESIM [10], MDOGS [11], EFGD [12], SFUW [13], CNN-SQE [14], GFM [15],
and LGFM [16]). Table 1 shows the overall results of various models on three databases,
and the best two performance under each criterion are highlighted in boldface.

From Table 1 we can draw the following conclusions. First, compared to the FR-
IQA methods for natural images, the methods specially designed for SCIs have better
performance in predicting the quality of SCIs, the main reason is that the classical methods
do not fully consider the perception characteristics of SCIs. This result also proves once
again that SCIs have certain specificity compared with natural images, and the classical
methods are no longer suitable for direct application in the quality assessment tasks of SCIs.
Second, among the eight methods specially designed for SCIs, two methods, CNN-SQE and
LGFM, have better performance than others. Specifically, the basic idea of CNN-SQE is to
divide input SCIs into three categories: plain text, computer graphics, and natural images
by CNN, and design an edge structure-based quality degradation model that integrates
the region size adaptive strategy. LGFM, on the other hand, uses Log-Gabor filters with
similarities to HVS to extract features from the luminance component of the reference
and distorted SCIs, respectively, and finally combines the measurements of the other
two chromaticity components to obtain the final quality score. Although these FR-IQA
methods based on features of HVS use the accurate and comprehensive information from
reference images, the reference information is not available in most practical applications,
limiting the further generalization of these methods. In contract, the proposed method
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reflects the characteristics of HVS and SCIs by considering the dictionary learning and
sparse coding, which presents better performance on three public SCI databases than other
FR-IQA methods for SCIs.

Table 1. Performance comparison results of different FR-IQA methods on the SIQAD, SCID, and
QACS databases.

Method SIQAD SCID QACS
PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

PSNR 0.5869 0.5608 11.5859 0.7622 0.7512 9.1682 0.861 0.8589 1.1273
SSIM 0.5912 0.5836 11.545 0.7343 0.7146 9.6133 0.8696 0.8683 1.0953

GMSD 0.7387 0.7305 9.6484 0.8337 0.8138 7.8210 0.9019 0.9039 0.9585
GSS 0.8461 0.8359 7.6310 - - - - - -

ESIM 0.8788 0.8632 6.8310 0.8630 0.8478 7.1552 - - -
MDOGS 0.8839 0.8822 6.6951 - - - - - -

EFGD 0.8993 0.8901 6.2595 0.8846 0.8774 6.6044 - - -
SFUW 0.8912 0.8800 6.4991 0.8585 0.8281 7.2133 - - -
CNN-
SQE 0.9042 0.8943 6.1147 0.9147 0.9139 5.7609 - - -

GFM 0.8828 0.8735 6.7234 0.8760 0.8759 6.8310 - - -
LGFM - - - 0.9023 0.9046 6.1052 - - -

Proposed 0.9213 0.9203 5.7965 0.9109 0.9056 6.0682 0.9579 0.9604 0.6839

Furthermore, we also analyze the proposed method compared to several state-of-
the-art NR-IQA methods, including three classical methods designed for natural images
(NIQE [54], BRISQUE [30], and GM-LOG [31]), and nine methods designed for SCIs, which
include manual feature extraction-based methods (PQSC [20], HRFF [21], Yang [22]) and
machine-learning-based methods (Yue [24], PICNN [25], RIQA [26], BLIQUP-SCI [29],
TFSR [32], and Bai [35]). The results of the performance comparison are shown in Table 2,
with the best two performance are highlighted in boldface.

First, it can be observed that the performance of traditional methods (such as NIQE,
BRISQUE, and GM-LOG) are worse than other methods in Table 2, especially NIQE, whose
perceptual features based on natural images are quite different from SCIs. Second, most
methods based on feature extraction present poor results, and the reason may lie in the
subjectivity and one-sidedness of the artificial features extracted by these methods. In
contrast, PQSC achieves superior results over other feature extraction-based methods,
and it is important that it considers color information that is easily ignored in previous
studies. Texture features are extracted by the LTP operator to capture accurate amplitude
information of contrast changes, making the extracted features more comprehensive. Third,
among the machine learning-based methods, the neural network-based ones avoid the
shortcomings of manual feature extraction and achieve better results, but the biggest prob-
lem is that they do not reflect the consideration of HVS and lack interpretability. Compared
with other methods based on sparse coding, Bai firstly uses tensor decomposition to avoid
the loss of color information, and then establishes a macro–micro model to characterize
the features, which enhances the correlation among features and provides a systematic
mathematical explanation for feature extraction, and, therefore, presents a good result.
Finally, results of Table 2 indicate that our method shows a better performance on all
three databases, especially on the SIQAD and QACS. Thanks to the introduction of the
multi-channel mechanism of HVS, the perception of detailed information at different scales
can be captured. Additionally, the proposed method adopts dictionary learning and sparse
coding methods in machine learning to simulate the information extraction process of
human brains, and analyzes the obtained sparse coefficients from multiple perspectives
to define manual features, which are more objective and comprehensive than previous
methods. To be specific, we achieve a 9% enhancement in PLCC and SRCC on the SIQAD
compared to the experimental results of other methods based on sparse coding.



