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Abstract: A big challenge in human–robot interaction (HRI) is the design of autonomous robots that
collaborate effectively with humans, exposing behaviors similar to those exhibited by humans when
they interact with each other. Indeed, robots are part of daily life in multiple environments (i.e.,
cultural heritage sites, hospitals, offices, touristic scenarios and so on). In these contexts, robots have
to coexist and interact with a wide spectrum of users not necessarily able or willing to adapt their
interaction level to the kind requested by a machine: the users need to deal with artificial systems
whose behaviors must be adapted as much as possible to the goals/needs of the users themselves, or
more in general, to their mental states (beliefs, goals, plans and so on). In this paper, we introduce a
cognitive architecture for adaptive and transparent human–robot interaction. The architecture allows
a social robot to dynamically adjust its level of collaborative autonomy by restricting or expanding a
delegated task on the basis of several context factors such as the mental states attributed to the human
users involved in the interaction. This collaboration has to be based on different cognitive capabilities
of the robot, i.e., the ability to build a user’s profile, to have a Theory of Mind of the user in terms of
mental states attribution, to build a complex model of the context, intended both as a set of physical
constraints and constraints due to the presence of other agents, with their own mental states. Based
on the defined cognitive architecture and on the model of task delegation theorized by Castelfranchi
and Falcone, the robot’s behavior is explainable by considering the abilities to attribute specific mental
states to the user, the context in which it operates and its attitudes in adapting the level of autonomy
to the user’s mental states and the context itself. The architecture has been implemented by exploiting
the well known agent-oriented programming framework Jason. We provide the results of an HRI
pilot study in which we recruited 26 real participants that have interacted with the humanoid robot
Nao, widely used in HRI scenarios. The robot played the role of a museum assistant with the main
goal to provide the user the most suitable museum exhibition to visit.

Keywords: human–robot interaction; user modelling and user adaptation; theory of mind; social
adjustable autonomy; explainabile agency

1. Introduction

This work addresses the problem of how to build autonomous robots that are able to
effectively cooperate with humans, with capabilities similar to those exhibited by humans
when they cooperate with each other. Even with sufficiently safe and predictable behav-
iors, robots will never be socially adequate until they behave with the abilities shown in
human–human cooperation [1–3]. Robots are part of daily life and are present in multiple
environments such as cultural heritage sites [4,5], hospitals [6], tourist scenarios [7] and
so on. In these contexts, robots interact with a wide spectrum of users not necessarily
able (or willing) to adapt their interaction level to the kind requested by a machine: the
users need to deal with artificial systems whose behaviors must be understandable [8] and
personalized [9]. Let us consider the interactive scenario involving a human user and a
robot: the human relies on the robot for realizing some part of her plan. Now, in order to
help the human in an intelligent, adaptive and effective way, the robot has to understand
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the human’s goals, beliefs and expectations about its behavior. Furthermore, intelligent
help must be much more than simple execution of a prescribed action; it requires autonomy
and even initiative. In particular, collaborative autonomy: an autonomy at the service of the
user. Generally speaking, the robot should provide to the user different levels of help [10]:
it should exploit its autonomy, competence and cognitive skills to find a better or a possible
solution for the user’s goals, that does not necessarily match with her explicit expectations.
This should not necessarily require a discussion or an agreement: it might be an inde-
pendent initiative of the robot. How would this advanced form of true cooperation and
partnership be possible without a reciprocal mind ascription and reading? A robot needs
to understand the human’s ends, higher goals, expectations interests in order to really help
her, and the human has to understand what the robot is doing or did and why in mental
terms. What was the knowledge or the beliefs of the system, its helping aim, its reasoning
and problem solving? For being socially effective, autonomous robots have to build or use
cognitive models of the other agents [11] and to adapt their decisions, including the level of
autonomy in achieving tasks, on the basis of the goals/needs of their interlocutors.

