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Abstract: The problem concerning the optimal placement and sizing of renewable energy resources
and battery energy storage systems in electrical DC distribution networks is addressed in this research
by proposing a new mathematical formulation. The exact mixed-integer nonlinear programming
(MINLP) model is transformed into a mixed-integer convex model using McCormick envelopes
regarding the product between two positive variables. Convex theory allows ensuring that the global
optimum is found due to the linear equivalent structure of the solution space and the quadratic
structure of the objective function when all the binary variables are defined. Numerical results in the
21-bus system demonstrate the effectiveness and robustness of the proposed solution methodology
when compared to the solution reached by solving the exact MINLP model. Numerical results
showed that the simultaneous allocation of batteries and renewable energy resources allows for the
best improvements in the daily operating costs, i.e., about 53.29% with respect to the benchmark case
of the 21-bus grid, followed by the scenario where the renewable energy resources are reallocated
while considering a fixed location for the batteries, with an improvement of 43.33%. In addition, the
main result is that the difference between the exact modeling and the proposed formulation regarding
the final objective function was less than 3.90% for all the simulation cases, which demonstrated
the effectiveness of the proposed approach for operating distributed energy resources in monopolar
DC networks.

Keywords: energy storage systems; mixed-integer convex model; renewable energy sources; convex
optimization; McCormick envelopes

1. Introduction

In recent decades, the trend involving the use DC networks in distribution systems
has increased significantly due to these networks’ great compatibility with renewable
energies, DC loads, and storage devices; in the same way that the investment costs of a DC
network at medium voltage levels are much lower than those of an AC network and that its
performance remains constant without being affected by the reactive power requirements
of the load, unlike AC [1–3]. Global warming—and therefore the need to reduce fossil
fuels—has triggered a search for renewable energies such as wind, solar, and tidal in order
to mitigate the negative effects of greenhouse gas emissions to the atmosphere [1,4–6].
Direct current (DC) system technologies can be easily implemented in urban or rural
areas, since they can be used in buildings and houses of different sizes. In addition, these
distribution systems can be interconnected with the main power system, and they can
operate independently [1].

When using renewable sources as the main energy supply, a set of issues comes to
light: weather dependence, geographical location, and surface area. Among the most used
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technologies are solar, wind, tidal, and geothermal, and each one of them has a different
dependency on the primary energy resource [7]. For example, solar power depends on the
solar radiation produced in the hours between dawn and sunset, which is usually 12 h. As
for the wind, it uses turbines that depend on the speed of the wind, which is why they are
located at a certain height. In addition, the average wind speed in the area of installation
must be taken into account. This means that these technologies are not reliable in some
areas with low wind speeds [8,9]. In light of the above, technologies such as battery energy
storage systems (BESS) are used, and there are control strategies that can help maximize the
power delivered by renewable sources, minimize harmonics, regulate voltage, and increase
network efficiency, as can be consulted in [10,11]. This helps reduce the intermittency of
renewable sources. The use of BESS enhances the reliability and quality of the energy
supply service [12–14].

By using BESS, the disadvantages mentioned above are undermined. This is done
by storing energy within them at times of low demand and supplying it at times of high
demand [15,16]. By making use of batteries within a DC distribution system, energy
generation costs can be reduced. This is done by optimally locating BESS within the
network through different optimization methods. This can be observed in [17], where the
authors proposed particle swarm optimization while using a 30-node IEEE system as an
example. They determined the optimal location of the BESS by locating the renewable
source (i.e., wind sources) in different nodes of the system. Moreover, while establishing
the optimal location of the BESS, they found important information about the generation
costs of the nodes. In [18], the authors determined the optimal location of the BESS by
formulating a mixed non-integer nonlinear programming (MINLP) model, which was
transformed into a convex mixed-integer quadratic equivalent (MIQC) in order to obtain
a global optimum instead of a local one. These models were solved via the General
Algebraic Modeling System (GAMS) software. The error in the objective function between
the MINLP and the proposed model was 4%. To solve these models, the BONMIN solver
was used, through which the MINLP model showed an improvement of 10.85% with
respect to the base case. However, the MIQC achieved an improvement of 18.55%. This
result demonstrated the efficiency of the MIQC model when locating BESS with respect
to the exact non-convex formulation (i.e., the MINLP formulation). In [19], the authors
proposed a convex quadratic model that allows identifying the best nodes in which the
renewable sources can be located within a DC network. In addition, to locate the sources in
these nodes, the authors also determined the capacity necessary to achieve optimal results.
However, in this research, the authors did not include daily load curves or BESS, which
reduces the applicability of their proposal in real DC networks.

Other authors have addressed the problem regarding the optimal placement and
sizing of dispersed generators and BESS with different mathematical and combinatorial
optimizers. Some of these are the application of the whale optimization algorithm to locate
BESS in distribution networks [20], the application of a mixed-integer conic formulation to
locate and size BESS and DGs in distribution networks via piece-wise linearization of the
power losses [21], the implementation of parallel particle swarm optimization to define the
optimal daily operation of BESS in radial DC networks [22], the optimal operation of BESS
in DC networks using semi-definite programming [23], and artificial neural networks to
determine the size of BESS while considering loss sensitive analysis for microgrids [24].

