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Abstract: As an emerging technology, reconfigurable intelligent surfaces (RISs) have been investigated
to apply to visible light communication (VLC) systems to enhance the transmission capability of
the systems, recently. However, the optimization of RIS location in VLC has not been studied. In
this study, we first investigated RIS positioning design in VLC. Specifically, we set two indoor VLC
scenarios with a VLC RIS composed of a mirror array. We set the achievable rates in different scenarios
as the utility functions to optimize the position of the RIS array according to the placement of the
access point (AP) and user. We found that the problems are nondeterministic polynomial (NP)-hard.
Aiming at the different optimization problems, the particle swarm optimization (PSO) algorithm was
used to confirm the optimal position of the RIS array. Unlike the traditional algorithm, we added an
adaptive mutation mechanism to the algorithm to guarantee the randomness of the particle to search
for the optimal solution. Finally, our simulation results showed that the proper position design of the
RIS array can improve the communication performance to a greater degree, while the computational
complexity required to solve the position optimization problems through the PSO algorithm can
be significantly reduced compared with that required for the exhaustive search method in the case
where both of the algorithms find the optimal solution.

Keywords: visible light communication (VLC); reconfigurable intelligent surface (RIS); particle
swarm optimization (PSO); position design; achievable rate

1. Introduction

As a promising technology, visible light communication (VLC) has recently been
designed to overcome the shortcomings of radio frequency (RF) communication [1]. VLC
technology uses the optical intensity emitted from light-emitted diodes (LEDs) to carry
the information of the input signals, and the optical power is proportional to the input
current. Photodetectors (PDs) can transform the optical intensity into an electrical signal in
the receiver. Normally, the intensity-modulation and direct-detection (IM/DD) Gaussian
channels are mainly used in VLC [2]. VLC has several advantages: it is a green and environ-
mental communication technology. Mass communication resources can be provided due to
the nearly 400 THz frequency band of VLC, i.e., VLC can provide a wider spectrum and
higher cell density compared with RF communication [3]. We can achieve communication
if the illumination need is satisfied via VLC. However, visible light cannot penetrate most
obstacles, which guarantees secure communication [4].

However, there are several shortcomings that limit the development of VLC. The most
significant limitation of VLC is its high dependence on line-of-sight (LoS) transmission;
this high dependence easily causes loss of signal when the transmitter and receiver are not
aligned. In order to solve this challenging problem, reconfigurable intelligent surface (RIS)
technology in RF communication systems can be applied to VLC to enhance the perfor-
mance of communication. As an emerging technology, RIS can be used to reconfigure the
wireless propagation environment by adjusting the parameters of the surface comprising
artificial meta-atoms. This process can be adaptively achieved with software. RIS has been
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studied in RF communications in recent years [5]. The availability of RIS was discussed
in [6,7]. The work in [8] represents a sort of RIS design to enhance the beam-shaping
capability. The difference between RIS and relaying was introduced in [9]. Hodge et al. [10]
integrated RIS with MIMO technology and improved communication. In consideration
of the technical bottlenecks faced by VLC and the potential of RIS, combined with the
good spatial resolution provided by the nanoscale of the visible light, which is favorable
for RIS accurately controlling the reflection direction, the application of RIS in VLC has
been widely studied to enhance the communication quality, by promoting the achievable
rate [11], energy efficiency [12], secure capacity [13,14], asymptotic capacity [15], sum
rate [16], and spectral efficiency [17], and reducing the power consumption [18] and the
mean square error of demodulated signals at the receiver [19]. We call this new technology
VLC RIS in the rest of this paper.

