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Abstract: Compared with conventional silicon-based semiconductors, amorphous oxide semiconduc-
tors present several advantages, including the possibility of room-temperature fabrication, excellent
uniformity, high transmittance, and high electron mobility. Notably, the application of oxide semicon-
ductors to flexible electronic devices requires a low-temperature fabrication process. However, for
the realization of semiconductor characteristics and stable products, the fabrication process requires
annealing at temperatures of 300 ◦C or higher. To address this, a low-temperature microwave anneal-
ing method, which improves the electrical characteristics of a transistor and reduces the production
time compared with the conventional annealing method, is presented herein. Microwave annealing
is a well-known method of annealing that minimizes the heat energy transferred to a substrate via
instantaneous heat transfer through the vibrations of the lattice in the material during microwave
irradiation and is suitable as a low-temperature annealing method. In this study, we evaluate the
electrical characteristics of devices subjected to conventional annealing at 200 ◦C and 300 ◦C for 1 h
and microwave annealing at 200 ◦C for 10 min. For the device subjected to microwave annealing at
200 ◦C for 10 min, the threshold voltage, current on/off ratio, subthreshold swing, and saturation
mobility are 13.9 V, 1.14× 105, 3.05 V/dec, and 4.23 cm2/V·s, respectively. These characteristic results
are far superior to the characteristic results of the device subjected to conventional annealing at 200 ◦C
for 1 h and are equivalent to those of the device treated at 300 ◦C for 1 h. Thus, this study develops a
more effective annealing method, which facilitates low-temperature fabrication in a reduced period.

Keywords: amorphous indium-gallium-zinc-oxide; microwave annealing; thermal annealing; defect
states; low-temperature process

1. Introduction

Hydrogenated amorphous silicon (a-Si:H) has proven its ability to be produced as
a TFT in extensive flexible electronics studies. However, its device performance is lim-
ited by the low mobility of channel materials (field effect mobility, µFE, ~1 cm2/V·s). In
addition, Si-based windows are not transparent because of the small bandgap, so there
is less interest in transparent circuits [1]. In particular, transparent ZnO-based thin-film
transistors (TFTs) offer an attractive alternative to amorphous Si TFTs due to their high
mobility (>10 cm2/V·s) and low process temperatures (<250 ◦C) compared to amorphous Si
TFTs, making ZnO-based TFTs a very promising low-cost, large backplane for active-matrix
organic light-emitting diode (AMOLED) displays [2]. Amorphous oxide semiconductors
(AOS) are advantageous compared with conventional silicon-based semiconductors, and
their advantages include the possibility of room-temperature fabrication, good uniformity,
high transparency in the visible region (400–700 nm), and high electron mobility. Conse-
quently, several studies have been conducted on amorphous indium–gallium–zinc–oxide
(a-IGZO) materials [3–6]. The high electron mobility of a-IGZO can be attributed to the
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larger ns-orbital of the metal cation compared to the 2p-orbital of the oxygen anion [3].
Therefore, a-IGZO is typically adopted as the active layer in AOS thin-film transistors
(TFTs). Recently, low-temperature fabrication techniques used to produce AOS-TFTs for
applications in flexible electronics have attracted considerable attention. To this end, the
development of flexible substrates has become necessary. However, most flexible sub-
strates have a low glass transition temperature (Tg), which presents a limitation because
the manufacture of AOS-TFTs requires an annealing temperature of 300 ◦C or more. The
reason is that low-temperature deposited IGZO TFTs have a serious instability problem
due to their current–voltage (I-V) characteristics. To solve this, it has been reported that the
high-temperature annealing process reduces tail state defects, rearranges amorphous struc-
tures, and improves oxygen compensation in non-stoichiometric films [7–11]. Therefore,
the development of flexible substrates with higher Tg values is crucial to the production of
flexible electronics. The electrical properties of a-IGZO are controlled by the concentration
of defects, such as oxygen vacancies, in the material. Previously, the manufacture of a-IGZO
TFTs was typically carried out through thermal conduction methods, such as furnaces and
rapid thermal annealing equipment. As mentioned above, most of the materials currently
used as flexible substrates have extremely low Tg values, i.e., below 300 ◦C, making the
fabrication of a-IGZO on flexible substrates extremely difficult [12–14]. However, the Tg of
a polyimide substrate, which is a type of flexible substrate, is sufficient for the fabrication
of an a-IGZO TFT. Furthermore, it possesses excellent mechanical and chemical properties
and is cost-effective [15–17]. Although thermal annealing for the fabrication of an a-IGZO
TFT is conventionally implemented through thermal conduction methods, such as furnace
annealing and rapid thermal annealing [18,19], the energy loss and low efficiency of energy
usage during such processes can be problematic [20]. Because the degree of microwave ab-
sorption depends on the rotation of the dipoles in a material, microwave annealing, which
can be used to heat materials selectively, is a potential approach to enhance the efficiency
of energy usage in a-IGZO TFT fabrication. Moreover, microwave heating is a non-contact,
rapid heating process [20]; for example, the heating rate for amorphous carbon powders
with dimensions smaller than 1 µm can reach 1258 ◦C min–1 at room temperature subject
to microwave irradiation at 2.45 GHz [21]. In addition, microwave-assisted annealing and
sintering processes have been used to improve the crystallization of amorphous silicon [22].