Considering the aforementioned studies, the main contributions of this research are:

i. The simultaneous integration of BESS and dispersed generators in monopolar DC
networks, since this problem is typically addressed independently by integrating
only one of these devices into the DC grid, or both in a sequential fashion, i.e., in
the first stage, the dispersed sources are assigned, and batteries are integrated in the
second stage.

ii. The reformulation of the exact MINLP model that represents the optimal placement
and sizing of BESS and DG into a mixed-integer convex (MIC) formulation via the
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application of McCormick envelopes to approximate the product between two contin-
uous variables through a linear equivalent restriction.

This is the procedure followed to compare the exact MINLP model with the proposed
MIC formulation: (i) the MINLP model is solved using the BONMIN solver in the GAMS
software, (ii) the proposed MIC model is solved using the convex disciplined tool for
MATLAB software called CVX with the Gurobi solver; (iii) the optimal sizes of the dispersed
generators and batteries provided with the solution of the MIC model are evaluated in the
MINLP model in GAMS in order to eliminate the error introduced during the application
of McCormick envelopes to approximate the power balance constraint.

Note that our contribution supposes that the irradiance for PV generation and the wind
speed remain as constant inputs in the proposed optimization models. This is supported
by the fact that the monopolar DC network covers an area of a few hundred square meters,
which implies that the variability of the renewable energy resources can be neglected.
However, in future works, it will be necessary to conduct studies where partial shading or
wind speed variations are directly included in the optimization model.

2. Mathematical Representation

To select and locate the BESS, together with determining the optimal location of re-
newable sources in DC distribution networks, a mixed-integer nonlinear programming
formulation is used which considers the high penetration of renewable sources and can be
represented through multi-period economic dispatch formulation. The nonlinear compo-
nent of the model comprises the products between voltage variables in the power balance
constraints, and the binary part corresponds to the variables regarding the location of the
renewable energy resources and batteries.

2.1. Objective Function

This section presents the objective function of the exact model for the optimal location
and selection of BESS and renewable sources in a DC distribution system, which consists
of minimizing the costs of energy losses for a daily operation scenario. This function is
defined in Equation (1).

min f1 = CoE ∑
t∈H

∑
i∈B

vi,t

(
∑
j∈B

Gijvj,t

)
∆t (1)

The objective function is defined as f1, which is related to the daily cost of the energy
losses, where CoE is the average energy cost of the energy in the electricity market, vi,t
and vj,t are the voltage values at nodes i and j for each period of time t, Gij represents the
conductive effect that relates nodes i and j and is contained in the conductance matrix of
the DC network, and ∆t defines the variation of the period of time (typically 1 h for daily
operation). Note that B andH define the sets that contain all the nodes of the monopolar
DC network and the number of periods of study, respectively.

f1 Value of the objective function regarding the cost of the daily energy losses (COP$/day).
CoE Average energy cost of the energy in the electricity market (COP$/Wh-day).
vi,t Voltage value at node i for each period of time t (V).
vj,t Voltage value at node j for each period of time t (V).
Gij Conductive effect that relates nodes i and j (S).
∆t Variation of the period of time where electrical variables are assumed as constants (h).
H Set that contains all the number of periods of study.
B Set that contains all the nodes of the monopolar DC network.
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2.2. Mathematical Formulation for including Batteries

For this model, Equation (1) is used as the objective function. Moreover, this model
includes the following set of constraints:

pi,t + pdg
i,t + ∑

b∈E
pb

i,t − pd
i,t = vi,t ∑

j∈B
Gijvj,t, {∀i ∈ B ∀t ∈ H} (2)

SoCb
i,t = SoCb

i,t−1 − ϕb
i pb

i,t∆t, {∀b ∈ E , ∀i ∈ B, ∀t ∈ H} (3)

SoCb
i,t0

= xb
i SoCb,ini

i , {∀b ∈ E , ∀i ∈ B} (4)

SoCb
i,t f

= xb
i SoCb,fin

i , {∀b ∈ E , ∀i ∈ B} (5)

pmin
i,t ≤ pi,t ≤ pmax

i,t , {∀i ∈ B, ∀t ∈ H} (6)

pdg,min
i,t ≤ pdg

i,t ≤ pdg,max
i,t , {∀i ∈ B, ∀t ∈ H} (7)

xb
i pb,min

i ≤ pb
i,t ≤ xb

i pb,max
i , {∀b ∈ E , ∀i ∈ B, ∀t ∈ H} (8)

vmin
i ≤ vi,t ≤ vmax

i , {∀i ∈ B, ∀t ∈ H} (9)

xb
i SoCb,min

i ≤ SoCb
i,t ≤ xb

i SoCb,max
i , {∀b ∈ E , ∀i ∈ B, ∀t ∈ H} (10)

