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Abstract: The decision-making of sustainable supply chain network (SSCN) design is a strategy
capacity for configuring network facility and product flow. When optimizing conflicting economic,
environmental, and social performance objectives, it is difficult to select the optimal scheme from
obtained feasible decision schemes. In this article, according to the triple bottom line of sustain-
ability, a multi-objective sustainable supply chain network optimization model is developed, and a
novel performance-oriented optimization framework is proposed. This framework, referred to as
performance-oriented optimization framework, integrates multi-objective meta-heuristic algorithms
and entropy-weighted technique for order preference by similarity to an ideal solution (EW-TOPSIS).
The optimization framework can comprehensively evaluate the performance of overall SSCN by
EW-TOPSIS and guide the evolution process of algorithms. In this framework, decision-makers can
obtain the feasible schemes calculated by meta-heuristics and determine the optimal one accord-
ing to the performance value evaluated by EW-TOPSIS. This article combines three performance
evaluation strategies with four meta-heuristic algorithms, namely, non-dominated Sorting Genetic
Algorithm-II (NSGA-2), multi-objective differential evolutionary (MODE), multi-objective particle
swarm optimization (MOPSO), and multi-objective gray wolr optimization (MOGWO), for verifying
the effectiveness of the performance-oriented optimization framework. The results validate that the
proposed framework has much better sustainability performance than the traditional optimization
algorithms and evaluation methods. Furthermore, the proposed performance-oriented optimiza-
tion framework can provide managers with a special optimal scheme with the best sustainability
performance. Finally, some research prospects are presented such as more multi-criteria decision
making methods.

Keywords: sustainable supply chain; performance evaluation; entropy-weighted TOPSIS; meta-
heuristic; multi-objective optimization

1. Introduction

Recently, sustainable supply chain network design (SSCND), which consists of eco-
nomic development, environmental protection and social responsibility, has played an
important role in improving the performance and efficiency of a supply chain,. SSCND
spans strategy decisions, tactical decisions and operational decisions involving facilities
location, quantity and capacity of facilities, selection of transportation modes and product
flow between facilities. However, the strategy decision, which indicates the configuration of
the supply chain network, cannot be changed on the whole horizon, because the economic
and time cost of network change are huge. On the other hand, the tactical decisions, such as
product flow and facilities capacity, can be adjusted with the change in production periods
or various scenarios.

For many years, supply chain network design (SCND) has primarily aimed to mini-
mize the total cost or maximize the total profit of a supply chain for seeking maximized
economic performance, without taking into consideration environmental pollution or the
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health of employees. However, recently, with the increasing awareness of the need to pro-
tect the ecological environment and safeguard the rights of employees, non-governmental
organizations and social media are demanding that enterprises should take responsibility
for their productions and operations in their supply chain network [1]. The focus on eco-
logical and social impacts of supply chain operation has led to the development of a novel
paradigm named “sustainability”. It is becoming common and critical for supply chain
managers to take into consideration sustainable performance in SCND. The concept of
“sustainability” reminds us that present development should consider and not compromise
the needs of future generations. Although simple in the above definition, the way to
realize sustainable development is complex and difficult in real supply chain activities. For
operationalizing sustainability in supply chain activities, a central concept called the triple
bottom line is proposed, which divides sustainability into three dimensions: the business
case (economic), the societal case (social) and the natural case (environmental) [2–5]. The
triple bottom line of economic, environmental and social performance are interconnected.
Most of the research has proposed that there is a positive correlation between reducing
environmental pollution, assuming social responsibility and improving economic bene-
fit [6,7]. Compared to the traditional supply chain network, the sustainable supply chain
can not only obtain the dual economic and environmental performance, but also seek an
excellent trade-off between economic, social and ecological performance [8].

In order to respond to the sustainability paradigm, some studies have begun to take
into consideration sustainable supply chain management (SSCM) in SSCND. However,
the research on SSCND that quantitatively models all three dimensions of sustainability
is limited [9]. Moreover, most research in the field of SSCM only pays attention to the
responsive and resilient feature of the SSCN but fails to take into consideration a critical
characteristic of sustainable performance measurement. Sustainable supply chain perfor-
mance measurement can be defined as the process of measuring the efficiency and influence
of an action or an object quantitatively and/or qualitatively [10,11]. The main purpose of
SSCPM is to determine the best among existing alternative schemes [12]. It is critical to
determine appropriate indicators for evaluating sustainability performance. Measurement
indicators are utilized to represent the state of economical, natural, and social development
in the supply chain network system [13]. Nevertheless, because too many indicators will
lead to inconsistency of dimensions, it is difficult to measure supply chain sustainability
performance. Therefore, the problem is that all valuations should be simplified into a single
one-dimensional standard in certain ways. To address the above problem, multi-criteria
decision-making (MCDM) introduces a solution framework. In MCDM, all measurement
indicators are presented in their original form. That is to say, the MCDM approach provides
the most constructive solution framework for assessing sustainability performance.

It can be concluded that sustainable supply chain optimization can obtain some feasi-
ble schemes for optimizing strategy and tactical decisions, and MCDM can evaluate supply
chain sustainability performance for selecting the optimal decision scheme. Nevertheless,
most academic studies divide supply chain network optimization and sustainability perfor-
mance measurement [14]. In the author’s view, optimization and evaluation are inseparable
in SSCND. Mandal et al. also support this view, and they adopted the TOPSIS method
to evaluate the obtained results calculated by multi-objective meta-heuristic algorithms
in multi-objective machining problems [15]. In an attempt to integrate network optimiza-
tion and performance measurement, a performance-oriented optimization framework is
developed. According to this framework, a set of feasible solutions can be obtained by
optimization approaches and sorted by MCDM methods. The optimal solution can be se-
lected based on evaluation efficiency values calculated by special evaluation methods. The
greatest difference with Mandal’s thought is that the optimization process and performance
measurement are performed simultaneously, and the network optimization is guided by
sustainability measurement.

The structure of this article is as follows: Section 2 reviews some literature involving
supply chain network optimization, multi-criteria decision making and the integration of
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network optimization and performance evaluation. Section 3 formulates a multi-objective
mixed-integer linear programming model. In Section 4, a performance-oriented optimiza-
tion framework is developed. Section 5 represents the result and discussion related to a
numerical example. In Section 6, the conclusions are elaborated.

2. Literature Review
2.1. Supply Chain Network Optimization

Supply chain network optimization can be classified as a mathematical programming
problem. Multi-objective optimization based on triple bottom line indicators is widely
used to model the SSCND problem. Nayeri et al. consider economic, environmental,
and social aspects as optimization objectives for designing SCLSC network [16]. A multi-
objective mixed-integer programming (MOMIP) model was developed, and multi-choice
goal programming with the utility function was used to solve the MOMIP model. To
broaden the dimensions of supply chain features, they introduced responsive indicators and
resilient indicators into the supply chain network for optimizing a sustainable, responsive,
and resilient supply chain [17]. Zhang et al. formulated a MOMIP model considering
economic performance and social aspects [18]. The lost working days caused by work
damages modeled by fuzzy programming are considered social indicators. Pourmehdi et al.
formulated a multi-objective stochastic programming model to design a sustainable steel
supply chain [19]. They considered the total cost as economic performance and emission
in production as the environmental aspect. Soleimani et al. modeled a green sustainable
closed-loop supply chain by considering environmental protection, profit optimization,
and a decrease in lost workdays caused by occupational accidents [20]. The improved
genetic algorithm was adopted to solve their developed model. Abad et al. proposed a
novel bi-objective chance-constraint programming approach for dealing with the uncertain
green supply chain [21]. The first objective aims to minimize the total cost, and the
second objective controls the scatter of uncertain cost, which is described as the variance in
stochastic variable cost. Fazli-Khalaf et al. formulated a bi-objective programming model
for a green reliable supply chain, which aims to minimize total operating cost and maximize
the greenness of the designed supply chain network [22]. They developed a novel fuzzy
robust stochastic optimization technical for coping with hybrid uncertainty in the supply
chain network.