The core work of the research on RISs involves investigating the proper design of
RIS parameters to assist RISs in smartly controlling wireless propagation environments.
These parameters mainly refer to the phase and amplitude coefficients in RF RISs and the
orientation angles of mirrors in VLC RISs. As a mirror array outperforms a metasurface
in VLC RISs [20], the former is widely applied, and the research on VLC RISs has mainly
focused on finding the optimal combination of mirrors’ orientations. At the same time, for
multiuser systems, some researchers have proposed a proper assignment scheme for the
mirrors in VLC RISs to determine how VLC RIS elements serve the access points (APs)
and users. The orientation angles of mirrors adaptively adjust according to the condition
of the assignment scheme [14,16,17]. The assignment scheme of mirrors in VLC RISs
is a new research area, and some researchers have recently investigated it. Meanwhile,
another research area is the placement and position of VLC RISs. To the best of our
knowledge, there is little research in this area. The work in this area with high relevance
was conducted on free-space optical (FSO) communications [21–23]. The relevant content
in RF communication was considered by [24]. Motivated by the research prospect proposed
by a survey [25], we set two indoor VLC scenarios with a VLC RIS and investigated the
optimal position of the RIS array when taking the achievable rate as a utility function. Our
main contributions are summarized as follows:

• For the scenario that contained an AP, a user, and an RIS, we found the optimal
position of the RIS after fixing the locations of the AP and user. This situation is
suitable for offices with a fixed office location and LEDs. In this situation, the device
generally does not move after determining the position.

• For the scenario with a fixed AP, a mobile user, and an RIS, we found the optimal
position of the RIS to satisfy the sum of achievable rates in each position of the floor
maximization. We needed to meet the limit of quality of service (QoS) for every
position on the floor. Even in the traditional dead zone, we guaranteed the QoS
compared with the VLC systems without RIS. This situation is suitable for offices with
mobile devices and a transmitter. This is common in our daily lives.

• The simulation results showed that the communication performance can be improved
to a greater degree through proper position design of the RIS (compared with the
performance of a randomly placed RIS). The computational complexity to solve the
position optimization problems through the PSO algorithm proposed in this paper
can be significantly reduced compared with that of the exhaustive search method.
We observed that the PSO algorithm is an efficient method to solve the problems
described in this paper.

2. System Model

As shown in Figures 1 and 2, we set two scenarios containing different VLC systems
with VLC RISs. The two scenarios are common in our daily life. We considered an RIS
in VLC when LoS paths exist. We aimed to add a supplement when the LoS path is
blocked and wanted to know the degree of performance improvement caused by the RIS
if there is a LoS transmission path. Normally, the VLC transmitter is fixed to the ceiling
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and the RIS array is mounted on the west wall (we denoted the four walls by the four
classical directions). Consequently, we needed to determine the optimal position of the RIS
array according to the placement of the user. The Cartesian coordinate system is used in
the figures. We assumed the size of the room was xmax × ymax × zmax(m×m×m). For
scenario 1, we considered a fixed AP, a fixed user, and an RIS with a single element. This
situation is suitable for a stationary station in an office or laboratory. In this scenario, we
aimed to search for the optimal position of the RIS after determining the placement sof the
AP and user. For scenario 2, we considered a fixed AP, a mobile user, and an RIS with a
single element. In this situation, we strove to investigate the optimal position of the RIS
to satisfy the sum of achievable rates in each place of the floor maximization. We set the
minimum achievable rate as the criterion to fulfill the QoS.

Figure 1. Scenario 1: An indoor VLC system contains an AP, a fixed user, and an RIS.

Figure 2. Scenario 2: An indoor VLC system contains an AP, a mobile user, and an RIS.

The channel of VLC systems contains two parts: the line-of-sight (LoS) and non-line-
of-sight (NLoS) paths. The LoS channel gain hLoS

S,D can usually be modeled as a Lambertian
model [26]. We assumed that the NLoS links are produced only by the RIS in the remainder
of the study to focus on the configuration of the RIS (i.e., the diffuse reflections caused
by walls, ceiling, or floor had little influence on our RIS configuration). According to [27],
high-order reflections have an insignificant impact on VLC systems. Consequently, we only
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considered one-order reflection in this study. For a VLC RIS based on a mirror array, the
reflection process can be modeled as an imaging LED Lambertian model under the point
source assumption [20]. For an RIS with a single element, the channel gain reflected via the
RIS can be expressed as [28]

hRIS
S,D =

ρ(m + 1)APD

2π(dS,R + dR,D)
2 cosm

(
θS

R

)
cos
(

φD
R

)
To f G

(
φD

R

)
, (1)

where S denotes the AP or LED; D represents the user or photodetector (PD); ρ denotes the
RIS element’s reflection coefficient; m is the Lambertian mode number determined by the
LED half-power semiangle Ψ1/2, which is calculated by m = −1/ log2(cos(Ψ1/2)); APD
is the physical area of the PD. The path of transmission consists of two parts, AP-to-RIS
and RIS-to-user. dS,R represents the distance between the AP and RIS, and dR,D is the
distance between the RIS and the user. θS