In this paper, we describe the application of microwave annealing to enhance the
efficiency of fabricating AOS-TFTs. In conventional thermal annealing processes, heat is
transferred between objects by conduction, radiation, and convection mechanisms, whereas
in microwave-assisted annealing, materials absorb electromagnetic energy and convert it
into heat. Compared with conventional annealing methods, microwave annealing presents
a higher heating rate, is more energy efficient, and requires no direct contact between the
heating source and the heated material [20,23,24]. The technique also presents advantages,
such as control of the heating process, significant reduction in energy consumption, com-
pactness, low cost, ease of maintenance, selective heating of materials, and quick initiation
and termination. The unique selectivity and short annealing times render this method
suitable for efficient industrial production of oxide semiconductor-based devices.

2. Experiment

Figure 1a illustrates a schematic of the transistor device, and Figure 1b presents the
concept of the microwave-assisted annealing technique adopted to enhance the efficiency
of the annealing process.

A heavily doped P-type Si wafer (ρ < 0.01 Ωcm) and a thermally oxidized SiO2
wafer with a dimension of 300 nm were used as the substrates. Ag paste was used as
the metal for the gate connection. The substrates were cleaned with acetone, methanol,
and isopropyl alcohol each in an ultrasonic bath for 15 min at 45 ◦C. Following this,
an a-IGZO (In2O3:Ga2O3:ZnO = 1:1:1 mol%) thin film with a thickness of 50 nm was
deposited via the radio-frequency (RF) magnetron sputtering method at room temperature.
The basal vacuum in the chamber was set to less than 3.0 × 10−6 Torr, and the working
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pressure and RF-power were maintained at 5.0 × 10−3 Torr and 100 W, respectively, during
sputtering. Before deposition, pre-sputtering was performed for 30 min to eliminate
contaminants on the target. A mixed gas consisting of Ar and O2 was used as the ambient
gas, and the partial ratio of O2 was maintained at 2%. The active layer was patterned
using conventional photolithography and wet etching. As the source–drain electrode, a Ti
(10 nm)/Au (100 nm) bilayer was deposited via electron beam and thermal evaporation
at room temperature. A channel with a width (W) of 50 µm and length (L) of 50 µm was
defined via photolithography and lift-off processes. After fabricating the devices, they
were annealed using two methods: conventional thermal annealing at 200 ◦C and 300 ◦C,
and microwave-assisted annealing (UMF-01, Unicera, Pyeongtaek, Korea). The thermal
annealing and microwave-assisted annealing processes were performed for 60 and 10 min,
respectively. During microwave-assisted annealing, the temperature was maintained at
approximately 200 ◦C. However, because the equipment was designed and programmed for
high-temperature processes, some fluctuation was observed in the low-temperature range.
Analysis of surface roughness according to the heat treatment of a-IGZO thin film was
performed using an atomic force microscope (AFM, XE-100). The electrical characteristics
of the TFTs were analyzed using a semiconductor parameter analyzer (Keithley 4200 SCS,
Beaverton, OR, USA) in a dark box.
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Figure 1. (a) Schematic diagram of an a-IGZO TFT and (b) concept of the microwave-assisted
annealing process.