2.2. Supply Chain Performance Evaluation

MCDM methods are widely used in supply chain management, mainly consisting
of supplier selection and sustainability measurement. Supplier selection is an important
strategic decision for sustainable supply chain management, which is regarded as a process
of MCDM [23,24]. Sustainability measurement is usually performed to evaluate sustainabil-
ity performance in terms of multiple aspects within the triple bottom line framework [12].
The purpose of adopting MCDM methods is to find the optimal scheme in the existing
feasible schemes for performing supplier selection and sustainability performance evalua-
tion [23,25,26]. Erol et al. divided supply chain sustainability performance evaluation into
economic, environmental and social aspects on the basis of two criteria: “an indicator’s
measurability” and “data availability for a special indicator” [27]. Ahi et al. reviewed the
measure indicators in green supply chain and sustainable supply chain management [11].
The most often used metrics are quality, greenhouse gas emission, air emission, energy
use and energy consumption. They proposed that the economic, environmental and social
aspects are the most efficient indicators used to measure supply chain sustainability per-
formance. Tavassoli et al. developed a double-frontier fuzzy network data envelopment
analysis evaluation model for measuring the sustainability performance of the tomato paste
supply chain [28]. Wang et al. proposed an efficiency sorting multi-objective optimization
framework to make optimization solutions and decision-making on a sustainable supply
chain [22]. In this framework, data envelopment analysis (DEA) was utilized to measure
supply chain performance, and multi-objective optimization algorithms optimized network



Electronics 2022, 11, 3134 4 of 28

design. However, DEA is an MCDM based on input indicators and output indicators. If all
the selected indicators are minimized or maximized, it is difficult to evaluate supply chain
performance by DEA.

TOPSIS, as a commonly used MCDM method, is a technique used to sort finite
evaluation objects according to their proximity to the ideal solution, which has been broadly
adopted to evaluate supply chain sustainability performance and suppliers. Sun et al.
introduced entropy-weighted TOPSIS to assign objective weight values to each evaluation
indicator [29]. Li et al. developed a rough cloud TOPSIS approach for supplier selection
in a sustainable supply chain [23]. Marzouk et al. adopted AHP to calculate the relative
importance weight of suppliers and TOPSIS to measure different suppliers in a constructive
supply chain based on 17 indicators [26]. Venkatesh et al. developed a fuzzy AHP-TOPSIS
method to deal with the complexity in the continuous aid supply chain [30]. Jellali et al.
adopted a fuzzy method for TOPSIS to evaluate the sustainability of the olive oil supply
chain [31]. Moreover, based on a review of MCDM, the most popular MCDM methods are
AHP and TOPSIS [32]. However, the AHP method is based on expert judgment, so it is
subjective, but the TOPSIS model is a completely quantitative and objective MCDM method
for evaluating sustainability performance. Hence, in this article, the entropy-weighted
TOPSIS method is utilized to evaluate the sustainability performance of decision schemes.
Finally, it is critical to determine appropriate evaluation indicators to measure supply chain
performance [12].

2.3. Integrating of Network Optimization and Performance Evaluation

By solving multi-objective supply chain network optimization problems on the basis
of the triple bottom line, the feasible Pareto optimal solution set will be obtained, and it
is difficult to select the optimal scheme from these alternative schemes. The process of
achieving the optimal scheme can be regarded as network decision-making [12]. Little
research has integrated supply chain network optimization and network decision-making.
The common thought in the existing literature is to evaluate and sort the alternative schemes
so as to obtain the optimal scheme with the best evaluation efficiency value.

Validi et al. used three independent optimization algorithms based on genetic algo-
rithms (NSGA-2, MOGA-2 and HYBRID) to solve their green multi-objective model [33].
They paid attention to economic performance by minimizing cost and ecological perfor-
mance by minimizing carbon emissions. Then, using a multi-attribute decision-making
approach, TOPSIS, the solution is adopted to sort obtained alternative transportation
routes. Mandal et al. adopted TOPSIS to evaluate feasible Pareto solutions calculated by
MOPSO and select the optimal one with the best efficiency value in optimizing Cu-MWCNT
composite electrode machining [15]. The solution decision-making approach in the above-
mentioned literature can be summarized as a two-stage technical approach. In the first
stage, heuristic methods are used to obtain the feasible decision scheme set (i.e., the final
Pareto optimal solution set). In the second stage, various multi-criteria decision-making
approaches are adopted to evaluate and sort these Pareto optimal schemes so as to obtain
the optimal scheme. Furthermore, some studies focus on performing supplier measurement
in the first stage and solution decisions in the second stage. Lahri et al. integrated supplier
selection and SSCN design [34]. BMW and TOPSIS are utilized to measure the sustainability
performance of suppliers so as to obtain the green image weight, which is used to design
network design. The ε-constraint method is adopted to solve their multi-objective possi-
bility mixed-integer programming model. Moheb-Alizadeh et al. utilized the bi-objective
DEA method to measure the efficiency of supply chain nodes and considered them as the
optimization objectives [35]. Then, the proposed multi-objective stochastic programming
model was solved by the Lagrangian relaxation algorithm and multi-choice goal program-
ming. It can be seen that two-stage methods in most studies are independent of each
other; in other words, model solution and measurement are independent. Hence, a parallel
approach, integrating optimization and measurement, is proposed in this research. In each
iteration, the feasible solutions in each archive are sorted according to their sustainability
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performance, and then, the sorted individuals guided the next iteration. In this article, the
entropy-weighted TOPSIS method and meta-heuristic algorithms are integrated with the
proposed performance-oriented optimization framework.

3. Model Formulation
3.1. Problem Description

This article examines a generic multi-echelon SSCN, which handles the forward flow
of new products and the reverse flow of end-of-life (EOL) products. The structure of the
generic SSCN structure is illustrated in Figure 1. The proposed network structure can be
modeled in various industries, including the pharmaceutical industry [36], the steel-based
products industry [37] and the tanker industry [17]. In Figure 1, the new products are
produced by manufacturing centers and transited to distribution centers and then to the
customer markets to satisfy their demands. Furthermore, when the products reach the end
of life, the EOL products are collected in recycling centers where they are tested, inspected,
sorted and classified into two different parts: unrecyclable EOL products and recyclable
EOL products. The recyclable EOL products are reprocessed and assembled in recycling
centers and returned to the customer market. On the other hand, unrecyclable EOL
products are transited to disposal centers to be disposed of and scrapped by decomposition
and/or incineration.
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To specify facility location and product flow in the aforementioned SSCN, a MOMIP
model is developed in this article. The proposed multi-objective model aims to minimize
the total cost (economic performance), minimize the pollution emission (environmental per-
formance) and maximize social responsibility by maximizing generated job opportunities
and minimizing lost working days.