∑
b∈E

∑
i∈B

xb
i = Nmax

b (11)

where pi,t represents the power generation in the slack source and pdg
i,t the power injection

in the renewable energy resource; pb
i,t corresponds to the active power injected/absorbed

by the BESS connected at node i in period of time t; parameter pd
i,t represents the power

consumption at node i in the period of time t; SoCb
i,t is the state of charge of the BESS; ϕb

i
represents the battery charge/discharge coefficient; xb

i is a binary variable that defines

whether a BESS is connected at node i or not; SoCb,ini
i and SoCb, f in

i are the initial and final
states of charge of the BESS connected at node i; pmin

i,t and pmax
i,t correspond to the minimum

and maximum power bounds allowed for generation in the slack source; pdg,min
i,t and pdg,max

i,t

are the lower and upper power injection limits of the renewable energy sources; pb,min
i

and pb,max
i are the nominal capabilities of power absorption/injection in the BESS; vmin

i
and vmax

i represent the minimum and maximum voltage regulation limits allowed for all
the nodes in the network; SoCb,min

i and SoCb,max
i are the lower and upper state-of-charge

bounds for the BESS; and Nmax
b represents the maximum number of BESS available for

integration in a monopolar DC network. Note that E is the set that contains all the BESS
technologies available.

pi,t
Power generation in the slack source connected at node i in the period of
time t (W).

pdg
i,t

Power generation in the distributed generator connected at node i in the period
of time t (W).

pb
i,t

Power generation/absorption in the BESS connected at node i in the period of
time t (W).

pd
i,t Power demand at node i in the period of time t (W).

SoCb
i,t State of charge of the BESS at node i in the period of time t (%).

ϕb
i Battery charge/discharge coefficient (%/Wh).

xb
i Binary variable that defines whether a BESS is connected at node i or not.

SoCb,ini
i Initial state of charge of the BESS at node i (%).

SoCb, f in
i Final state of charge of the BESS at node i (%).

pmin
i,t

Minimum power generation in the slack source connected at node i in the period
of time t (W).
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pmax
i,t

Maximum power generation in the slack source connected at node i in the period
of time t (W).

pdg,min
i,t

Minimum power generation in the distributed generator connected at node i in
the period of time t (W).

pdg,max
i,t

Maximum power generation in the distributed generator connected at node i in
the period of time t (W).

pb,min
i,t

Minimum power bound allowed for the BESS system at node i in the period of
time t (W).

pb,max
i,t

Maximum power bound allowed for the BESS system at node i in the period of
time t (W).

vmin
i Minimum voltage regulation limit allowed for all the nodes in the network (V).

vmax
i Maximum voltage regulation limit allowed for all the nodes in the network (V).

SoCb,min
i Lower state-of-charge bound for the BESS connected at node i (%).

SoCb,max
i Upper state-of-charge bound for the BESS connected at node i (%).

Nmax
b Maximum number of BESS available for integration in a monopolar DC network.
E Set that contains all the BESS technologies available.

2.3. Formulation for the Optimal Placement of Renewable Energy Sources

This optimization model also considers the same objective function as the previous
one, i.e., the minimization of the total energy losses costs. The complete set of constraints
for this model is presented below:

pi,t + pw
i,t + ppv

i,t + ∑
b∈E

pb
i,t − pd

i,t = vi,t ∑
j∈B

Gijvj,t, {∀i ∈ B ∀t ∈ H} (12)

SoCb
i,t = SoCb

i,t−1 − ϕb
i pb

i,t∆t, {∀b ∈ E , ∀i ∈ B, ∀t ∈ H} (13)

SoCb
i,t0

= SoCb,ini
i , {∀b ∈ E , ∀i ∈ B} (14)

SoCb
i,t f

= SoCb,fin
i , {∀b ∈ E , ∀i ∈ B} (15)

pmin
i,t ≤ pi,t ≤ pmax

i,t , {∀i ∈ B, ∀t ∈ H} (16)

xw
i pw,min

i,t ≤ pw
i,t ≤ xw

i pw,max
i,t , {∀i ∈ B, ∀t ∈ H} (17)

xpv
i ppv,min

i,t ≤ ppv
i,t ≤ xpv

i ppv,max
i,t , {∀i ∈ B, ∀t ∈ H} (18)

pb,min
i ≤ pb

i,t ≤ pb,max
i , {∀b ∈ E , ∀i ∈ B, ∀t ∈ H} (19)

vmin
i ≤ vi,t ≤ vmax

i , {∀i ∈ B, ∀t ∈ H} (20)

SoCb,min
i ≤ SoCb

i,t ≤ SoCb,max
i , {∀b ∈ E , ∀i ∈ B, ∀t ∈ H} (21)

∑
i∈B

xw
i = Nmax

w (22)

∑
i∈B

xpv
i = Nmax

pv . (23)

Unlike the one defined in Equations (1)–(11), in this optimization model, the binary
variable xb

i is set as 1 in the nodes where these BESS will be assigned. Moreover, there are
two new binary variables regarding the optimal integration of renewable generators based
on photovoltaic and wind technologies, i.e., xpv

i and xw
i . In addition to these variables, the

power injection in both sources is represented by means of ppv
i,t and pw

i,t, which includes their

minimum and maximum generation bounds ppv,min
i,t , ppv,max

i,t , pw,min
i,t , and pw,max

i,t , respec-
tively. Nmax

pv and Nmax
w represent the maximum number of distributed generators available

for integration in a monopolar DC network.
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xpv
i Binary variable that defines whether a PV source is connected at node i or not.

xw
i Binary variable that defines whether a wind source is connected at node i or not.

ppv
i,t

Power generation in the PV source connected at node i in the period of time
t (W).

pw
i,t

Power generation in the wind source connected at node i in the period of time
t (W).

ppv,min
i,t

Minimum power generation in the PV source connected at node i in the period
of time t (W).

pdg,max
i,t

Maximum power generation in the PV source connected at node i in the period
of time t (W).

pw,min
i,t

Minimum power generation in the wind source connected at node i in the period
of time t (W).

pw,max
i,t

Maximum power generation in the wind source connected at node i in the period
of time t (W).