R and φD
R are the angles of irradiance if the AP

and incidence of the user, respectively; To f denotes the optical filter gain; and G
(
φD

R
)

is the
optical concentrator gain, which is related to the field of view (FoV) ΦFoV [26]. The optical
concentrator gain can be expressed as

G
(

φD
R

)
=

{
a2/ sin2 ΦFoV, 0 ≤ φD

R ≤ ΦFoV;
0, otherwise,

(2)

where a is the refractive index at the PD. Figure 1 shows detailed examples, and the green
line in Figure 1 denotes the LoS channel gain hLoS

S,D . For simplicity, we do not describe the
details of the LoS channel gain in the paper. The details can be obtained from [26].

This is for an RIS with only a single element, and the orientation of the RIS unit can
adaptively rotate according to the position of the user, as shown in Figure 2.

3. Problem Formulation

In this section, we formulate two achievable rate maximization problems to find the
optimal position of the RIS according to the two scenarios. The achievable rate of the
RIS-aided VLC systems can be expressed as [29]

R(xR, zR) = B log2

(
1 +

exp(1)
2π

p
q RPD(hRIS

S,D + hLoS
S,D)

N B

)
, (3)

where (xR, yR, zR) denotes the location of the RIS with only one element, and we assume
that yR is constant; B denotes the system bandwidth; p represents the transmit power; q is
the conversion ratio of optical-to-electrical power; RPD is the photodetector responsiveness
of the PD; and N is the power spectral density of noise. From Equation (3), we obtain that
only the NLoS channel gain is charactered by the location of the RIS; consequently, the goal
to maximize the achievable rate is equivalent to maximizing the NLoS channel gain hRIS

S,D.

3.1. Problem Formulation for Scenario 1

For scenario 1, shown in Figure 1, the locations of the LED and PD are assumed to be
known and fixed. Consequently, the decision variable in this scenario is the location of the
RIS element. The decision variable is related to dS,R, dR,D, θS

R, and φD
R , introduced in (1).

The problem can be formulated as

max
cosm(θS

R) cos(φD
R )G(φD

R )

(dS,R+dR,D)
2

s.t. 0 ≤ xR ≤ xmax,

0 ≤ zR ≤ zmax, (4)

This is a nonconvex optimization problem, which we solv in Section 4.
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3.2. Problem Formulation for Scenario 2

For scenario 2, shown in Figure 2, we needed to look for the optimal position of the RIS
to maximize the sum of the achievable rate in every position on the floor, while satisfying
the quality of service (QoS) in each position on the floor. We assumed the floor is divided
into N elements, so the optimization problem can be given by

max ∑N
n=1

cosm(θS
R) cos

(
φDn

R

)
G
(

φDn
R

)
(dS,R+dR,Dn)

2

s.t. 0 ≤ xR ≤ xmax,

0 ≤ zR ≤ zmax,

RRIS
S,Dn

> Rmin, (5)

where Dn represents the n-th position of the floor; Rmin denotes the minimum achievable
rate to satisfy the QoS.

4. Problem Solution
4.1. PSO Algorithm

In this study, we adopted the particle swarm optimization (PSO) algorithm to solve
the nonconvex problems (4) and (5). The PSO algorithm is a classical metaheuristic and
intelligent algorithm used to guide the particle swarm to search for the global optimization
by simulating the behavior of birds, fish, and other biological populations [30]. In this
paper, the position of each particle denotes the location of VLC RIS. The fitness of each
particle was defined to measure the optimality of the potential solution, and the fitness was
calculated by the objective function in Equations (4) and (5).