Electronics 2022, 11, 3155 14 of 19

Table 2. Performance comparison results of different NR-IQA methods on the SIQAD, SCID, and
QACS databases.

Method SIQAD SCID QACS
PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

NIQE 0.3749 0.3568 13.1520 0.3904 0.3712 12.9827 0.4240 0.3701 1.7091
BRISQUE 0.8113 0.7749 8.2565 0.7696 0.7448 9.0143 0.8421 0.8201 1.0959
GM-LOG 0.7608 0.7035 9.2530 0.7883 0.7619 8.6754 0.9002 0.8903 0.9656

PQSC 0.9164 0.9069 5.7080 0.9179 0.9147 5.4793 0.9362 0.9299 0.7746
HRFF 0.852 0.832 7.415 - - - - - -
Yang 0.8738 0.8543 6.9335 - - - - - -

BLIQUP-
SCI 0.7705 0.7990 10.0200 - - - - - -

TFSR 0.8618 0.8354 7.4910 0.8017 0.7840 8.8041 - - -
Bai 0.9162 0.9090 5.7111 0.8811 0.8730 6.7031 0.9196 0.9123 0.8654
Yue 0.8834 0.8634 6.3971 0.8710 0.8663 6.4123 - - -

PICNN 0.896 0.897 6.790 0.827 0.822 8.013 - - -
RIQA 0.9107 0.9002 5.8803 - - - - - -

Proposed 0.9213 0.9203 5.7965 0.9109 0.9056 6.0682 0.9579 0.9604 0.6839

4.2.2. Performance Comparison of Individual Distortion Type

Then, in order to better validate and refine the experimental results, we will further
compare the performance of the three databases according to the different distortion
types, as shown in Table 3. From the table, we can observe that the proposed method
can present satisfactory results on most of the existing distortion types, and can more
accurately evaluate and reflect GN, GB, MB, JPEG, and J2K caused quality degradation
compared to other types. Although HEVC and SCC are JPEG and blur combined with
multiple distortions, which also shows that our method performs well for SCIs with blur
and compression distortion. However, the model gives relatively poor test results for CC.
For SCIs distorted by CC in the databases, although the impact on the human visual is
greater in pictorial regions than in text regions, the overall view shows the opposite result,
which means the integrity of the whole image is more susceptible to distortion types such
as GN, GB, and MB. In this paper, we extract the quality perception features of the whole
image instead of extracting them separately from the pictorial and text regions, which may
be the reason for the poor performance of CC.

Table 3. PLCC, SRCC, and RMSE values of the proposed method for different distortion types on the
SIQAD, SCID, and QACS databases.

Distortion SIQAD SCID QACS
PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

GN 0.9422 0.9075 4.6610 0.9615 0.9516 4.0238 - - -
GB 0.9211 0.8697 5.7500 0.8711 0.8565 5.6559 - - -
MB 0.9217 0.8287 4.9981 0.8746 0.8679 5.6091 - - -
CC 0.6708 0.5950 8.3589 0.7895 0.7904 6.1235 - - -

JPEG 0.8301 0.8648 4.7057 0.9316 0.8962 6.0986 - - -
J2K 0.8800 0.8391 5.5275 0.8868 0.8223 7.7547 - - -
LSC 0.8373 0.7975 4.7901 - - - - - -
CSC - - - 0.9251 0.9036 3.8344 - - -
CQD - - - 0.8287 0.8495 8.2835 - - -

HEVC - - - - - - 0.9871 0.9754 0.3561
SCC - - - 0.8845 0.8522 5.8513 0.8957 0.8855 1.0711

Overall 0.9213 0.9203 5.7965 0.9109 0.9056 6.0682 0.9579 0.9604 0.6839
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4.2.3. Performance Analysis of Model Feature Components

To validate the effectiveness of the extracted quality-aware features, we divide them
into five groups (distribution features of sparse coefficient values, image energy features,
statistical features, and color features, where the distribution features of sparse coefficient
values contain both generalized Gaussian distribution and log-normal distribution) and
use only the other four groups to learn the quality regression model. Table 4 shows the
experimental results, where f e− represents the feature vector without image energy features.
Other variables are the same. The proposed method with these five groups of features
shows superior performance compared with the method containing only four groups.

Table 4. Performance results of different features of the proposed method on the SIQAD, SCID and
QACS databases.