During the analysis of the electrical performance of the devices, the turn-off volt-
age (Vturn-off), which is defined as the gate voltage required to bring about a transition
from accumulation to complete depletion, was found to depend on Nd according to the
following expression: ∣∣∣Vturn−o f f −V0

∣∣∣ = qNdtactive

(
1
Ci

+
tactive
2ε0ks

)
(1)

where V0 is a constant involving the effective fixed charge on the gate dielectric and the
difference in work function between the gate and semiconductor, ε0 denotes the vacuum
permittivity, and ks indicates the dielectric constant of the a-IGZO layer. Here, Vturn-off
denotes the gate voltage before the drain current rise-up at VDS = 0.1 V [6]. We assume ks of
the a-IGZO layer to be 11.5 [25]; therefore, we can estimate Nd of the a-IGZO thin film based
on Equation (1). The saturation mobility (µSAT) can be evaluated using the conventional
metal–oxide–semiconductor field effect transistor model described in Equation (2) [26]:

µSAT =

(
∂
√

IDS
∂VG

) 1
2 2L

WCi
(2)

where W denotes the channel width, L denotes the channel length, and Ci denotes the
capacitance per unit area. The saturation mobility (µSAT) was estimated based on the
transfer characteristics at VDS = 10.1 V. The threshold voltage was defined by the gate
voltage, which induced a drain current of W/L × 10 nA at a VDS value of 10.1 V [6]. In
several previous studies, VTH was extracted from the linear fit of the square root of the
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drain current (ID
1/2) [27–29]. However, a more quantitative extraction method was selected

in this study.

3. Results and Discussion

Figure 2a–c show the surface roughness of the a-IGZO thin film after heat treatment
obtained via AFM analysis. Figure 2a,b were subjected to a typical heat treatment at 200 ◦C
and 300 ◦C for 1 h, and in the case of Figure 2c, microwave heat treatment was performed
at 200 ◦C for 10 min. As a result of AFM surface analysis, the thin film in Figure 2a shows a
value of 5.346 nm, that in Figure 2b shows a value of 0.653, and that in Figure 2c shows
a value of 0.211 nm. As can be seen from the AFM analysis results, the RMS value of a
thin film that was subjected to microwave heat treatment at 200 ◦C for 10 min was lower
than that of the typical thin film heat treated at 200 ◦C and 300 ◦C for 1 h. These surface
roughness characteristics affect the electrical characteristics evaluation, and, as shown in
Table 1, the results are similar to those of the device subjected to typical heat treatment
at 300 ◦C for 1 h. Microwave heat treatment is very efficient, with only low temperatures
and heat treatment being carried out for a short period of time. In addition, microwave
heat treatment does not cause thermal damage even at high power, but with typical heat
treatment, it does cause serious damage at high temperatures [30].
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Figure 2. A conditional heat treatment of an a-IGZO thin film. With analysis of the AFM surface
roughness, (a,b) typical heat treatment was carried out at 200 ◦C and 300 ◦C for 1 h, and (c) microwave
heat treatment was carried out at 200 ◦C for 10 min.

Table 1. Summarized electrical characteristics of the a-IGZO TFT for various annealing methods.

Parameters VTH (V) ION/OFF S.S (V/DEC) MSAT (CM2/V·s) Nd (cm−3)

THERMAL, 200 ◦C 34.9 8.04 × 103 8.813 0.12 3.32 × 1017

THERMAL, 300 ◦C 7.5 7.76 × 105 2.74 6.06 3.23 × 1016

M-WAVE, 200 ◦C 13.9 1.14 × 105 3.05 4.23 1.35 × 1017
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Figure 3 shows the O1s spectra of IGZO films annealed at conventional thermal
annealing (CTA, OTF-1200X, MTI Corporation, Richmond, CA, USA) at 200 ◦C and 300 ◦C,
and microwave annealing (MWA, UMF-01, Unicera, Pyeongtaek, Korea) at 200 ◦C. We
decomposed the obtained O1s XPS spectra into three individual components with different
binding energies of 529, 530, and 531 eV. The peaks at 529, 530, and 531 eV are associated
with stoichiometric oxygen (contained in M-O); oxygen vacancies (Vo); and loosely bound
oxygen impurities (M-OH), such as chemisorbed oxygen, H2O, and CO3, respectively. In
general, it is well-known that the M-OH peak is associated with the electron trapping site.
As shown in Figure 3, MWA-treated IGZO has a smaller M-OH than CTA-treated IGZO.
This means that MWA can reduce defects in IGZO thin films more effectively than CTA.
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Figure 3. XPS O1s peak of the a-IGZO TFTs annealed by (a) CTA at 200 ◦C, (b) CTA at 300 ◦C, and
(c) MWA at 200 ◦C. The three peaks at 529, 530, and 531 eV correspond to the latticed oxygen, oxygen
vacancies, and loosely bound oxygen impurities (such as chemisorbed oxygen), respectively.

In CTA, energy is transferred due to thermal gradients from the surface of the object to
the interior, whereas MWA is an energy conversion, rather than heat transfer, in which MW
energy is directly delivered to the volume of the materials through a molecular interaction
with the electromagnetic field.