3.2. Model Symbols

The corresponding indexes, notations and parameters of the MOMIP model are shown
as follows.
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Indexes
i Index of manufacturing centers, i = 1, 2, . . . , I
j Index of distribution centers, j = 1, 2, . . . , J
k Index of customers, k = 1, 2, . . . , K
m Index of recycling centers, m = 1, 2, . . . , M
n Index of disposal centers, n = 1, 2, . . . , N
v Index of disposal centers, n = 1, 2, . . . , N

Parameters

PRi Price of product from manufacturing i
PRm Price of product from recycling center m
CTijv Transportation cost of product per unit weight from manufacturing center i

to distribution center j by transportation mode v
CTjkv Transportation cost of product per unit weight from distribution center j

to customer k by transportation mode v
CTkmv Transportation cost of product per unit weight from customer k

to recycling center m by transportation mode v
CTmkv Transportation cost of product per unit weight from recycling center m

to customer k by transportation mode v
CTmnv Transportation cost of product per unit weight from recycling center m

to disposal center n by transportation mode v
CHi Inventory holding cost of unit product in manufacturing center i
CHj Inventory holding cost of unit product in distribution center j
CHm Inventory holding cost of unit product in recycling center m
CHn Inventory holding cost of unit product in disposal center n
CPi Processing cost of unit product in manufacturing center i
CPj Processing cost of unit product in distribution center j
CPm Processing cost of unit product in recycling center m
CPn Processing cost of unit product in disposal center n
CRk Recycling price of the product in customer k
ETijv Unit transportation pollution emission from manufacturing center i

to distribution center j by transportation mode v
ETjkv Unit transportation pollution emission from distribution center j

to customer k by transportation mode v
ETkmv Unit transportation pollution emission from customer k

to recycling center m by transportation mode v
ETmkv Unit transportation pollution emission from recycling center m

to customer k by transportation mode v
ETmnv Unit transportation pollution emission from recycling center m

to disposal center n by transportation mode v
EPi Unit processing pollution emission in manufacturing center i
EPj Unit processing pollution emission in distribution center j
EPm Unit processing pollution emission in recycling center m
EPn Unit processing pollution emission in disposal center n
EHi Unit holding pollution emission in manufacturing center i
EHj Unit holding pollution emission in distribution center j
EHm Unit holding pollution emission in recycling center m
EHn Unit holding pollution emission in disposal center n
FJi Fixed job opportunity for manufacturing center i
FJj Fixed job opportunity for distribution center j
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FJm Fixed job opportunity for recycling center m
FJn Fixed job opportunity for disposal center n
V Ji Variable job opportunity for manufacturing center i
V Jj Variable job opportunity for distribution center j
V Jm Variable job opportunity for recycling center m
V Jn Variable job opportunity for disposal center n
FLi Fixed lost working days because of work damages in manufacturing center i
FLj Fixed lost working days because of work damages in distribution center j
FLm Fixed lost working days because of work damages in recycling center m
FLn Fixed lost working days because of work damages in disposal center n
VLi Variable lost working days because of work damages in manufacturing center i
VLj Variable lost working days because of work damages in distribution center j
VLm Variable lost working days because of work damages in recycling center m
VLn Variable lost working days because of work damages in disposal center n
PCapi Processing capacity of manufacturing center i
PCapm Processing capacity of recycling center m
PCapn Processing capacity of disposal center n
HCapj Holding capacity of distribution center j
HCapm Holding capacity of recycling center m
TMCv Capacity of transportation mode v
Dek Product demand of customer k
w The weight of product

Decision variables

Xijv Number of products transited from manufacturing center i
to distribution center j by transportation mode v

Xjkv Number of products transited from distribution center j
to customer k by transportation mode v

Xkmv Number of products transited from customer k
to recycling center m by transportation mode v

Xmkv Number of products transited from recycling center m
to customer k by transportation mode v

Xmnv Number of products transited from recycling center m
to disposal center n by transportation mode v

Yi

{
1 if manufacturing center i is opened
0 otherwise

Yj

{
1 if distribution center j is opened
0 otherwise

Ym

{
1 if recycling center m is opened
0 otherwise

Yn

{
1 if disposal center n is opened
0 otherwise

Zijv

1
if transportation mode v is selected from manufacturing center i
and distribution center j

0 otherwise

Zjkv

1
if transportation mode v is selected from distribution center j
to customer k

0 otherwise

Zkmv

1
if transportation mode v is selected from customer k
to recycling center m

0 otherwise
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Zmkv

1
if transportation mode v is selected from recycling center m
to customer k

0 otherwise

Zmnv

1
if transportation mode v is selected from recycling center m
to disposal center n

0 otherwise

3.3. Model Formulation
3.3.1. Economic Objective Function

The first optimization objective indicates the economic performance of the SSCN,
which aims to maximize total profit. The total profit consists of revenue, inventory holding
cost, transportation cost, processing cost and recycling cost. All components of total profit
represent economic indicators of the SSCN. The calculation of total profit is calculated by
Equation (1).

Max Z1 = Crev− (Ctrans + Cinv + Cpro + Crec) (1)

Crev = ∑
i,j,v

PRiXijv + ∑
m,k,v

PRmXmkv (2)

Ctrans = ∑
i,j,v

CTijvXijv + ∑
j,k,v

CTjkvXjkv + ∑
k,m,v

CTkmvXkmv

+ ∑
m,k,v

CTmkvXmkv + ∑
m,n,v

CTmnvXmnv
(3)

Cinv = ∑
i,j,v

CHiXijv + ∑
j,k,v

CHjXjkv + ∑
k,m,v

CHmXkmv + ∑
m,n,v

CHnXmnv (4)

Cpro = ∑
i,j,v

CPiXijv + ∑
j,k,v

CPjXjkv + ∑
m,k,v

CPmXmkv + ∑
m,m,v

CPnXmnv (5)

Crec = ∑
k,m,v

CRkXkmv (6)

Equation (2) indicates the total revenue of the SSCN, which comes from new products
and renewals of the product. Equation (3) represents transportation costs between two
different kinds of facilities. It is should be mentioned that there is forward product flow
and reverse product flow between customer markets and recycling centers. Equation
(4) indicates the inventory cost involving manufacturing centers, distribution centers,
disposal centers and recycling centers. Furthermore, relation Equation (5) calculates the
total processing cost involving manufacturing centers, distribution centers and recycling
centers. Equation (6) represents the recycling cost from customer markets.

3.3.2. Environmental Objective Function

The second optimization objective represents the environmental performance of the SSCN
involving transportation pollution emission, processing pollution emission and holding pollu-
tion emission. Each kind of pollution emission represents an environmental indicator.

Min Z2 = Etrans + Epro + Ehold (7)

Etrans = ∑
i,j,v

ETijvXijv + ∑
j,k,v

ETjkvXjkv + ∑
k,m,v

ETkmvXkmv

+ ∑
m,k,v

ETmkvXmkv + ∑
m,n,v

ETmnvXmnv
(8)

Ehold = ∑
i,j,v

EHiXijv + ∑
j,k,v

EHjXjkv + ∑
k,m,v

EHmXkmv + ∑
m,n,v

EHmXmnv (9)

Epro = ∑
i,j,v

EPiXijv + ∑
j,k,v

EPjXjkv + ∑
m,k,v

EPmXmkv + ∑
m,n,v

EPnXmnv (10)
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Equation (8) calculates the total transportation pollution emission. Equation (9) repre-
sents the total inventory holding pollution emission of corresponding facilities involving
manufacturing centers, distribution centers and recycling centers. Equation (10) indicates
the total processing pollution emission that is related to manufacturing centers, distribution
centers, disposal centers and recycling centers.

3.3.3. Social Objective Function

Social responsibility is an important dimension of the triple bottom line, whose quan-
titative indicators are difficult to determine. From the perspective of stakeholders and
contracts, social responsibility is defined as the fact that organizations or enterprises should
take responsibility for the environment, stakeholders and so on in daily operation and
business activities [38,39]. The main and most important aspect of the organization’s social
responsibility is the interests of employees.

In this article, the evaluation indicators of social responsibility are determined based on
the established standard ISO2600. Pishvaee et al. measured enterprise social responsibility
based on the interests of different stakeholders according to ISO2600 [40]. In ISO2600, the
two indicators related to the interests of employees include: (1) lost working days caused
by work damage and (2) the number of created job opportunities. The first one reflects the
damage caused to employees by working conditions, and the second indicator reflects the
positive impact on working conditions and on community development.

Hence, the third objective function evaluates social performance, which aims to maxi-
mize job opportunities and minimize lost working days caused by work damages. Both
of the aforementioned social factors are considered social evaluation indicators. How-
ever, two indicators are in different directions, so ξ and ζ are adopted as the components
of the normalization of weight coefficients to job opportunities and missing work days,
respectively.