Nmax
pv

Maximum number of PV sources available for integration in a monopolar DC
network.

Nmax
w

Maximum number of wind sources available for integration in a monopolar DC
network.

2.4. Interpretation of the Optimization Models

The general mathematical formulation given from Equations (1)–(23) represents the
exact MINLP formulation for two problems. The first problem corresponds to the op-
timal selection and location of BESS in monopolar DC networks, whereas the second
model defines the optimal siting and sizing of renewable generation sources in monopolar
DC networks.

2.4.1. BESS Model Interpretation

In this optimization problem, Equation (1) corresponds to the formulation of the
objective function, which is entrusted with defining the total grid energy losses costs for a
daily operation scenario; Equation (2) corresponds to the power equilibrium constraint at
each node of the network for each period of time; Equation (3) defines the linear behavior of
the state of charge of the BESS; Equations (4) and (5) represent the initial and final desired
states of charge of the BESS; inequality constraints Equations (6)–(8) define the upper and
lower bounds for power generation in the slack source, the renewable energy resources, and
the BESS, respectively; inequality constraint Equation (9) is known as the voltage regulation
constraint, which corresponds to physical bounds for the voltage magnitudes in all nodes
of the network in order to ensure the correct operation of all the devices connected to it;
and inequality constraints Equations (10) and (11) define the lower and upper operation
bounds for the BESS integrated into the monopolar DC network and the maximum number
of batteries that can be installed on the grid, respectively.

2.4.2. Renewable Energy Model Interpretation

In the case of the optimization model for optimal integration of renewable energy
systems in a monopolar DC network, the minimization of daily energy losses costs is
considered as the objective function, as defined in Equation (1). In addition, the power
equilibrium is defined via Equation (12). Equation (13) defines the linear behavior of the
state of charge for the batteries connected across the DC network. Equations (4) and (5)
represent the initial and final desired states of charge of the BESS. The set of inequality
constraints (16)–(19) defines the minimum and maximum power injection bounds in the
slack source, the renewable energy resources, and the BESS, respectively. Inequality con-
straints Equations (20) and (21) have the same interpretation as Equations (9) and (10),
respectively. Finally, inequality constraints Equations (22) and (23) define the maximum
number for photovoltaic and wind generation sources that can be integrated into the
monopolar DC network, respectively.
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3. Proposed MIC Reformulation

Mathematical Formulations (1)–(11), (1), and (12)–(23) constitute a general MINLP
formulation to integrate BESS and renewable energy sources in monopolar DC networks,
even if the objective function is convex, since the conductance matrix G is positive semi-
definite and most of the equations are linear or linear-integer. However, the nonlinearity
of these models lies in the power equilibrium constraints, i.e., Equations (2) and (12),
specifically in the product between the voltage variables on their right-hand side [25].

Note that, in order to obtain an equivalent MIC formulation that represents the exact
MINLP models for the studied problems, the McCormick equivalent of the product between
two positive variables is employed as initially presented in [19]. To illustrate the equivalent
representation of the product of two positive variables, consider Equation (24):

f (w1, w2) = w1w2. (24)

Now, if we apply Taylor’s series expansion around the linearizing point (w10, w20),
the following general expansion of the product between two variables is obtained [18]:

f (w1, w2) = w20w1 + w10w2 + w10w20 + fH.O.T(w1, w2, w10, w20), (25)

where fH.O.T(w1, w2, w10, w20) are known as the high-order-terms of the Taylor’s series
expansion. Note that these terms can be neglected for power flow analysis, since the voltage
magnitudes exhibit small variations around the 1.0 value when a per-unit representation is
used [18]. Now, by changing the generic variables w1 and w2 for the voltage variables vi,t
and vj,t, the linear equivalent constraint associated with the power balance at each node of
the network for both optimization models is obtained.

pi,t + pdg
i,t + ∑

b∈E
pb

i,t − pd
i,t = ∑

j∈B
Gij(vi,tvj0,t + vi0,tvj,t − vi0,tvj0,t), {∀i ∈ B ∀t ∈ H} (26)

pi,t + pw
i,t + ppv

i,t + ∑
b∈E

pb
i,t − pd

i,t = ∑
j∈B

Gij(vi,tvj0,t + vi0,tvj,t − vi0,tvj0,t),
{
∀i ∈ B
∀t ∈ H

}
(27)

f (w1, w2) General nonlinear function of two variables.
w1 Auxiliary variable number 1.
w2 Auxiliary variable number 2.
w10 Initial value of the auxiliary variable number 1.
w20 Initial value of the auxiliary variable number 2.
fH.O.T(·) High-order terms of the Taylor series expansion for a general nonlinear function.
vi0,t Initial voltage value at node i for each period of time t (V).
vj0,t Initial voltage value at node j for each period of time t (V).

Remark 1. Once the power balance constraint for each optimization model has been linearized
using the McCormick equivalent, the MIC models for both studied problems take the following form:

i. The MIC model to select and locate BESS in monopolar DC networks is defined by Equation (1)
and the set of constraints Equations (3)–(11), as well as by the linear equivalent power flow
Equation (26).

ii. The MIC model to place and size renewable energy resources in monopolar DC networks is
defined by Equation (1) and the set of constraints Equations (12)–(23), as well as by the linear
equivalent power flow Equation (27).