The principle of the PSO algorithm is as follows: In the beginning, each particle is
randomly placed within the scope of the search space. Then, the particles adjust their
search direction according to the optimal location each particle has searched and the whole
particle swarm’s optimal location. After multiple searches, the particle swarm finds the
optimal location, i.e., the optimal solution. The main process of this algorithm is as follows:

Each particle has two properties: the position and the velocity of the particle. The
search space in the problem is a set of constraints, i.e., the feasible domain of the problems.
It is assumed that there are m particles in a space of K dimensions. The ith particle is Ni,
and its position and velocity are Xi and Vi, respectively, which can be expressed as

Ni = [Xi, Vi],

Xi =
[
xi1 , xi2 , · · · , xiK

]
,

Vi =
[
vi1 , vi2 , · · · , viK

]
.

(6)

We assume there are m particles gathered as a particle swarm P = [N1, N2, · · · , Nm].
Then, we obtain the fitness of the ith particle Yi = f (Xi) by substituting the position of
the particle as a variable into the objective function. The results are compared and used
to guide the next particle’s updating. For one particle, it is assumed that the time interval
of each update is T. The former velocity is Vt−1

i =
[
vt−1

i1
, vt−1

i2
, · · · , vt−1

iK

]
; the historically

optimal position of the particle is Xbest
i =

[
xbest

i1
, xbest

i2
, · · · , xbest

iK

]
; the current position is

Xt
i =

[
xt

i1
, xt

i2
, · · · , xt

iK

]
. Hence, the velocity from the current position to the historically op-

timal position of the particle is Vt
i,best =

(
Xbest

i − Xt
i
)
/T. The historically optimal position of

the particle swarm is Xbest
all =

[
xbest

all1
, xbest

all2
, · · · , xbest

allK

]
, and the velocity from the current posi-

tion to the historically optimal position of the particle swarm is Vt
all,best =

(
Xall,best − Xt

i
)
/T.

We suppose that the velocity at this time is Vt
i =

[
vt

i1
, vt

i2
, · · · , vt

iK

]
, which can be derived by
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Vt
i = a1 ×Vt−1

i + a2 ×Vt
i,best + a3 ×Vt

all,best, (7)

where a1, a2, and a3 are the weight coefficients of these three velocities. In order to avoid
missing the optimal solution due to excessive velocity or delays in reaching the optimal
solution because of stagnant velocity, we needed to set a constraint on velocity. If Vt

i > Vmax,
we set Vt

i = Vmax. If Vt
i < Vmin, we set Vt

i = Vmin. Then, we could update the next position

Xt+1
i = Xt

i + T ×Vt
i , (8)

We needed to set the constraint on the position of each particle. If Xt
i > Xmax, we set

Xt
i = Xmax. If Xt

i < Xmin, we set Xt
i = Xmin. Unlike the traditional algorithm, we added

an adaptive mutation mechanism to the algorithm so that there is a certain probability of
randomly changing the value of a particle in each iteration. Hence, we could improve the
whole particle swarm’s ability to search for the optimization solution. At the same time,
because of the constraints in (4) and (5), this algorithm needed to be improved. During
the process of particle iteration, each particle is judged by the constraints to determine
whether the position of the particle can fulfill the condition set by (4) and (5). Normal
fitness calculation is performed if the particle is satisfactory; otherwise, the particle’s fitness
is directly assigned to a very small number (because we were seeking the maximum value).
The pseudocode of the PSO algorithm is shown in Algorithm 1.

Algorithm 1 The PSO Algorithm

Input: Swarm size m; maximum iterations G; speed and position constraints
Xmin, Xmax, Vmin, Vmax; objective function f ; weight coefficient a1, a2, a3;

Output: The swarm’s historically optimum position zbest; the optimal value f itness_zbest;
1: Initialization: Position of particle swarm: pop_x, velocity of each particle: pop_v,

particle’s historically optimal position: gbest, swarm’s historically optimal position:
zbest.

2: If pop_x is subject to the constraints in Equations (4) and (5)
3: Calculate the historically optimum fitness f itness_gbest for each particle, select the

maximum of the f itness_gbest as the optimum fitness of the swarm, denoted by
f itness_zbest.