Contextual to the ability to consider the user needs and build complex models of her
mental states, an intelligent robot should also take into account the interests, goals and
plans of other agents involved in the interaction. These plans, goals and interests typically
represent implicit restrictions and mandatory choices that the user has to consider; however,
they can be adapted and personalized for each user. Based on the mental attitudes attributed
to the user, and the constraints or needs attributable to other agents involved in the
interaction, a mediation system between these two subjects can play a role of customization
in order to best satisfy both parties. For example, we consider a scenario in which a robot
plays the role of a museum assistant and has to personalize a museum visit according to the
goals and interests of the user who intends to visit the museum. In this context, the robot
not only personalizes a visit based on the user’s artistic interests and other characteristics
declared or attributable to her (e.g., time available, level of interests and so on), but it
should also consider all those features related to the interests, goals and plans that the
museum curators designed for a museum tour. Most of the time (this is the approach
followed in this paper), the goals and interests of the museum curators are oriented to the
satisfaction of the user, not in contrast to it (e.g., intent to guide the user to visit a really
relevant collection that the user did not know and cannot assess the value of). However a
negotiation process is necessary; in our case, this process takes place through the role of the
mediator (e.g., a robot). In any case, it will be the user at the end of the visit who declares
satisfaction about the mediation process realized by the robot. The type of collaboration
mentioned above, which takes care of mental states and interests not declared by the user
in addition to those explicitly requested or investigated by the robot, can be considered
misleading or incorrect by the user. For this reason, a robot that intends to follow such a
task adoption strategy must also transparently show the coherence of its behavior. A way to
do that is to make its actions and goals explainable so as not to be confused with disordered
and random help [12]. A robot—in this case—has to explain to the user what it did or plans
to do in terms of the reasons for doing so.

Contributions

In this paper, we extend our previous work [13], and we introduce a knowledge-
driven, reasoning-based, cognitive architecture for a robot’s decision making whose result
is an intentional system [14] able to:

• Build a profile of the interacting user and classify her on the basis of the robot’s
capability to perceive, infer or explicitly investigate specific physical and social features
of the user;

• Model the mental states of the interacting human user in terms of beliefs, goals and
plans and create a complex user model;

• Model the beliefs, goals and plans of other agents involved in the interaction;
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• Dynamically adjust its own level of collaborative autonomy by restricting or expanding
a delegated task on the basis of an internal negotiation process between several context
factors, such as needs or goals not necessarily declared by the interacting human user
and the constraints or needs attributable to other agents involved in the interaction;
the final result provided by the robot does not necessarily correspond to the explicit
and declared user request, and it is adapted to those mental states.

• Generate an explanation of the robot adoption strategy and justify the possible changes
with respect to the explicit agreements.

• Investigate different dimensions of the user’s satisfaction about the final results pro-
vided to the user.

We provide results obtained in a human–robot interaction pilot study with 26 real
participants that have interacted with the humanoid robot Nao [15], widely used in HRI
scenarios. The robot is a museum assistant that handles a virtual museum; its goal is to
support the user and provide her a museum exhibition to visit. At the end of the tour,
the robot proposes a short survey to the user, with the aim of investigating her satisfaction
with respect to the presented exhibition. Furthermore, the robot explains the reasons
that lead its task adoption process; after the explanation, it gives the user the possibility
to change the answers to the administered survey. The computational model has been
implemented by exploiting the well-known agent-oriented programming (AOP) framework
Jason [16].

The paper is organized as follows: Section 2 describes the background underlying
the cognitive architecture. Section 3 focuses on the description of the cognitive model;
Sections 4 and 5 are dedicated to the pilot study and its results. Section 6 is dedicated to the
conclusions and the future works. Finally, Section 7 introduces the state of the art related to
the domain investigated in the pilot study: Cultural Heritage.

2. Background

In this section, we summarize the theoretical background on which the architecture
design is based.

2.1. Cognitive Architectures

Cognitive architectures have been the subject of research for a long time, and different
solutions have been proposed in order to provide artificial systems with human cognitive
and behavioral characteristics [17–19]. Different approaches have been exploited, ranging
from symbolic [20–22], emergent [23,24] and hybrid architectures [25,26]. The increasing
utilization of robots in society determined a need to design architectures that also provide
support for a broad range of HRI applications, where robots must share the same physical
space [27], and they have to adapt the interaction to the users’ needs, mental states and
profiles [28–30]. Our architecture relates to the Beliefs, Desires, Intentions (BDI) paradigm [31],
one of the most popular models in agent theory [32]. Originally inspired by the theory of
human practical reasoning developed by Michael Bratman [33], the BDI model focuses on
the role of intentions in reasoning and allows us to characterize agents using a human-like
point of view. Very briefly, in the BDI model, the agent has beliefs, information representing
what it perceives in the environment and communicates with other agents, and desires that
are the states of the world that the agent would like to accomplish. The agent deliberates
on its desires and decides to commit to some of them: committed desires become intentions.
To satisfy its intentions, it executes plans in the form of a course of actions or sub-goals to
achieve. The behaviour of the agent is thus described or predicted by what it committed
to carry out. An important feature of BDI agents is the property to react to changes in
their environment as soon as possible while keeping their pro-active behaviour. Different
cognitive architectures underlie BDI modelling [30,34,35]. In this work, we extend upon the
procedural reasoning system architecture described in [36], a framework for constructing
real-time BDI reasoning systems that can perform complex tasks in dynamic environments.
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2.2. Autonomy Adaptation in HRI