4. Solution Methodology

The objective of this research is to propose a general solution methodology for simul-
taneously integrating BESS and renewable energy resources in monopolar DC networks.
To this effect, an algorithm is proposed which solves the mixed-integer models at the
same time by setting the location of the renewable energy sources for the BESS model and
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the renewable generation one. The proposed algorithmic implementation is presented in
Algorithm 1.

Algorithm 1 Simultaneous allocation of BESS and renewable energy sources in
monopolar DC networks using MIC models and recursive programming.

Data: Define the monopolar DC network under analysis
Select the average renewable energy availability curves;
Define the per-unit equivalent of the network;
Implement the optimization model for BESS in the CVX environment from
MATLAB using the Gurobi solver;

Set the location of the renewable energy sources into the BESS model;
Solve the optimization model for BESS;
for l = 1 : Lmax do

Set these BESS in the optimization model for locating and sizing renewable
energy sources;

Implement the optimization model for renewable energy sources in the CVX
environment from MATLAB using the Gurobi solver;

Solve the optimization model for renewable energy sources;
Implement the optimization model for BESS in the CVX environment from
MATLAB using the Gurobi solver;

Set the location of the renewable energy sources into the BESS model;
Solve the optimization model for BESS;
if Did the location of the BESS change? then

Continue with the searching process;
else

Report the final solution for the BESS and the renewable energy sources;
break;

end
end
Result: Present the optimal solution for the BESS and the renewable energy

sources

Note that the recursive implementation in Algorithm 1 allows for the simultaneous
allocation of BESS and renewable energy sources in monopolar DC networks using convex
programming, which ensures that the global optimum is found for each optimization
model [26,27]. Note that this algorithmic solution corresponds to the main contribution of
this research.

5. Monopolar DC Network under Study

To validate the effectiveness of the proposed MIC models in the optimal integration of
distributed energy resources for monopolar DC networks, the 21-bus system was employed.
This system was originally proposed by [28] to analyze the convergence of the Newton–
Raphson power flow method in DC grids. All the electrical parameters of the 21-bus grid,
i.e., the resistances of the distribution lines, and the power consumption during peak hours
were taken from [18] and are listed in Table 1. In addition, the electrical configuration of
this distribution grid is presented in Figure 1.

To evaluate the daily energy performance, Table 2 presents the values for the demand
and energy costs, considering that ∆t is defined as a half-hour, which produces 48 values.
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Table 1. Parametric information of the 21-bus grid (the power and voltage bases are 1 kV and 100 kW).

Node i Node j Rij (pu) Pj (pu) Node i Node j Rij (pu) Pj (pu)

1 (slack) 2 0.0053 0.70 11 12 0.0079 0.68
1 3 0.0054 0.00 11 13 0.0078 0.10
3 4 0.0054 0.36 10 14 0.0083 0.00
4 5 0.0063 0.04 14 15 0.0065 0.20
4 6 0.0051 0.036 15 16 0.0064 0.23
3 7 0.0037 0.00 16 17 0.0074 0.43
7 8 0.0079 0.32 16 18 0.0081 0.34
7 9 0.0072 0.80 14 19 0.0078 0.09
3 10 0.0053 0.00 19 20 0.0084 0.21

10 11 0.0038 0.45 19 21 0.0081 0.21

slack

=
∼ 1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

Figure 1. Grid configuration of the 21-bus system.

Table 2. Demand and energy cost variations for a typical day of operation.

Time
(h)

CoE
(pu)

Dem.
(%)

Time
(h)

CoE
(pu)

Dem.
(%)

Time
(h)

CoE
(pu)

Dem.
(%)

0.5 0.8105 34 8.5 0.9263 62 16.5 0.9737 90
1.0 0.7789 28 9.0 0.9421 68 17.0 1 90
1.5 0.7474 22 9.5 0.9579 72 17.5 0.9947 90
2.0 0.7368 22 10.0 0.9579 78 18.0 0.9895 90
2.5 0.7263 22 10.5 0.9579 84 18.5 0.9737 86
3.0 0.7316 20 11.0 0.9579 86 19.0 0.9579 84
3.5 0.7368 18 11.5 0.9579 90 19.5 0.9526 92
4.0 0.7474 18 12.0 0.9526 92 20.0 0.9474 100
4.5 0.7579 18 12.5 0.9474 94 20.5 0.9211 98
5.0 0.8000 20 13.0 0.9474 94 21.0 0.8947 94
5.5 0.8421 22 13.5 0.9421 90 21.5 0.8684 90
6.0 0.8789 26 14.0 0.9368 84 22.0 0.8421 84
6.5 0.9158 28 14.5 0.9421 86 22.5 0.7947 76
7.0 0.9368 34 15.0 0.9474 90 23.0 0.7474 68
7.5 0.9579 40 15.5 0.9474 90 23.5 0.7211 58
8.0 0.9421 50 16.0 0.9474 90 24.0 0.6947 50

Note that the value of the energy costs is set as COP$/kWh 479.3389, just as in [18] for
the same test feeder.