4: End if
5: While iteration < G
6: For the particle swarm,
7: update the velocity and the position of each particle according to

Equations (7) and (8)
8: If the speed or position exceeds the predetermined boundary
9: Then set them to the value corresponding to the boundary

10: End if
11: Perform the adaptive mutation to ensure the randomness of the particles
12: If pop_x is subject to constraints
13: Then calculate the current particle fitness f itness_pop
14: Else Set f itness_pop as −1010

15: End if
16: Compare f itness_pop and f itness_gbest and choose the better as f itness_gbest
17: Compare f itness_zbest and the optimum value in f itness_gbest and choose the

better as f itness_zbest; we denote the position of particle swarm corresponding to
f itness_zbest as zbest

18: End for
19: iteration = iteration + 1
20: End while
21: return zbest, f itness_zbest;
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4.2. Complexity Analysis

The computational complexity of Algorithm 1 was taken into account as follows:
Generating the initial particle swarm requires o(m ·K) operations, where K is the number
of decision variables, and m is the swarm’s size. Generating the initial velocity requires the
same number of operations. Calculating the historical optimum fitness for each particle
requires m operations. Selecting the historical optimal location of the population requires m
operations. Consequently, the computational complexity of the initialization is o(m ·K). The
worst condition for updating the particle swarm’s position and velocity identically requires
o(m ·K · G) operations. G is the maximum number of iterations. The worst-case complexity
for evaluating the historical optimum fitness for each particle and selecting the historically
best location of the population are o(m · G) and o(m · G), respectively. Consequently, the
computational complexity of the updating progress is o(m · K · G). Hence, the overall
worst-case complexity of Algorithm 1 is o(m ·K) + o(m ·K · G) ≈ o(m ·K · G).

5. Simulation Results
5.1. Simulation Parameters

This subsection describes the parameters’ values, and the main simulation parameters
are summarized in Table 1. We supposed that the location of the LED was (2.5, 2.5, 2.8)m
in the scenarios; the distance between RIS and the west wall was yR = 0.1 m. For scenario
1, we randomly set the receiver’s location to satisfy the need for generality. We regarded
the location of the receiver as (1.5, 1.8, 0)m in the simulations. Meanwhile, we assumed
that the normal vector of the receiver was upward toward the ceiling, while the transmitter
was downward toward the floor. For scenario 2, we assumed the floor was divided into
N = 50× 50 elements, and Rmin was considered as a variable in subsequent simulations.

Table 1. Main simulation parameters.

Name of Parameter Value of Parameter

LED half-power semiangle, Ψ1/2 70◦

Reflection coefficient, ρ 0.95

Physical area of the PD, APD 1 cm2

Length of west wall, xmax 5 m

Height of west wall, zmax 3 m

Coordinates on Y-axis of RIS, yR 0.1 m

Optical filter gain, To f 1

Refractive index, a 1.5

Field of view, ΦFoV 70◦

System bandwidth, B 200 MHz

Photodetector responsiveness of PD, RPD 0.53 A/W

Conversion ration of optical-to-electrical power, q 3

Power spectral density of noise, N 10−21 A2/Hz

5.2. Numerical Results
5.2.1. Convergence Analysis

Figure 3 shows the convergence rate of Algorithm 1 and a performance comparison of
the proposed method with that of the exhaustive search method. The global optimal solu-
tion in Figure 3 ws obtained by the exhaustive search method, which is highly intractable
and cannot be used in practice. We found that the PSO algorithm could achieve the global
optimal solution after a finite number of iterations from the figure.
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Figure 3. The convergence curve of Algorithm 1 and performance comparison between the proposed
and exhaustive search methods.

5.2.2. Performance Gain of the Optimal Location of RIS versus Randomly Placed RIS for
Scenario 1

Figure 4 shows the performance of achievable rate versus the position of the RIS for
scenario 1. (xopt, zopt) is the optimal position calculated by the exhaustive search method.
From the figure, we found that the optimal location of the RIS was significantly improved
compared with the other RIS positions.
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Figure 4. Achievable rate versus RIS position.