Autonomous robots are intelligent systems capable of performing tasks in the world
without explicit human control. Autonomy in robotics has been widely defined, conceptual-
ized and experimented with and is particularly important within the field of HRI, where it
is not an end in itself, but rather a means for supporting productive interaction (active col-
laboration, assistance). Existing frameworks [37,38] provide definitions of autonomy and
conceptualization of robot levels of autonomy in HRI scenarios. In contexts where humans
and robots collaborate and share complex, dynamic spaces and tasks, determining the
appropriate level of autonomy in a robot depends not only on “What can a robot do”? but
rather on “What should a robot do and to what extent”? [38]. Selecting the appropriate level
of autonomy and adapting it to the context involves both user control and robot initiative.
Different approaches to autonomy and collaboration have been proposed, providing differ-
ent balance levels between human control and autonomous decisions of the robot [39–41].
Our approach is based on the theory of adjustable social autonomy [42]; in the next section,
we summarize the principles underlying the proposed cognitive architecture, focusing on
the complex mental attitudes of task delegation and task adoption.

2.3. Theory of Mind

Everyday life scenarios increasingly involve sophisticated autonomous robots which
cooperate with humans (mainly non-specialists) in complex environments. This human-in-
the-loop role for humans interacting with intelligent robots requires that the latter are able
to complement existing human capabilities or, even better, to autonomously read [43] the
mental states of the humans and adapt their behavior with respect to their beliefs, goals,
plans and features. The complex capability to represent mental states of other humans
is broadly referred as Theory of Mind (ToM) [44,45]. The ability to mentalize other agents
implies building models of them and using such models for different reasons: to predict the
actions of the modelled agent and integrate the prediction in the decision-making process
in order to improve the effectiveness of the interaction; to classify the behaviour of the
modelled agents and choose a pre-designed strategy which is known to work in favour of
the identified class and to exploit the model of a specific agent in order to identify and point
out some characteristics. Providing intelligent robots with the ability to build complex
models of their users and to modulate their decision on the basis of these models [11,46–48],
represents a crucial point for promoting an intelligent and much more adaptive cooperation.

2.4. Theory of task Delegation and Adoption

As widely argued in [10], “cooperation works through the allocation of some task (or
sub-task) by a given agent (individual or complex) to another agent [. . . ], meeting some
commitment”; in other words, cooperation implies the two complementary basic ingredi-
ents of task delegation and adoption. This kind of relationship is basic for any collaborative
scenario where intelligent agents (human or not) are involved [49,50]. In cooperative
scenarios, robots are not only useful for relieving humans of repetitive and boring tasks
that they delegate to these artificial systems. To be really helpful, robots must take the
initiative [51] of going beyond a delegated task or opposing human’s expectation and,
for example, proposing a different strategy for achieving the delegated goal [52].

Delegation and adoption can be represented by the following five-part relational
constructs [10]:

Delegates(X, Y, C, τ, gX) , Adopts(Y, X, C, τ, gX) (1)

With the term goal, we identify a state of the world to be achieved. The first construct
can be read as X—the delegator—delegates to Y—the delegee—to execute a task τ, in a
context C and to realize the result p (state of world) that includes or corresponds to X’s
goal Goalx(g) = gX. The second construct can be read as Y—the adopter—adopts for/by
X—the adoptee—to execute the task τ in context C in order to realize the result p (state
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of world) that includes or corresponds to X’s goal Goalx(g) = gX. In simple cooperative
scenarios, each delegation should correspond to the relative adoption and vice versa. The
task τ, the object of delegation/adoption, can be referred to as both an action α and its
result p. Sometimes, either the action or the resulting world state is not explicitly stated,
but, in any case, both will be present in at least implicit form. So by means τ, we will refer
to the (action/state of world) pair τ = (α, p). For a complete formalization of the theory of
delegation please refer to [10,42].