The electrical information of the BESS that can be integrated into the 21-bus grid is
reported in Table 3. The batteries are classified using letters A and B according to the
expected charging/discharging rates while considering nominal operation. Note that the
initial location of these batteries was also taken from [18].
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Table 3. BESS information.

Node Type φb pb,max pb,min

7 A 0.0625 4 −3.2
10 B 0.0813 3.2 −2.4616
15 B 0.0813 3.2 −2.4616

For this test feeder, the existence of two renewable energy resources was considered:
one of them with wind technology and the other one with photovoltaic generation. The
nominal sizes of these renewable generators is presented in Table 4, along with their initial
locations. Their expected daily behavior is listed in Table 5.

Table 4. Nominal sizes of the renewable energy sources.

Node Type Pmax (pu) Pmin (pu)

12 Wind 2.2152 0
21 Photovoltaic 2.8158 0

Table 5. Daily behavior of the renewable energy resources.

Period
(h) Pw (pu) Ppv

(pu)
Period

(h) Pw (pu) Ppv
(pu)

Period
(h) Pw (pu) Ppv

(pu)

0.5 0.6303 0 8.5 0.8271 0.0403 16.5 0.9892 0.4193
1.0 0.6194 0 9.0 0.8523 0.1344 17.0 0.9652 0.2784
1.5 0.6098 0 9.5 0.8788 0.2710 17.5 0.9244 0.1373
2.0 0.6050 0 10.0 0.9064 0.3673 18.0 0.8607 0.0374
2.5 0.6122 0 10.5 0.9328 0.4584 18.5 0.7743 0.0007
3.0 0.6411 0 11.0 0.9520 0.6125 19.0 0.7251 0
3.5 0.6927 0 11.5 0.9640 0.8134 19.5 0.7167 0
4.0 0.7395 0 12.0 0.9700 0.9122 20.0 0.7167 0
4.5 0.7779 0 12.5 0.9748 0.9633 20.5 0.7251 0
5.0 0.7887 0 13.0 0.9784 1.0000 21.0 0.7263 0
5.5 0.7671 0 13.5 0.9832 0.9582 21.5 0.7179 0
6.0 0.7479 0 14.0 0.9880 0.8791 22.0 0.7095 0
6.5 0.7287 0 14.5 0.9940 0.7308 22.5 0.6987 0
7.0 0.7371 0 15.0 0.9988 0.7645 23.0 0.6915 0
7.5 0.7731 0 15.5 1.0000 0.6866 23.5 0.6867 0
8.0 0.8031 0.0016 16.0 0.9964 0.5893 24.0 0.6831 0

6. Numerical Implementation and Results

The implementation of the MIC model was prepared and executed on a desktop
computer with an AMD Ryzen 5 3600 6-Core 3.56 GHz processor and 16 GB RAM running
a 64-bit version of Windows 10. The Matlab R2021b software was used with Gurobi version
9.5.1. The exact MINLP model was solved using the General Algebraic Modeling System
(GAMS) software (GAMS Development Corp., Fairfax, VA, USA) (version 23.5) and the
BONMIN solver.

Remark 2. The operation of the batteries for all scenarios was set while considering that these
BESS will have maintained 50% of their energy stored at the beginning and the end of a day.

To validate the proposed recursive convex model to locate and size distributed en-
ergy resources in monopolar DC networks, four simulation cases were considered as
presented below.

• Case 1: The initial locations of the BESS and renewable energy sources are maintained
as indicated in Tables 3 and 4. The exact MINLP model and the MIC approximation
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are evaluated with the binary variables fixed. These solutions provide the reference
cases for both models.

• Case 2: This simulation case employs the proposed MIC model to find the optimal
location of the BESS. These locations are set in the exact MINLP model in order to
determine the exact value of the objective function.

• Case 3: This simulation case employs the proposed MIC model to optimally allocate
the renewable energy resources. These locations are set in the exact MINLP model in
order to determine the exact value of the objective function.

• Case 4: The simultaneous location of the BESS and the renewable energy sources is
found via the recursive implementation in Algorithm 1. These locations are set in the
exact MINLP model in order to determine the exact value of the objective function.

These cases were proposed to assess the efficiency of the integer-mixed convex model
when locating BESS and renewable sources. The results were compared while regarding
each problem as independent and considering the BESS and renewable sources to be
simultaneously located.

6.1. Numerical Results for Case 1

This simulation scenario provides the reference case for the proposed MIC model and
the exact MINLP formulation when the original location of the BESS and renewable sources
are maintained (Tables 3 and 4). The electrical behavior of the BESS for this simulation case
is presented in Figure 2.

It can be seen in Figure 2 that the deviations between the convex and the exact models
are minimal. Also note that the state of charge and discharge of each battery starts and
ends at 50% and the maximum charge value between the three batteries is 77.2%, while
the lowest value observed is 49.1%. The batteries at nodes 10 and 15 are charged until
period 34, after which the stored energy is supplied to the network, while the battery
located at node 7 is charged until period 17, after which it delivers energy to the network.
These variations show that the batteries depend on the energy demand connected to the
distribution network.

Table 6 presents the optimal solutions obtained with the proposed MIC model and the
MINLP one. When comparing our proposal with the MINLP model, the estimation error is
about 3.90%, which is indeed a minimum error, taking into account that the MIC model is
the first approximation of the exact MINLP model [18].