Max Z3 = ξ× JobO− ζ× LosD (11)

JobO = ∑
i

FJiYi + ∑
j

FJjYj + ∑
m

FJmYm + ∑
n

FJnYn

+ ∑
i,j,v

V JiXijv/Pcapi + ∑
i,j,v

V JjXijv/Hcapj + ∑
m,k,v

V JmXmkv/Pcapi

+ ∑
k,m,v

V JmXkmv/Hcapm + ∑
m,n,v

V JnXmnv/Pcapn

(12)

LosD = ∑
i

FLiYi + ∑
j

FLjYj + ∑
m

FLmYm + ∑
n

FLnYn

+∑
i

VLiXijv/Pcapi + ∑
j

VLjXijv/Hcapj + ∑
m

VLmXkmv/Hcapm

+∑
m

VLmXmkv/Pcapm + ∑
n

VLnXmnv/Pcapn

(13)

The total job opportunities are calculated by Equation (12). The first four terms
represent the total fixed job opportunities due to opening the corresponding network
facilities, while the surplus terms denote the total created variable job opportunities on the
basis of capacity constraints in the corresponding facilities.

The total lost working days are formulated as Equation (13), where the first four
parts represent the number of lost working days due to the damages in opening the
corresponding network facilities. The remaining parts are related to lost working days
resulting from the utilization of facilities’ capacities.

3.3.4. Constraints

Equations (14)–(17) are flow balance constraints. Equation (14) indicates that the product
inflow of distribution centers should be equal to the outflow. Equations (15) and (16) denote the
product inflow of recycling centers divided into the product to be remanufactured and disposed
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of. Equation (17) represents the number of recycled products that should be equal to or less than
the product transported to customer markets.

∑
i,v

Xijv = ∑
k,v

Xjkv ∀j (14)

∑
k,v

Xmkv = η∑
k,v

Xkmv ∀m (15)

∑
n,v

Xmnv = (1− η)∑
k,v

Xkmv ∀m (16)

∑
m,v

Xkmv ≤∑
j,v

Xjkv ∀k (17)

Equation (18) denotes that the product inflow of customer markets should satisfy
the demands.

∑
j,v

Xjkv + ∑
m,v

Xmkv ≥ Dek (18)

Constraints (19)–(21) are processing capacity constraints involving manufacturing
centers, recycling centers and disposal centers.

∑
j,v

Xijv ≤ YiPCapi ∀i (19)

∑
k,v

Xmkv ≤ YmPCapm ∀m (20)

∑
n,v

Xmnv ≤ YnPCapn ∀n (21)

Equations (22) and (23) are holding capacity constraints that are associated with
distribution centers and recycling centers.

∑
i,v

Xijv ≤ YjHCapj ∀j (22)

∑
k,v

Xkmv ≤ Ym HCapm ∀m (23)

Constraints (24)–(28) are transportation mode capacity constraints.

∑
i,j

wXijv ≤∑
i,j

ZijvTMCv ∀v (24)

∑
j,k

wXjkv ≤∑
j,k

ZjkvTMCv ∀v (25)

∑
k,m

wXkmv ≤ ∑
k,m

ZkmvTMCv ∀v (26)

∑
m,k

wXmkv ≤ ∑
m,k

ZmkvTMCv ∀v (27)

∑
m,n

wXmnv ≤ ∑
m,n

ZmnvTMCv ∀v (28)

Equations (29)–(35) represent that the transportation links between any two facilities
are established when the corresponding facilities are opened.

Zijv ≤ Yi ∀i, j, v (29)

Zijv ≤ Yj ∀i, j, v (30)
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Zjkv ≤ Yj ∀j, k, v (31)

Zkmv ≤ Ym ∀k, m, v (32)

Zmkv ≤ Ym ∀m, k, v (33)

Zmnv ≤ Ym ∀m, n, v (34)

Zmnv ≤ Yn ∀m, n, v (35)

Equations (36) and (37) indicate the characteristics of decision variables.

Xijv, Xjkv, Xkmv, Xmkv, Xmnv ≥ 0 ∀i, j, k, m, n, v (36)

Yi, Yj, Ym, Yn, Zijv, Zjkv, Zkmv, Zmkv, Zmnv ∈ {0, 1} ∀i, j, k, m, n, v (37)

4. Performance-Oriented Optimization Framework
4.1. The Basic Framework

To solve the proposed SSCN optimization model, we developed a performance-
oriented optimization framework that contains a performance sorting strategy and an
optimization solution strategy. In the performance sorting strategy, entropy weight TOPSIS
is utilized to measure sustainability performance based on the triple bottom line. In the
optimization solution strategy, meta-heuristic algorithms are used to obtain a set of Pareto
optimal solutions. The flow chart of the performance-oriented optimization framework is
presented in Figure 2, whose essential steps are shown as follows.
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Step 1: Population initialization
Initialize the population, archive and parameters of algorithms.
Step 2: population update
After initializing the parent population, generate the offspring population based on

a special evolution mechanism of different meta-heuristic algorithms. Then, calculate
the fitness function values of each individual in the offspring population. Furthermore,
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according to the fitness function, compare the non-dominant relationship of individuals
and divide them into different layers. The first layer is regarded as the archive. In each
algorithm, the elite individual guides the evolution, which is selected according to the
supply chain performance evaluation strategy.

Step 3: archive update
Compare the dominant relationship between any two individuals in a mixed popu-

lation, which is made up of the offspring population and the archive. According to the
dominant relationship, the non-dominant individuals are considered the final archive.

Step 4: Performance evaluation and sorting
The entropy weight TOPSIS method is utilized to calculate the performance evaluation

value of each individual in the archive. All the Pareto optimal solutions are sorted based on
their evaluation value, and the individual with the best performance is selected as the elite
individual. Furthermore, the elite individual will be used to guide the population’s evolution.

When the algorithm iteration ends, all the individuals in the archive are considered as the
Pareto optimal solutions, and the one with the best evaluation value is the optimal scheme.

4.2. Performance Sorting Strategy

In Section 3, optimization objectives and evaluation indicators of the sustainable
supply chain are developed according to the triple bottom line. The economic indicators
consist of revenue, inventory cost, transportation cost, facility processing cost and recycling
cost. The environmental indicators include transportation pollution emission, inventory
pollution emission and processing pollution emission. The social indicators consist of
lost working days caused by work damage and created job opportunities. Among the
above-mentioned sustainability indicators, the job opportunities and revenue are as large as
possible, while other indicators are as small as possible. On the basis of the established sus-
tainability evaluation indicators system, the entropy weight TOPSIS is utilized to evaluate
the sustainability performance of each scheme.

The decision matrix D is formulated, which consists of decision-making units (DMU)
and performance evaluation indicators (PEI).

D =
(
dij
)

m×n =

d11 · · · d1n
...

. . .
...

dm1 · · · dmn

, i = 1, 2, . . . , m; j = 1, 2, . . . , n (38)

where the subscript n represents the number of performance evaluation indicators and m
states the number of decision making units. dij denotes the value of performance evaluation
indicator j in decision making unit i.

4.2.1. Standardization and Normalization

According to the analyses of objective functions in Section 3.3, all of SC performance
includes contradictory indicators. For example, job opportunities should be as big as possi-
ble, while lost working days should be as small as possible. Therefore, the corresponding
indicators should be standardized before normalization.

If PEI j is a profit indicator, the standardization method is as the following formula.

sij = dij/max
i

(
dij
)
, i = 1, 2, . . . , m; j = 1, 2, . . . , n (39)

If PEI j is a cost indicator, the standardization method is as the listed equation.

sij = min
i

(
dij
)
/dij, i = 1, 2, . . . , m; j = 1, 2, . . . , n (40)

After all indicators are standardized, the normalization method is as follows.

uij = sij/
√

∑
i

sij
2, i = 1, 2, . . . , m; j = 1, 2, . . . , n (41)



Electronics 2022, 11, 3134 13 of 28

4.2.2. Indicators Weight

The indicator weights in traditional TOPSIS are determined by expert scoring, which
is subjective. In order to objectively calculate the indicator weights, the information
entropy method is adopted. ej indicates the entropy value of evaluation indicator j in the
standardized decision matrix.

ej = −k∑
i

uij ln uij (42)

where k = 1/ln m, 0 ≤ ej ≤ 1. If bij = 0, uij ln uij = 0.
E represents the total information entropy of all evaluation indicators.