This process allows MWAs to heat thick materials quickly and uniformly, as MWAs
can penetrate materials and accumulate energy without relying on thermal diffusion on
the surface. In particular, two components, M-Ovac and M-OH, are expected to degrade
the electrical properties of the IGZO film. Ionized Ovac is related to the M-Ovac ratio,
which is known to affect positive bias stress (PBS) stability by creating electron traps [31].
Ovac also behaves similarly to electron donors with regard to negative bias stress (NBS)
stability [32,33]. Furthermore, oxygen impurities in the IGZO channel layer are negatively
charged by a chemical reaction of O2 + e− ↔ O2

− and reduce the number of conduction
electrons in the channel, resulting in a clockwise hysteresis at the positive bias [34]. On the
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other hand, the loosely bound oxygen impurity contained in M-OH acts as a charge trap
state in the solution-treated IGZO thin film to reduce the on-current of the TFT [35].

Figure 4a,b illustrate the output and transfer characteristics, respectively, of the a-IGZO
TFT thermally annealed at 200 ◦C. In this case, the poor electrical performance of the device
can be primarily attributed to the atomic rearrangement of the active layer. In previous
studies, the saturation mobility of an a-IGZO TFT was found to be higher than 10 cm2/V·s.
Prior to the heat treatment process, a-IGZO thin films have lattice gaps or defects between
the lattice and decrease in reliability due to large amounts of oxygen vacancy. In addition,
the surface is very rough, and cracks can also be present. However, the heat treatment
process causes particle collisions, and the resulting consequences of shock heating can close
the gaps between the lattice and cause a decrease in particle size [36,37].

Electronics 2022, 11, x FOR PEER REVIEW 6 of 9 
 

 

Figure 4a,b illustrate the output and transfer characteristics, respectively, of the a-
IGZO TFT thermally annealed at 200 °C. In this case, the poor electrical performance of 
the device can be primarily attributed to the atomic rearrangement of the active layer. In 
previous studies, the saturation mobility of an a-IGZO TFT was found to be higher than 
10 cm2/V∙s. Prior to the heat treatment process, a-IGZO thin films have lattice gaps or de-
fects between the lattice and decrease in reliability due to large amounts of oxygen va-
cancy. In addition, the surface is very rough, and cracks can also be present. However, the 
heat treatment process causes particle collisions, and the resulting consequences of shock 
heating can close the gaps between the lattice and cause a decrease in particle size [36,37]. 

This is because the annealing process is performed at temperatures over 300–350 °C 
[5,6]. This implies that high thermal energy is required to rearrange atoms in the local sites 
for a better electrical performance. In other words, the high annealing temperature causes 
internal modifications in the semiconductor structure, leading to an improved local 
atomic rearrangement [38]. 

 
Figure 4. (a) Output characteristics and (b) transfer characteristics of the a-IGZO TFT thermally an-
nealed at 200 °C. The current-decreasing phenomena originates from defective states that can ob-
struct the current flow. 

Figure 5a,b present the output and transfer characteristics, respectively, of the a-
IGZO TFT thermally annealed at 300 °C. In this case, better electrical performance param-
eters than those of the device annealed at 200 °C can be noted. These parameters include 
the threshold voltage, saturation mobility, and current on/off ratio. The threshold voltage, 
current on/off ratio, subthreshold swing, and saturation mobility were evaluated to be 7.5 
V, 7.76 × 105, 2.74 V/dec, and 6.06 cm2/V∙s, respectively. 

 
Figure 5. (a) Output characteristics and (b) transfer characteristics of the a-IGZO TFT thermal an-
nealed at 300 °C. The current-decreasing phenomena can be similarly observed. 

Commented [M1]: Please add explanation of dif-
ferent color line in Figure 4a. 

Commented [M2]: Please add explanation of dif-
ferent color line in Figure 5a. 

Figure 4. (a) Output characteristics and (b) transfer characteristics of the a-IGZO TFT thermally
annealed at 200 ◦C. The current-decreasing phenomena originates from defective states that can
obstruct the current flow.

This is because the annealing process is performed at temperatures over 300–350 ◦C [5,6].
This implies that high thermal energy is required to rearrange atoms in the local sites for
a better electrical performance. In other words, the high annealing temperature causes
internal modifications in the semiconductor structure, leading to an improved local atomic
rearrangement [38].