Table 6. Numerical results for the MIC and MINLP models in Case 1.

Model BESS’ Location Generators’ Location Costs (COP$/Day) Error (%)

MINLP 7 (A), 10 (B), 15 (B) 12 (Wind), 21 (PV) 52,957.92 0
MIC 7 (A), 10 (B), 15 (B) 12 (Wind), 21 (PV) 50,890.10 3.90
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Figure 2. Comparison between exact the MINLP model and the proposed MIC model for Case 1:
(a) SoC for battery at node 7, (b) SoC for battery at node 10, and (c) SoC for battery at node 15.

6.2. Numerical Results for Case 2

In this simulation case, the original location of the renewable energy sources is fixed,
and the optimization model in Equations (1), (3)–(11), and (26) is implemented in the CVX
environment with the Gurobi solver in order to determine the best possible reallocation
sizes for the BESS. The numerical results of this simulation case are listed in Table 7. Note
that these locations are also set in the MINLP model in order to find the approximation
error of our proposal.

Table 7. Numerical results for the MIC and MINLP models in Case 2.

Model BESS’ Location Generators’ Location Costs (COP$/Day) Error (%)

MINLP 21 (A), 9 (B), 16 (B) 12 (Wind), 21 (PV) 41,847.61 0
MIC 21 (A), 9 (B), 16 (B) 12 (Wind), 21 (PV) 40,202.20 3.93

The numerical results in Table 7 show that the proposed convex model finds an
objective function value of COP$/day 40,202.20 by reallocating all the batteries to different
nodes with respect to the benchmark case. The new locations of the BESS are node 21
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for the type A battery and nodes 9 and 16 for the type B batteries. Note that, when
these new locations are fixed in the exact MINLP model, the final value of the objective
function is COP$/day 41,847.61. The estimation error between both models is about
3.93%, which confirms the effective approximation made by the convex model to the exact
optimization model.

Remark 3. By comparing the solution values for the MINLP model in Cases 1 and 2, it is observed
that the improvement of the objective function is about 11,110.31 Colombian pesos (COP) per day of
operation, i.e., an improvement of 20.56% with respect to the benchmark case.

6.3. Numerical Results for Case 3

In this simulation case, the locations of the batteries provided by the benchmark
case are fixed (Table 3), and the proposed MIC model finds the optimal locations for the
renewable energy sources. Once the convex model is solved, the new locations for the
generators are set in the MINLP model in order to find the exact value of the objective
function. All the numerical results for this scenario are listed in Table 8.

Table 8. Numerical results for the MIC and MINLP models in Case 3.

Model BESS’ Location Generators’ Location Costs (COP$/Day) Error (%)

MINLP 7 (A), 10 (B), 15 (B) 10 (Wind), 15 (PV) 29,697.73 0
MIC 7 (A), 10 (B), 15 (B) 10 (Wind), 15 (PV) 28,693.60 3.38

The numerical results in Table 8 show that the MIC model finds node 10 as the
best location for the wind generators (originally at node 12) and node 15 for the PV
source (originally at node 21), i.e., the generators must be moved to achieve a better
performance regarding the objective function value. Note that this value, as approximated
with the MIC model, was COP$/day 28,693.60. However, when the new locations of
the generation sources were evaluated in the MINLP model, the final objective function
value was COP$/day 29,697.73. These results imply an estimation error of 3.38%, thus
confirming the efficiency of the proposed MIC model at approximating the exact solution
of the studied problem.

Remark 4. By comparing the solution values for the MINLP model in Cases 1 and 3, it is observed
that the improvement of the objective function is about COP$/day 23260.19, i.e., an improvement of
43.33% with respect to the benchmark case. This result confirms that there is a better set of nodes
to install all the renewable energy resources, with important contributions to the total costs of the
energy losses per day of operation.

6.4. Numerical Results for Case 4

This simulation scenario corresponds to the simultaneous allocation of BESS and
renewable energy sources in the monopolar DC network while considering the recursive
implementation illustrated in Algorithm 1. This simulation case starts by fixing the location
of the renewable energy resources and finding the location of the batteries. Then, the
location of the BESS is fixed, and the location of the renewable sources is found. This process
is repeated until the location of BESS and the renewables remains unaltered, as this will be
the optimal solution of the problem. The search process of the aforementioned methodology
is listed in Table 9, along with its numerical results.

The numerical results in Table 9 show that, after four iterations, the location of the
BESS and renewable energy sources is not further modified. The wind generator is assigned
to node 10, the photovoltaic source to node 16, the type A battery to node 16, and the type
B BESS to nodes 9 and 16. Note that the final objective function value at iterations 4 and 5
differs by about COP 5, even though the locations of the generators and the BESS are the
same. This behavior is due to the fact that the model for iteration 4 determines the location
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of the generators by fixing the BESS, while the model for iteration 5 fixes the location of the
generators and determines the location of the BESS.

Table 9. Search process for the simultaneous allocation of BESS and renewables in monopolar DC
networks using MIC models and recursive programming.