E = ∑
j

ej = −
1

ln m∑
i,j

uij ln uij (43)

rj measures the dispersity of evaluation indicator value.

rj = 1− ej (44)

If the evaluation value of indicator j is more dispersed, the value of rj is bigger, so
the evaluation indicator j is more important. On the contrary, the more concentrated the
evaluation value dij is, the less important the evaluation indicator j is. If all of the evaluation
values dij are equal and absolutely concentrated, the indicator j is invalid. When evaluating
the individuals in the archive of a multi-objective optimization algorithm, the objective
weight is needed. Therefore, the entropy weights are obtained based on the following
methods.

wj = rj/∑
j

rj =
(
1− ej

)
/∑

j

(
1− ej

)
=
(
1− ej

)
/(n− E) (45)

The weight factor is calculated by Equation (45).

4.2.3. The Weighted Decision Matrix

Based on the standardization decision matrix and the weight vector, the weighted
decision matrix can be calculated by the listed relation.

V =

w1u11 · · · wnu1n
...

. . .
...

w1um1 · · · wnumn

 =

v11 · · · v1n
...

. . .
...

vm1 · · · vmn

 (46)

4.2.4. The Ideal Solution

According to the weighted decision matrix, the positive ideal solution is calculated by
Equation (47), while the negative ideal solution is considered as Equation (48).

v+j =

max
i

(
vij
)

j ∈ J1

min
i

(
vij
)

j ∈ J2
(47)

v−j =

min
i

(
vij
)

j ∈ J1

max
i

(
vij
)

j ∈ J2
(48)

where J1 denotes the set of profit indicators and J2 is the set of cost indicators.

4.2.5. The Relative Distance Calculation

Equation (49) calculates the relative distance between vij and the positive ideal solution.
Equation (50) calculates the relative distance between vij and the negative ideal solution.
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Dis+i =

√
∑

i

(
vij − v+j

)2
, i = 1, 2, . . . , m; j = 1, 2, . . . , n (49)

Dis−i =

√
∑

i

(
vij − v−j

)2
, i = 1, 2, . . . , m; j = 1, 2, . . . , n (50)

4.2.6. Performance Evaluation Value

Equation (51) calculates the performance evaluation value.

evi = Dis−i /
(

Dis+i + Dis−i
)

(51)

According to the performance evaluation value of DMUs calculated by entropy weight
TOPSIS, a sequence table can be formulated by sorting the evaluation value.

4.3. Optimization Solution Strategy

In this section, a performance-oriented optimization framework is developed. The
entropy weight TOPSIS is adopted to measure the supply chain performance of each
DMU. Furthermore, the NSGA-II and MOPSO are utilized as examples of formulating the
optimization framework.

4.3.1. Fast and Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)

NSGA-II is a typical meta-heuristic algorithm based on an individual evolution mech-
anism. The population evolves through selection, crossover and mutation. Deb et al.
introduced an elite non-dominated sorting strategy and elite archive strategy to obtain
Pareto optimal solutions [41]. After generating the offspring population based on the above
three evolutionary operations, the population are divided into several layers by comparing
the dominant relationship. Then, in each layer, all individuals are sorted by calculating
crowding distance, whose pseudo-code is presented in Table 1.

Table 1. The pseudo-code of crowding distance sorting strategy.

Crowding Distance Sorting Strategy

Define the initial crowing distance CD(ai) of all the individuals to zero,
for n = 1 : Nobj, where Nobj is the number of fitness functions.
Rank the individuals in the Pareto front based on the value of fitness functions, given
that Fmaxn is the maximum value of fitness functions of all the individuals and Fminn
is the minimum value.

Set the infinite distance to each individual.
CD(a1) = ∞ and CD

(
anpop

)
= ∞, where npop is the size of the population

for i = 2 : (npop− 1)

CD(ai) = CD(a1) +
Fn(xi−1)−Fn(xi+1)

Fmaxn−Fminn
, where Fn(xi−1) is the nth t function value of the

(i − 1)th individual, and Fn(xi+1) is the nth function value of the (i + 1)th individual.

end for
end for

4.3.2. Multi-Objective Differential Evolution Algorithm (MODE)

MODE is a parallel search algorithm based on biological evolution ideas. The basic
and critical steps of the algorithm consist of selection, crossover and mutation. Compared
to a genetic algorithm, the mutation mechanism in MODE is based on the differential
mutation operation of the parent individuals. The common mutation strategy is shown
as follows.

y = x1 + mu× (x2 − x3) (52)
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where y is the mutation individual and xp(p = 1, 2, 3) denotes the parent individual. mu
indicates the mutation factor and mu ∈ [0, 1]. Then, the crossover individual is generated
by exchanging some elements of the parent individual and mutation individual as follows.

zi =

{
yi randi ≤ pcross
xi otherwise

(53)

where i indicates the variable in the ith dimension of the individual, pcross denotes the
crossover possibility and randi is a random number that is subject to uniform distribution.

4.3.3. Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm

Compared to meta-heuristic algorithms based on the biological evolution mechanism,
MOPSO is a typical swarm intelligent optimization algorithm. This algorithm adopts a
special particle moving mechanism to converge the particles to the optimal particle. The
updating process of location and velocity is the most typical characteristic of this algorithm,
which is calculated as follows:

vi(t + 1) = wgvi(t) + c1grand1g(pbest(t)− xi(t)) + c2grand2g(gbest(t)− xi(t)) (54)

xi(t + 1) = xi(t) + vi(t + 1) (55)

where w is the inertia weight; c1 and c2 are the cognitive and social coefficients; pbest and
gbest are the personal and global optimal particles; and t indicates the current iteration.

4.3.4. Multi-Objective Grey Wolf Optimization (MOGWO) Algorithm

The MOGWO is a typical swarm intelligence algorithm that was developed based on
the predation activities of grey wolves. The optimization process of MOGWO consists of
social hierarchy, encircling prey, hunting prey, attacking prey and searching for prey. The
position of the prey represents the potential optimal position. The grey wolves search for
the optimal individual mainly guided by the best three wolves (Alpha, Beta and Delta)
in the current population, which is shown in Figure 3. Based on the Pareto-dominated
relations, the alpha wolf is superior to the other two wolves, and the beta wolf is better than
the delta wolf. According to the position information of the best three wolves, the positions
of other search agents (Omega wolf or any other wolves) are updated. The MOGWO
searches the optimal solution through the encircling and hunting behavior of grey wolves,
which are calculated as follows:

(1) Encircling

→
D =

∣∣∣∣→C ·Xp(t)−
→
X(t)

∣∣∣∣ (56)

→
X(t + 1) =

→
Xp(t)−

→
A·
→
D (57)

where
→
Xp indicates the position of the prey and

→
X represents the position of the grey wolf.

→
A and

→
C are the coefficient vectors, which are calculated as follows:

→
A = 2

→
a ·→r 1 −

→
a ,

→
C = 2·→r 2.

(2) Hunting

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣,→Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣,→Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣ (58)

→
X1 =

→
Xα −

→
A1·
→
Dα,

→
X2 =

→
Xβ −

→
A2·
→
Dβ,

→
X3 =

→
Xδ −

→
A3·
→
Dδ (59)

→
X(t + 1) =

(→
X1 +

→
X2 +

→
X3

)
/3 (60)
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According to Equations (58)–(60), when |A| > 1, grey wolves are scattered in various
areas of search space as far as possible and search for the prey. When |A| < 1, the gray
wolves concentrate on the prey in one or more areas.
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5. Numerical Case

This section presents a numerical case that is utilized to validate the developed
MOMILPM and performance measurement multi-objective optimization framework. The
SSCN consists of two manufacturing centers, three distribution centers, four customers,
two recycling centers and three distribution centers. The new products are produced in
manufacturing centers and transported to distribution centers. Then, they are distributed
to each customer from distribution centers. The EOL products are collected and tested by
recycling centers. Parts of end-of-life products can be repaired and recovered in recycling
centers and returned to the customer market, and the others are delivered to disposal
centers. There are two kinds of vehicles used to transport products: general transportation
vehicles and new energy transportation vehicles. Compared to general vehicles, the new
energy vehicles produce fewer carbon emissions but cost more. The related information on
the sustainable supply chain network is shown in Table 2.