Let us focus on a deep level of cooperation where the delegee/adopter can adopt a
task delegated by the delegator/adoptee, at different levels of effective help. The different
levels of the delegee’s (adopter’s) adoption can be individuated according to [10]:

• Sub-help : The delegee/adopter satisfies a sub-part of the delegated world-state (so
satisfying just a sub-goal of the delegator/adoptee),

• Literal help: the delegee/adopter adopts exactly what has been delegated by the
delegator/adoptee,

• Over help: the delegee/adopter goes beyond what has been delegated by the dele-
gator/adoptee without changing the delegator’s (adoptee’s) plan (but including it
within a hierarchically superior plan),

• Critical Over-help: the delegee/adopter realizes an Over-help and in addition also
modifies the original plan/action (included in the new meta-plan),

• Critical help: the delegee/adopter satisfies the relevant results of the requested plan/
action (the goal), but modifies that plan/action,

• Critical Sub-help: the delegee/adopter realizes a sub-help and in addition modifies the
(sub) plan/action.

In our scenario, the role of delegator is attributed to the human user H, while the
adopter is the robot R; α can be either a complex action (plan) or an elementary action. It is
important to underline that we are considering collaborative robots whose main meta-goal
is the achievement of the user’s goals.

In the literature, the semantic distinction of the terms cooperation and collaboration is
presented in various forms that are not always completely homogeneous, and the meanings
are not always clearly distinguishable from each other. In fact, it can be argued that
“the key difference between these approaches to group work is that cooperation is more
focused on working together to create an end product, while successful collaboration
requires participants to share in the process of knowledge creation” [53]. In practice,
collaboration is the result of a “continued attempt to construct and maintain a shared
conception of a problem” [54], i.e., a “mutual engagement of participants in a coordinated
effort to solve the problem together” [54]. Cooperation, on the other hand, highlights a
differentiation and separation of the activities of the participants: a sort of division of
labor with different responsibilities on different portions of problem solving. Cooperation
might be just functional, self-organizing and emergent, not necessarily mentally shared
by the participants and intended, while collaboration implies some mental sharing and
intentionality. In this paper, we found ourselves in a situation that is not entirely defined
with respect to this differentiation and rather mixed. In fact, if it is true that it could be
established that the human delegates a task to the robot and that the latter carries it out on
its own (cooperative case), it is also true that the robot continuously needs to evaluate the
environmental conditions in which it operates and at the same time verify how its activity
is evaluated by the human in order to modify and better articulate its help in a key for
adaptation to other goals and interests of the same human (collaborative case). For this
reason we have used both terms in the course of this paper.

2.5. Explainable Agency

As mentioned in Section 1, the complex capability to ascribe a mind to other agents
and behave according to their mental states is crucial in human-human interaction. In HRI
scenarios, this ability is investigated [8], but limited for now. In order to reduce the impact
of this lack, is responsibility of the robots designers to make them as transparent and
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interpretable as possible: this requires the construction of representations that support
the articulation of explanations [55]. Robots have to be able to explain their decisions [56]
about the task they accomplish, mostly when they have an autonomous behaviour with
respect to the task delegated by humans [57]. The definition Explainable Agency [58] refers
to the capability of autonomous agents (e.g., robots) to explain their actions and the
reasons leading to their decisions. Explainable agency stands out from Explainable in Data-
Driven domain [59] which is referred to the capability to interpret the results of “black box”
machine learning mechanisms such as deep learning. In this work we decide to leverage
on a BDI based approach, in order to provide expressive explanations for goal-directed
agents [60–62]. BDI paradigm is based on folk-psychology and this makes it suitable
for providing human-friendly explanations, including conflicts justification. Indeed, BDI
model allows explicit representations of the robot’s mental states (beliefs, goals, plans and
so on) and those ones the robot attributes to the interacting human agents; this allows
to select beliefs, goals, plans, intentions, constraints and so on, that have been relevant
in the entire deliberation process and exploit them in order to generate explanations
about behavior/decisions, easily interpreted by humans. Furthermore, we will show how
much explainability is important when conflicts arise between the results expected by the
delegator and the ones provided by the adopter.