Figure 5a,b verifies the correctness of the algorithm used in the study, where xopt
represents the optimal vertical distance between the RIS and the north wall, and zopt
denotes the optimal vertical distance between the RIS and the floor. In the figures, “no-RIS”
means that the received signal was only from the LoS channel; conversely, “RIS-aided”
denotes that the received signal contained two parts: LoS and NLoS channels based on
the RIS. xopt in Figure 5a and zopt in Figure 5b are the results calculated by Algorithm 1.
We observed that the solution calculated by Algorithm 1 was the same as that calculated
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by the exhaustive search method. At the same time, the computational complexity of
the PSO algorithm was significantly reduced according to the analysis in Section 4.2. As
the objective function in Equation (4) is continuous and differentiable, we found that the
location

(
xopt, yR, zopt

)
was the optimum location of the RIS in this scenario. Meanwhile, we

observed that the position of the RIS could considerably influence the system’s performance
from Figure 5a,b. The optimally placed RIS could help the VLC system achieve about 16%
improvement in the achievable rate compared with the VLC system without an RIS; with
the RIS in the optimal location, superior performance was achieved compared with a
randomly placed RIS in the VLC system. This simulation results showed that the PSO
algorithm is an appropriate method for solving RIS position problems shaped like scenario
1, showing that research on the optimal location of RISs in VLC systems is important.
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Figure 5. (a) Achievable rate on x-axis. (b) Achievable rate on z-axis.

5.2.3. Achievable Rate Performance versus Different Rmin for Scenario 2

For scenario 2, different Rmin values mean different constraints, which lead to different
optimal positions of the RIS array. According to Equation (5), we can set a proper Rmin
to satisfy the QoS and determine the optimal position of the RIS based on different Rmin
values (i.e., Rmin is related to an optimal RIS position). Table 2 provides the results for
the achievable rate performance for different Rmin values. It can be observed from the
table that increasing Rmin results in an improvement in the height of RIS placement zR.
However, when Rmin is small (from 0 to 4.10× 1012), the position of RIS is constant (i.e.,
the requirement is so small that all the place of the floor can satisfy it). When Rmin is large
enough, the optimal position of RIS is not on the wall, and there is no proper position on
the wall that satisfies the QoS (i.e., the requirement is high). In the gap between too low
and too high, the position changes with the QoS (i.e., Rmin). Consequently, we chose the
optimal position calculated by Algorithm 1 at which to mount the RIS according to the QoS
in practice.

Table 2. Achievable Rate Performance versus different Rmin.

QoS Position of RIS Sum Gain of Achievable Rate
Rmin (xR, yR, zR) Rsum

0 (2.5, 0.1, 1.39) 4.561× 1014

4.10× 1012 (2.5, 0.1, 1.39) 4.561× 1014

4.15× 1012 (2.5, 0.1, 1.43) 4.557× 1014

4.20× 1012 (2.5, 0.1, 1.48) 4.548× 1014

4.25× 1012 (2.5, 0.1, 1.52) 4.532× 1014

4.30× 1012 (2.5, 0.1, 1.56) 4.504× 1014

4.35× 1012 (2.5, 0.1, 1.62) 4.455× 1014

4.40× 1012 (2.5, 0.1, 1.73) 4.321× 1014

4.45× 1012 NAN 0
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6. Conclusions and Future Research Directions

In this paper, we proposed two optimization problems to confirm the optimal position
of an RIS for the scenarios that occur in our daily lives. Instead of optimizing the RIS
elements’ orientations, we set the position of the RIS array as the optimization variable
to achieve the objective function maximization. This is a novel concept, and, to the best
of our knowledge, there is little literature in this field. We adopted the particle swarm
optimization (PSO) algorithm to solve the problems and confirmed the optimal position
of the RIS array. Our simulation results showed that properly designing the position
of the RIS array can improve the performance to a greater degree under the condition
that the problems are jointly solved with the technology for RIS element orientation. The
computational complexity of the PSO algorithm can be significantly reduced to solve
position optimization problems compared with that of the exhaustive search method.

The optimization of the RIS position can be regarded as an attractive future research
direction. Our proposed method is constrained by the traditional deployment of RISs.
Perhaps RISd can be deployed in every position in the room instead of only being mounted
on one wall. In other words, it is possible to design a mobile machine on the ceiling to
suspend the RIS to change the yR in this study to achieve a greater degree of improvement.
Additionally, we only considered an RIS with a single element. In the future, the RIS
position can be designed with multiple elements, combined with the assignment scheme of
mirrors. The further consideration of optimization algorithms is another direction of our
future research work.
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