Table 2. Values of corresponding parameters of the model.

Parameter Value Parameter Value

PRi [50, 60] PRm [45, 48]
CTijv, CTjkv, CTkmv, CTmkv, CTmnv Unif(5, 10) CHi, CHj, CHm, CHn Unif(15, 20)

CPi, CPj, CPm, CPn Unif(5, 10) CRk Unif(20, 25)
ETijv, ETjkv, ETkmv, ETmkv, ETmnv Unif(5, 10) EPi, EPj, EPm, EPn Unif(5, 10)

EHi, EHj, EHm, EHn Unif(5, 10) FJi, FJj, FJm, FJn Unif(150, 200)
V Ji, V Jj, V Jm, V Jn Unif(150, 200) FLi, FLj, FLm, FLn Unif(15, 25)

VLi, VLj, VLm, VLn Unif(15, 25) PCapi, PCapm, PCapn Unif(8000, 9000)
HCapj, HCapm Unif(8000, 9000) TMCv Unif(1000, 2000)

Dek Unif(70, 80) w 5
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5.1. Results Analyses

In an attempt to investigate the feasibility and effectiveness of the developed MOMIP
model and the performance measurement multi-objective optimization framework, four
meta-heuristic algorithms with entropy weight TOPSIS-based evaluation strategy are
utilized to solve the mathematical model and are referred to as NSGA-2, MOPSO, MODE,
and MOGWO algorithms (EWT-NSGA-2, EWT-MOPSO, EWT-MODE and EWT-MOGWO).
In an attempt to control the influence variables of the experiments, the corresponding initial
algorithm parameters are presented in Table 3. The numerical case is run 10 times with
entropy-weighted TOPSIS-based multi-objective optimization algorithms.

Table 3. Initialization parameters of NSGA-2, MODE, MOPSO, and MOGWO.

Algorithms NSGA-2 MODE MOPSO MOGWO

Population size 500 500 500 500
Maximum iterations 1000 1000 1000 1000

Mutation rate 0.9 0.9
Crossover rate 0.8 0.8
Archive size 200 200

Inertia weight 0.7299
Cognitive and social coefficient 1.4962

Leader Selection Pressure Parameter 4
Number of Grids per each Dimension 10

Grid Inflation Parameter 0.1
Extra Repository Member Selection Pressure 2

After calculation, by comparing Pareto dominant relations and performance eval-
uation values, we obtain the final Pareto optimal solutions. Distributions of the Pareto
optimal solution set calculated by four meta-heuristic algorithms are shown in Figure 4.
In Figure 4, the x-axis represents the economic objective function, the y-axis indicates the
environmental objective function and the z-axis states the social objective function. It can
be concluded from the distributions that the Pareto optimal solutions of the four algorithms
are all uniformly distributed in their search space. The number of solutions obtained by
EWT-NSGA-2 and EWT-MOPSO is higher than that of EWT-MODE and EWT-MOGWO.
However, because meta-heuristic algorithms solve the multi-objective optimization model
based on the random search, the differences in the distribution of Pareto optimal solu-
tions of the four algorithms still exist. On the other hand, the random search mechanism
also makes it difficult to distinguish the advantages and disadvantages of these solutions
and the dominant relation. Hence, it is essential to further analyze these Pareto optimal
solutions quantitatively.

Tables 4–7 represent the evaluation indicators and the performance evaluation value
of the final Pareto optimal solutions calculated by entropy-weighted TOPSIS. Based on
the triple bottom line of the SCC, the selection of the indicators is subject to the principle
of fully reflecting the economic, environmental and social performance. The indicators
involving economic performance include transportation cost, inventory holding cost, facili-
ties processing cost, recycling cost and revenue. The environmental evaluation indicators
consist of transportation carbon emission, inventory holding pollution emission and pro-
cessing pollution emission. The social indicators include lost working days caused by work
damages and created job opportunities. Among the abovementioned evaluation indicators,
the created job opportunities and revenue are the maximum indicators, while the others
are minimum indicators. Evaluation values are calculated by entropy-weighted TOPSIS.
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On the basis of the entropy-weighted method, the weight of each evaluation indicator
can be obtained. Because the selection of indicators is guided by the triple bottom line of
the SCC, the weight of each dimension is analyzed and compared, which is demonstrated
in Figure 5. It can be concluded from the figure that the weight of economic indicators is
the largest, which indicates that economic performance plays a leading role in the triple
bottom line of the SCC. Furthermore, the social and environmental performance has almost
the same influence on the sustainable performance of the supply chain.
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Table 4. Evaluation indicators and evaluation values of the result of EWT-NSGA-2.

DMU

Minimum Indicators Maximum
Indicators

Evaluation
Value

Transportation
Cost

Inventory
Cost

Processing
Cost

Recycling
Cost

Transportation
Emission

Holding
Emission

Processing
Emission

Lost Working
Days Revenue Job

Opportunities

Indicators Weight

0.11 0.06 0.13 0.09 0.06 0.16 0.07 0.13 0.05 0.14

1 14,724.73 29,898.52 13,837.40 10,749.65 14,344.75 13,887.65 11,485.77 161.20 39,677.62 1487.51 0.8865
2 14,361.68 28,563.62 13,763.66 10,205.04 14,589.06 12,653.68 10,927.86 159.74 39,677.62 1421.82 0.5949
3 13,932.28 28,527.10 14,455.33 10,423.81 13,797.14 11,799.13 11,221.76 176.82 39,677.69 1634.16 0.5546
4 14,656.03 28,003.41 13,366.75 11,399.21 14,310.72 12,323.26 11,480.53 185.17 39,677.69 1634.27 0.5472
5 14,070.74 28,816.63 13,393.86 10,778.25 14,435.16 12,385.55 10,343.62 170.97 39,677.64 1454.93 0.5225
6 14,059.53 26,451.98 14,325.75 10,859.70 14,150.35 11,902.80 11,154.19 167.00 39,677.63 1404.28 0.5212
7 14,344.86 29,566.65 12,141.93 10,735.51 14,205.79 12,441.38 10,552.93 165.59 39,677.62 1469.18 0.4130
8 14,677.20 28,801.65 12,320.07 11,075.90 14,489.32 11,909.75 11,259.94 177.86 39,677.69 1625.41 0.3990
9 14,600.93 29,315.84 12,139.80 10,883.61 14,246.32 12,128.20 11,086.38 168.38 39,677.52 1478.81 0.3987
10 14,199.48 27,639.80 12,051.31 11,176.67 14,542.70 12,302.48 12,132.20 168.00 39,677.65 1475.56 0.3852
11 14,797.54 29,774.89 11,401.13 11,027.97 14,102.98 12,540.79 10,495.07 162.38 39,677.61 1538.99 0.3768
12 14,890.58 30,405.61 10,849.30 11,184.85 14,095.77 12,092.77 10,879.46 170.19 39,677.62 1424.98 0.3466
13 14,581.27 27,850.74 11,811.93 10,521.09 14,521.72 12,634.31 10,344.06 175.28 39,677.69 1597.48 0.3368
14 15,206.74 28,856.92 10,919.89 10,581.38 14,406.65 12,540.09 10,515.66 182.81 39,677.69 1610.47 0.3221
15 14,347.65 28,837.43 12,218.86 10,373.78 14,366.42 11,736.28 9696.27 177.63 39,677.69 1585.83 0.3173

Table 5. Evaluation indicators and evaluation values of the result of EWT-MODE.