Database Criteria f ggd− f lnd− f e− f s− f c− Proposed

SIQAD
PLCC 0.9044 0.9077 0.9113 0.9058 0.9122 0.9213
SRCC 0.8982 0.9173 0.9098 0.9046 0.9117 0.9203
RMSE 6.2550 6.3165 6.1368 6.3608 6.1071 5.7965

SCID
PLCC 0.8922 0.9063 0.8993 0.8998 0.8524 0.9109
SRCC 0.8910 0.9004 0.8944 0.8979 0.8261 0.9056
RMSE 6.6410 6.2145 6.4323 6.4175 7.6905 6.0682

QACS
PLCC 0.9510 0.9054 0.9328 0.9276 0.9339 0.9579
SRCC 0.9528 0.8976 0.9312 0.9290 0.9320 0.9604
RMSE 0.7367 1.0114 0.8588 0.8902 0.8520 0.6839

4.3. Influencing Factors

In our algorithm, the main factors affecting the performance may come from the
following aspects: the base atom size p and the error threshold T need to be optimized
during the training process of the dictionary. For the pyramid decomposition process we
also need to consider the choice of scales. Therefore, we validate the effect of different
parameter settings on the results by comparative experiments.

First, as described in Section 3.2, dictionary atoms and their corresponding sparse
coefficients are used to achieve image reconstruction, so the size of atoms will directly affect
the size and number of patches in test images and calculation complexity. Table 5 shows
the experimental results corresponding to different atom sizes, where p represents the size
of each atom in the dictionary. The parameters used in the proposed method finally are
highlighted in boldface, and The best performance is shown when the atom size is set to
8× 8, which determines our final default value.

Table 5. Performance results of the proposed method with different atom sizes on the
SIQAD database.

p PLCC SRCC RMSE

4 × 4 0.9087 0.9107 6.2224
8 × 8 0.9213 0.9203 5.7965

10 × 10 0.9020 0.9033 6.4359
16 × 16 0.8795 0.8881 7.0936

In addition, T represents the error threshold defined in Equation (3). According to
the features of HVS and sparse coding, if the T value is not suitable, the performance of
results will be affected. Increasing T means lower computational complexity, but missing
features resulting in worse reconstructed image quality; while decreasing T may cause the
features to become similar. According to the experimental results in Table 6, we finally set
the default value of T to 1.
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Table 6. Performance results of the proposed method with different error thresholds on the
SIQAD database.

T PLCC SRCC RMSE

1 0.9213 0.9203 5.7965
5 0.9169 0.9127 5.9483

We also investigate the effect of scales on performance. The results are shown in
Table 7, where M represents scales in the progress of multi-scale processing, that is, the
number of down-sampling iterations performed on original images, which indicates how
many levels of visual information are included in the model. In practice, different M can be
chosen depending on environmental factors and sensitivity to subject details. A too-large
M will cause the down-sampled image to exceed the perceptual capacity of HVS, which
will have an impact on the stability of the quality prediction. Considering the experimental
results in Table 7 and the relevant reference [55], we set M to 5 in our implementation.
According to Section 3.1, HVS is more sensitive to medium-scale information than large-
scale and small-scale, so we set the weights of different scales αk to [0.15, 0.25, 0.35, 0.20,
0.05], which means to give a larger weight to the intermediate scale and relatively small
weight to the large and small scales, which is also the same as the setting of the classic
MS-SSIM model.

Table 7. Performance results of the proposed method with different scales on the SIQAD database.

M PLCC SRCC RMSE

1 0.9108 0.9116 6.1552
3 0.9139 0.9140 6.0498
5 0.9213 0.9203 5.7965

4.4. Limitations

Through the analysis of the above experimental results, we validate the effectiveness of
the proposed method. However, it is undeniable that there are still some shortcomings that
need to be improved. First of all, our method can more accurately evaluate and reflect the
quality degradation caused by most of the existing distortion types, but it does not present
better results for some particular distortion types (such as contrast changes). This may be
due to the fact that we have not considered the features of pictorial region and text region
separately, which are different to some extent. We will make further improvements to this
point in the subsequent research. In addition, the proposed method is different from the
traditional artificial feature extraction-based methods, which makes the extracted features
more comprehensive and can better reflect the working mechanism of HVS. Our model
can also achieve the effect no less than the application of deep learning-based methods. In
fact, the research based on deep learning is still a hot spot in current related fields. If more
sufficient datasets are available in the future, these methods can also play their roles better.

5. Conclusions

This paper proposes an effective quality assessment model specifically for screen
content images. Compared with other existing IQA methods, the proposed method has the
following characteristics. Specifically, the method fully considers the perceptual charac-
teristics of the human visual. First, the multi-channel working mechanism of the HVS is
simulated by pyramid decomposition in multi-scale processing. Second, the most essential
features of input SCIs are extracted by dictionary learning and sparse coding techniques,
and the sparse coefficients corresponding to each image patch are obtained to simulate the
information extraction mechanism of human brains. Furthermore, these sparse coefficient
values and dictionary atoms are analyzed from multiple perspectives. Color features are
also added to make the model features completer and more robust. The final quality
prediction process is based on the support vector regression. The experimental results on



Electronics 2022, 11, 3155 17 of 19

SIQAD, SCID, and QACS databases show that the proposed method can achieve better
performance than other IQA methods for SCIs.
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