IterationGen. Location BESS’ Location Costs (COP$/Day) Gen. Model BESS’ Model

1 Wind:12, PV:21 A:21, B:9, B:16 40,202.2 X
2 Wind:11, PV:16 A:21, B:9, B:16 25,075.0 X
3 Wind:11, PV:16 A:16, B:9, B:12 24,438.5 X
4 Wind:10, PV:16 A:16, B:9, B:12 23,993.2 X
5 Wind:10, PV:16 A:16, B:9, B:12 23,987.3 X

Note that, in order to verify the efficiency of the proposed recursive model at locating
renewables and batteries in monopolar DC networks, the final location of both devices (see
row with iteration 5 in Table 9) is evaluated in the exact MINLP model to find the final
exact value of the objective function. These results are listed in Table 10.

Table 10. Numerical results for the MIC and the MINLP models in Case 4.

Model BESS’ Location Generators’ location Costs (COP$/Day) Error (%)

MINLP 16 (A), 9 (B), 12 (B)) 10 (PW), 16 (PV) 24,734.98 0
MIC 16 (A), 9 (B), 12 (B) 10 (PW), 16 (PV) 23,987.30 3.02

Note that the estimation error between the exact MINLP model and the proposed MIC
model is just 3.02% regarding the final objective function values. This result confirms that
the proposed convex model is efficient at solving problems regarding distributed energy
resource allocation in monopolar DC networks.

Remark 5. By comparing the solution values for the MINLP model in Cases 1 and 4, it is observed
that the improvement of the objective function is about COP 28,222.94 per day of operation, i.e.,
an improvement of 53.29% with respect to the benchmark case. This result demonstrates that, for
the 21-bus grid, there is a better combination of nodes to locate BESS and renewables than the
benchmark case reported in [18].

To illustrate the effectiveness of the MIC model at operating all the batteries in the
21-bus system, Figure 3 compares the daily operation of the batteries in nodes 9, 12, and 16.
Notice that, as expected, all the batteries begin and end the day with 50% states of charge.

On the other hand, changes in the daily operation of the batteries between Cases 1
and 4 are also observed (compare Figures 2 and 3). Note, for example, that the batteries at
nodes 9 and 12 now have state-of-charge peaks of 79.10 and 76.40% in simulation Case 4. In
addition, starting at period of time 18, both batteries (Figure 3a,b) begin their discharging
process. The most noticeable change is observed in Figure 3c. This battery is located in the
same node as the photovoltaic source, and its state of charge and discharge is affected by
it (location of the PV source), obtaining the maximum discharge in period 33, which was
not observed in any of the graphs for the batteries presented in Figure 3. In addition, these
graphs have a more pronounced behavior (higher slopes), which implies that the impact
of the batteries on the DC network is even greater. This is why a reduction percentage of
53.29% was observed with respect to Case 1, which, in turn, demonstrates the effectiveness
of the proposed model.
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Figure 3. Comparison between the exact MINLP model and the proposed MIC one for Case 4:
(a) SoC for battery at node 9, (b) SoC for battery at node 12, and (c) SoC for battery at node 16.

6.5. Summary of the Methodology

To illustrate the effect of placing the battery energy storage systems and the renewable
energy resources on the objective function value, Figure 4 presents the daily behavior of
the objective function for all the cases studied in the previous section.

Figure 4 presents the costs of the energy losses for all the cases considered regarding
the location of BESS and renewable generators. Note that the area below each curve
shows that the objective function is directly influenced by the position of the batteries and
renewable energy sources. The main characteristic of the curves in Figure 4 is that the
distributed energy resources can reduce the peak of the energy losses curves and flatten
the curve, which is mainly associated with a better redistribution of the energy flow across
the DC network due to the better locations of the distributed energy resources.
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Figure 4. Daily behavior of the energy losses costs in the 21-bus grid as a function of the location of
the distributed energy resources.

7. Conclusions and Future Work

This paper presented two MIC models for locating BESS and renewable energy sources
in monopolar DC networks, which correspond to the convex approximations of the exact
MINLP models for these problems. The main advantage of these formulations is that they
ensure that the global optimum is found in MIC models by combining the Branch and Cut
method with interior points, given the convexity of the solution space for each combination
of binary variables. In addition, when the solution of the proposed MIC models was tested
against the exact MINLP formulation, the estimation error of the objective function was
lower than 4.0% in all simulation cases, which clearly confirms the effectiveness of the
proposed models in solving the location of distributed energy resources for monopolar
DC networks.

The following remarks can be made according to the numerical results of the four
tested cases: (i) all the simulation cases show that, with respect to the benchmark case, there
were improvements in the final expected daily energy losses costs; (ii) the best scenarios
for objective function minimization where Cases 3 and 4, where renewable generators
are located by fixing battery positions or both devices are simultaneously allocated (these
results confirm that the higher impact on the final objective function is provided by the
final location of the renewable energy source in the monopolar DC system); and (iii)
the charging/discharging behavior of the BESS is highly influenced by their proximity
to the renewable energy resources, since, when both devices are at the same node, the
charging/discharging procedure does not contribute to additional energy losses because
the energy interchange between both devices is performed in the same node without grid
interaction.

Possible future works derived from this article can involve the following: (i) integrating
the BESS model and the renewable energy location one into a unique mixed-integer convex
model in order to non-iteratively solve the problem regarding the location of both devices,
and (ii) proposing an improvement of the McCormick model to approximate the voltage
profiles, using a recursive programming model that allows minimizing the estimation error
of the objective function between the MINLP model and the MIC ones.
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