DMU

Minimum Indicators Maximum
Indicators

Evaluation
Value

Transportation
Cost

Inventory
Cost

Processing
Cost

Recycling
Cost

Transportation
Emission

Holding
Emission

Processing
Emission

Lost Working
Days Revenue Job

Opportunities

Indicators Weight

0.09 0.12 0.09 0.09 0.10 0.08 0.11 0.12 0.09 0.11

1 13,939.98 28,989.29 12,762.36 11,064.01 14,135.09 12,837.14 10,049.19 188.97 38,453.00 1796.97 0.7535
2 14,196.11 28,636.41 12,955.28 11,541.15 14,881.02 11,089.41 9848.86 209.27 38,394.00 1575.75 0.5872
3 13,742.01 28,144.53 11,938.37 10,825.11 13,708.81 11,280.24 10,746.18 215.47 38,208.00 1856.64 0.5275
4 13,558.88 26,889.80 11,865.69 10,482.14 13,740.00 13,165.77 11,957.38 149.89 38,039.00 1370.14 0.3393
5 13,855.49 27,587.60 12,579.15 9943.16 12,700.14 11,537.24 10,189.36 153.49 37,663.00 1427.07 0.7070
6 13,795.81 26,653.46 12,709.03 10,586.51 13,331.72 11,544.01 9935.29 196.39 37,105.00 1793.63 0.6445
7 13,909.61 27,631.68 11,426.34 10,717.19 13,397.26 9784.08 9191.08 207.11 37,576.00 1869.41 0.3504
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Table 6. Evaluation indicators and evaluation values of the result of EWT-MOPSO.

DMU

Minimum Indicators Maximum
Indicators

Evaluative
Value

Transportation
Cost

Inventory
Cost

Processing
Cost

Recycling
Cost

Transportation
Emission

Holding
Emission

Processing
Emission

Lost Working
Days Revenue Job

Opportunities

Indicators Weight

0.10 0.07 0.14 0.08 0.09 0.09 0.07 0.11 0.04 0.22

1 13,333.96 26,196.12 11,495.71 10,696.50 13,435.46 12,055.04 10,612.45 80.35 35,051.00 718.51 0.8191
2 12,725.70 26,101.28 12,602.84 10,470.25 13,195.01 12,117.34 10,227.88 98.17 35,412.00 932.25 0.7267
3 13,328.37 25,557.21 10,898.89 9891.87 13,562.62 11,574.82 9641.73 79.05 35,159.00 725.60 0.6358
4 12,759.50 26,231.09 11,710.94 10,909.18 12,505.41 12,530.63 9222.37 91.80 35,051.00 725.03 0.6266
5 13,294.91 27,316.45 10,518.21 10,610.48 13,676.42 11,510.63 9245.45 81.80 35,147.00 737.04 0.5473
6 12,784.99 25,180.15 11,262.00 10,314.70 14,008.49 11,286.81 9721.50 99.43 35,355.00 935.41 0.5462
7 13,041.41 25,536.22 10,395.48 10,299.27 13,620.61 11,187.26 9922.26 87.19 35,149.00 771.63 0.5180
8 13,006.47 26,397.21 11,080.56 10,483.44 12,740.59 10,936.56 9254.18 104.42 35,412.00 927.92 0.4364
9 12,863.93 25,357.85 10,302.66 10,326.86 13,503.35 11,460.39 10,280.31 77.23 35,147.00 744.44 0.4201
10 13,311.10 26,801.62 9739.46 9906.41 13,128.22 12,065.88 9890.65 91.27 35,159.00 741.98 0.4133
11 12,810.66 26,344.41 11,197.97 10,391.45 12,818.32 10,612.50 9871.11 96.93 35,147.00 711.86 0.4094
12 12,700.18 25,264.54 11,161.52 10,897.25 13,711.56 9700.43 9542.20 97.83 35,144.00 839.29 0.3996
13 12,874.01 25,388.72 11,577.28 10,092.38 13,106.03 10,501.45 8803.32 85.77 35,051.00 759.94 0.3795
14 12,875.37 25,970.89 11,012.95 10,369.57 13,211.26 9158.74 8565.61 100.36 35,412.00 890.89 0.3702
15 13,675.22 25,491.12 10,011.61 10,688.65 12,938.79 9814.93 9396.28 85.94 35,111.00 757.05 0.3451
16 12,817.27 25,605.42 9998.83 9638.21 12,726.34 11,768.65 9330.87 99.04 35,355.00 839.15 0.3231
17 12,812.90 25,358.07 10,588.46 10,459.20 13,029.05 9406.98 9758.30 87.51 34,379.00 770.12 0.3094
18 13,297.80 24,567.79 9789.91 9786.23 13,486.21 10,612.81 10,046.96 92.04 35,051.00 744.89 0.3066
19 12,493.09 24,130.95 10,242.25 10,527.24 13,248.25 10,766.47 9342.81 101.51 35,415.00 918.55 0.2111
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Table 7. Evaluation indicators and evaluation values of the result of EWT-MOGWO.

DMU

Minimum Indicators Maximum
Indicators

Evaluative
Value

Transportation
Cost

Inventory
Cost

Processing
Cost

Recycling
Cost

Transportation
Emission

Holding
Emission

Processing
Emission

Lost Working
Days Revenue Job

Opportunities

Indicators Weight

0.08 0.17 0.08 0.11 0.06 0.10 0.11 0.14 0.08 0.09

1 13,240.40 27,658.40 11,877.34 11,304.27 13,939.78 10,909.30 9866.20 123.93 36,989.00 1063.04 0.3607
2 14,176.28 27,623.41 11,814.75 10,510.77 12,708.78 11,334.77 10,099.29 109.39 37,065.00 929.66 0.6214
3 13,983.93 26,314.16 11,189.53 10,603.97 13,689.62 11,305.18 9139.43 111.26 37,012.00 912.26 0.3470
4 13,678.85 27,037.43 10,628.18 10,040.56 13,765.30 11,245.05 9934.84 111.35 36,989.00 1093.58 0.3972
5 13,735.49 26,352.19 11,221.07 10,938.28 14,381.12 11,773.15 10,467.18 129.31 36,989.00 1062.69 0.6127
6 13,488.60 26,380.91 11,436.97 9897.41 13,624.51 12,072.35 9201.91 131.94 36,909.00 1099.82 0.2443
7 13,760.54 26,772.81 10,983.38 10,975.26 13,666.55 12,220.23 10,883.07 120.35 36,941.00 1104.67 0.6896
8 14,264.81 26,985.37 11,174.11 10,248.38 13,940.30 10,674.86 10,872.93 132.92 36,989.00 1141.80 0.3152
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Figure 5. Comparison of weights of three sustainability dimensions.

By comparing the performance evaluation value of the Pareto optimal solutions, all
the feasible solutions are sorted, and the solution with the best performance evaluation
value is considered as the optimal solution, which is bolded in each table. From Tables 4–7
and Figure 6d the performance evaluation value of the optimal solution is 0.8865 in EWT-
NSGA-2, 0.7535 in EWT-MODE, 0.8191 in EWT-MOPSO and 0.6896 in EWT-MOGWO.
Hence, the solution calculated by EWT-MOPSO and EWT-NSGA-2 has better sustainability
performance than the other two meta-heuristic algorithms based on EW-TOPSIS.
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Figure 6. Comparison of objective functions and evaluation values obtained by four algorithms.

Figure 6a–c illustrate the comparison of three function values of the optimal solution
in the case of four algorithms. Parts (a) and (b) indicate the comparison of total cost and
total pollution emission of the sustainable supply chain. It can be concluded that the total
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cost and pollution emission of the optimal solution obtained by the four algorithms are
almost the same. However, part (c) in Figure 6 indicates that the social performance of the
optimal solution obtained by EWT-NSGA-2 is much better than that obtained by the other
three algorithms.