Figure 5a,b present the output and transfer characteristics, respectively, of the a-IGZO
TFT thermally annealed at 300 ◦C. In this case, better electrical performance parameters
than those of the device annealed at 200 ◦C can be noted. These parameters include the
threshold voltage, saturation mobility, and current on/off ratio. The threshold voltage,
current on/off ratio, subthreshold swing, and saturation mobility were evaluated to be
7.5 V, 7.76 × 105, 2.74 V/dec, and 6.06 cm2/V·s, respectively.

In Figures 4 and 5, the drain current (IDS) attains a peak and then decreases as the
drain voltage (VDS) increases. This can be explained based on the charge carriers generated
by the defect states in the a-IGZO TFT. Note that defect states can create extra charge
carriers, thereby increasing the carrier concentration. However, these defect states could
also obstruct the flow of charge carriers from the source to the drain when the channel is
pinched off. In other words, the carriers generated by the defects contribute to the diffusion
current during linear operation. However, these states are also known to obstruct the
flow of drift current, thus causing IDS to decrease. The electrical characteristics of a-IGZO
TFTs can be improved via atomic rearrangement. However, when sufficient energy is not
supplied, several defect states function as carrier sources.

As presented in Table 1, Nd of the a-IGZO TFT annealed at 300 ◦C is estimated to be
3.23 × 1016 cm−3. The difference between the a-IGZO thin film annealed at 200 ◦C and the
a-IGZO thin film annealed at 300 ◦C can be explained based on the density of defect states in
the films [39,40]. Note that the number of defect states can be reduced by annealing, which
involves supplying thermal energy to the atoms. In this study, we adopted microwave-
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assisted annealing instead of conventional thermal annealing. Although the a-IGZO TFT
was annealed using a microwave-assisted process at 200 ◦C, the electrical characteristics of
the device were comparable to those of the a-IGZO TFT annealed at 300 ◦C.
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Figure 5. (a) Output characteristics and (b) transfer characteristics of the a-IGZO TFT thermal
annealed at 300 ◦C. The current-decreasing phenomena can be similarly observed.

In Figure 6, IDS does not decrease after peaking as it does in Figures 4 and 5. Hence, the
microwave-assisted process is more efficient than the thermal annealing process in terms of
reducing the number of defect states. In general, the optical bandgap appears to be smaller
than the actual bandgap owing to the light absorbed by a subgap state, such as a tail state,
present near the conduction band or the appliance band in a material. This change in the
subgap state can be indirectly identified through a change in the absorption coefficient. The
change in the high optical bandgap and the absorption coefficient in the bandgap range
compared to the high-temperature that occurs during microwave annealing, indicates that
microwave annealing reduces the subgap state of IGZO semiconductors more effectively
than conventional high-temperature annealing [41].
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Figure 6. (a) Output characteristics and (b) transfer characteristics of the a-IGZO TFT subjected to
microwave-assisted annealing at 200 ◦C. The microwave-assisted process utilizing the dipole rotation
mechanism is a more efficient method than conventional thermal annealing in terms of the reduction
in the proportion of defect states and low-temperature process.

Therefore, microwave annealing minimizes the thermal energy transferred to the
substrate owing to instantaneous heat transfer through the vibration of the lattice in the
material and is suitable as a low-temperature heat annealing method [41–43].

4. Conclusions

In summary, herein, we utilized a microwave-assisted annealing method for low-
temperature fabrication of an a-IGZO TFT. In order to confirm the general heat treatment
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conditions and the microwave heat treatment effect, the roughness of the surface was
confirmed through AFM analysis, and the electrical properties were compared based
on this.

After comparing the surface treated for 1 h at 200 ◦C and 300 ◦C with typical heat
treatment with the surface treated for 10 min at 200 ◦C with microwave heat treatment, the
roughness of the thin film that was microwave heat treated for a short time at 200 ◦C was
much better, and it was found to be more efficient than conventional annealing methods in
terms of reducing the proportion of defect conditions.

In addition, the effect of MWA was verified by comparing the chemical state of the
CTA-treated a-IGZO TFT and the electrical characteristics of the prepared a-IGZO TFT.

MWA improved the quality of the IGZO film more effectively than CTA due to the
difference in the heat energy transfer mechanism, and the removal efficiency of residual
impurities and oxygen defects was higher in MWA than in CTA. Furthermore, the a-IGZO
TFT fabricated using the microwave-assisted annealing method not only exhibited better
electrical characteristics than the a-IGZO TFT annealed at 200 ◦C but was also comparable
with the a-IGZO TFT annealed at 300 ◦C. This result can be useful for the fabrication of
AOSs for applications in flexible devices.
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