5.2. Sensitivity Analyses
5.2.1. Effect of Performance Sorting Strategy on Meta-Heuristic Algorithms

This section performs a sensitivity analysis of different strategies for the performance
of the performance-oriented optimization framework. The meta-heuristic algorithms with
entropy-weighted TOPSIS, with TOPSIS, and without any evaluation strategy are utilized
to calculate the numerical case. Then, we compare the performance evaluation value of the
obtained Pareto optimal solution set. In the case of the meta-heuristic algorithms without
an evaluation strategy, the final Pareto optimal solutions are evaluated by entropy-weighted
TOPSIS so as to measure the sustainability performance.

Figure 7 presents the comparison of the performance evaluation values of four algo-
rithms with the abovementioned three evaluation strategies. In this figure, “EW-TOPSIS” in-
dicates the algorithms with entropy-weighted TOPSIS, “TOPSIS” represents the algorithms
with TOPSIS, and “NON” states the meta-heuristic algorithms without evaluation strategy.
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Figure 7. Comparison of performance evaluation values based on three evaluation strategies.

Comparing maximum loci and loci greater than 75% of data shows that the perfor-
mance evaluation values of algorithms with EW-TOPSIS and TOPSIS are generally greater
than those of algorithms without an evaluation strategy. On the other hand, comparing
the average number of each part in Figure 8 shows that the overall performance of the
feasible solutions obtained by algorithms with EW-TOPSIS is better than that obtained by
algorithms with TMOOAs and without an evaluation strategy. The above phenomenon
occurs because the entropy-weighted TOPSIS method and TOPSIS method can make the
population of algorithms converge to the optimal solution with the best performance
evaluation value. Furthermore, entropy-weighted TOPSIS weights each indicator objec-
tively according to performance evaluation values and reduces the deviation caused by
subjective assignment.
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5.2.2. Effect of Indicator Dimension on Sustainability Performance

In this section, in an attempt to examine the influence of different dimensions on the
optimization objectives, the proposed model is calculated by algorithms with EW-TOPSIS
with economic, environmental and social evaluation indicators, respectively. According to
the analyses of results in Section 5.1, the solution sets obtained by EWT-NSGA-2 and EWT-
MOPSO have better sustainability performance than that obtained by EWT-MODE and
EWT-MOGWO. Hence, EWT-NSGA-2 and EWT-MOPSO are utilized to conduct sensitivity
analyses. In an attempt to separately analyze the effect of a single sustainability indicator on
the objective functions, only one dimension indicator is used to evaluate the sustainability
performance of the obtained solution sets. For example, when the social dimension is taken
as the research object, only lost working days and created job opportunities are selected as
evaluation indicators.

The results of three single sustainability dimensions obtained by EWT-NSGA-2 and
EWT-MOPSO are demonstrated in Figures 8 and 9 respectively. The optimal solution
with the greatest performance evaluation value is utilized to calculate objective functions.
In the two figures, “Eco” indicates that only economic indicators are selected, “Env”
represents only environmental indicators, “Soc” states only social indicators and “Basic”
represents that all sustainability indicators are used. Part (a) presents the economical
objective function, part (b) states the environmental objective function and part (c) shows
the social objective function.

It can be seen from part (a) of Figures 8 and 9 that the total cost is the smallest when only
economic indicators are considered. Secondly, according to part (b) of
Figures 8 and 9, the sustainability supply chain has the smallest pollution emission when
only environmental indicators are considered. Thirdly, in part (c) of Figures 8 and 9, it
can be seen that when only social indicators are utilized for evaluation, the supply chain
has the best social performance. Furthermore, compared to “Basic”, the objective function
value of this dimension under a single dimension is better than that of the corresponding
dimension under all sustainability dimensions. The above phenomenon occurs because
when only a single sustainability dimension is used to evaluate Pareto optimal solutions,
the meta-heuristic algorithm evolves towards the best performance of this dimension.
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After the optimal solution by meta-heuristic algorithms with four indicators’ selection
methods is obtained, the sustainability performance of four optimal solutions is evaluated
by the entropy-weighted TOPSIS method. Figure 10 shows the comparison of sustainability
performance evaluation values of the abovementioned four indicators’ selection methods.
It can be concluded from Figure 10 that the sustainability performance of the optimal
solution obtained by meta-heuristic algorithms with overall sustainability indicators is
much better than that obtained by meta-heuristic algorithms with any single-dimension
indicators.
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5.3. Managerial Insights

In this section, some practical managerial insights based on the analyses of results and
sensitivity analyses are as follows:
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• This article proposed a MOMIP model to address the problem of SSCN optimization
and design, which provides managers with a good perspective to manage the sup-
ply chain and improve sustainability performance. The proposed model can assist
managers in decision-making on the transportation mode selection, facilities location,
suppliers selection and the flow of products.

• The triple bottom line of the SCC is utilized to determine optimization objectives and
select the appropriate evaluation indicators in the proposed model and the solution
method. The proposed model and method help supply chain managers achieve better
sustainable performance. The results analyses prove that considering sustainability
based on the triple bottom line can achieve greater sustainable performance than only
considering a single dimension.

• The proposed performance-oriented optimization framework can provide managers
with a special optimal scheme with the best sustainable performance. On the one
hand, meta-heuristic algorithms are proposed to deal with the optimization problem
in this framework. Because SSCN optimization is a complex optimization problem,
meta-heuristic algorithms are effective and realizable in solving this kind of problem.
On the other hand, entropy-weighted TOPSIS weights each sustainable indicator
and sorts the feasible schemes. The entropy weight method can effectively avoid
the influence of artificial factors and calculate the objective weights. Furthermore,
the selected evaluation indicators should be quantitative and can comprehensively
embody the sustainability performance of the supply chain.

6. Conclusions

This article addresses an SSCN design problem integrating network optimization
and performance evaluation. The optimization objectives and evaluation indicators are
determined on the basis of the triple bottom line. From the three dimensions of econ-
omy, environment and society, a MOMIP model was developed that aims to minimize
the total cost of the SSCN, minimize the environmental pollution and maximize social
responsibility (i.e., lost working days caused by work damages and job opportunities). Fur-
thermore, in an attempt to solve the developed mathematical model, this article proposed a
performance-oriented optimization framework. This framework integrates supply chain
network optimization and sustainable performance evaluation together. This framework
adopts meta-heuristic algorithms as the optimization method and entropy-weighted TOP-
SIS as the evaluation method. Based on this framework, managers can not only obtain
feasible schemes but also evaluate the performance of these schemes so as to obtain the
optimal scheme. Then, to validate the developed optimization model and propose an opti-
mization framework, four multi-objective meta-heuristic algorithms and the performance
evaluation strategy are combined in pairs, and a numerical case is tested.

Moreover, this article performs some sensitivity analyses on the performance evalu-
ation strategy and the sustainability indicators dimension. The results indicate that the
optimal solution obtained by algorithms with EW-TOPSIS has better sustainable perfor-
mance than that obtained by meta-heuristic algorithms with no evaluation strategy or
traditional TOPSIS. Finally, some practical managerial insights are proposed based on the
abovementioned analyses of results and comparative analyses.

The main contributions of this article are listed as follows:

• Supply chain managers can obtain the feasible Pareto optimal solution set of the
optimization model with the performance-oriented optimization framework. The
sustainability performance of these solutions can be evaluated and sorted so as to
determine the optimal solution in this framework.

• This framework can use the entropy weight method to obtain the objective weight of
each performance evaluation indicator.

• The performance evaluation method can guide the evolution process of algorithms so as to
make the population migrate to the individual with the greatest sustainability performance.
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• This framework can flexibly combine a variety of optimization algorithms and multi-
criteria decision-making methods.

This article also puts forward some research directions to expand the presented prob-
lems and theories. The operation of a sustainable supply chain faces many uncertainties
and the possibility of interruption due to natural disasters or human-made accidents.
Hence, the resilience of the supply chain can be taken into consideration in supply chain
network design. Additionally, because of the high complexity and large scale of the model
in real-world supply chain management, developing other solution algorithms such as
hyper-heuristic algorithms could be a promising avenue for further study. Likewise, addi-
tional sustainability evaluation indicators can be considered, and the application of other
appropriate qualitative evaluation methods can provide valuable advice for future research.
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