3. Cognitive Architecture Description

The proposed cognitive architecture defines a task-oriented robot that performs ef-
fective reasoning in a dynamic interaction with other cognitive agents, typically humans.
The result is a cognitive robot able to receive a delegated task and to exert some degree
of discretion, which corresponds to different levels of autonomy in the task adoption. We
refer to social autonomy in a collaborative relationship among agents as the possibility of
expanding the decision and action space with respect to the assigned task on the basis of
criteria related to the adaptability to the user needs. This is possible thanks to the robot’s
capability to have a ToM of the user, even of mental states beyond those explicitly declared.
In addition to adapting the task adoption strategy to the user’s mental states, the robot is
able to elicit an internal negotiation process in which it tries to mediate the final decision
by taking into account mental state attributes of other agents involved in the interaction.
Figure 1 shows the conceptual components of our cognitive architecture. In the next sub-
sections, we will describe the main modules, following the perception–reasoning–action
(PRA) cycle.

Figure 1. Perception–reasoning–action (PRA) cycle of the cognitive architecture. Please note that
every module can manipulate (read or write) GR and ΩR.
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3.1. The Robot Mental States

Mental states of the robot are stored in the Robot’s Beliefs Base ΩR and the Robot’s Goals
Base GR represented in the following subsets:

• BH = BspH ∪ BmsH , the robot’s beliefs about attributions of the human user H. In partic-
ular, BspH = {βspH1

, . . . , βspH v
} is a subset of features, both social (i.e., user’s economic

status, level of education, personal interests) and physical (i.e., user’s age, gender),
the robot attributes to the user; BmsH = {βmsH1 , . . . , βmsH w} are the user’s the mental
states defined on the basis of the robot’s capability to have a ToM of her;

• BmsA = {BmsA1 . . . BmsAn} are the robot’s beliefs about attributions of the agents
{A1, . . . , An} involved in the interaction. If we refer to the i-th agent Ai, we will
represent her mental state as the subset BmsAi

= {βmsAi 1
, . . . , βmsAi w

}. Unlike the
user model, which is created at run time based on her profile, the model of the other
agents involved in the interaction has been previously described in the robot’s
belief base. While representing an a priori knowledge of the robot, this model can
be modified by the robot itself through interaction with the agents involved;

• BIR = {β IR1 , . . . , β IRm} are the robot’s beliefs about its own physical internal state
(i.e., the robot’s battery, the temperature of its joints and so on);

• BΠ = {βπ1 , . . . , βπs} is a plan library representing the beliefs about the set of actions
(either elementary or complex) able to achieve world states;

• KR = {βkR1
, . . . , βkRh

} represent the rest of the robot’s knowledge.

Let us specify that ΩR = BH ∪ BIR ∪ BΠ ∪ KR, while GR = ∅ is initially an empty
set. This is because in our case, the robot’s goals are included in GR during the overall
task delegation and adoption process. The plan library that plays an important role in the
robot’s decision-making process is defined as follows:

Π = Πa ∪Πd (2)

where Πa indicated abstract plans (i.e., walk, drive, run are a type of move), while Πd is the
set of plans that can be decomposed in sub-plans (i.e., travel consists of leaving, moving
and arriving). We consider the plan library as unique and common to all agents, both
robots and humans. Each plan is a tuple π =< p, γ, λ, b > (with π ∈ Π) that has a body b
(course of actions αi to execute or sub-goals gi to achieve), preconditions γ, constraints λ
and states of the world p it will realize if correctly applied. Please refer to [63,64] for a much
more complete meaning of plans. The presence of the plan library makes the approach
deterministic (actions are mapped in the plan library) and fully observable (the plan library
is known).

3.2. Perceiving the World

The first thing the robot does is to continuously sense and monitor the environment.
The Perception modules map the current state of the world (including the interacting human
user), provided by multiple robot’s perception capabilities (i.e., object detection, speech
recognition, face recognition and so on) in a symbolic form. Every time a new user wants to
interact, the robot starts a dialogue with her during which it retrieves information (explicit
or implicit), including the task the user intends to delegate. The interaction can also be
supported by graphical user interfaces (GUI) through which the user can express specific
social features (e.g., personal interests in art, sport and so on), and the robot can collect
useful data to profile her.

3.3. The Reasoning Process

The reasoning process for task adoption exploits the information gathered in ΩR and
GR in order to deliberate upon the state of affairs it wants to pursue (deliberation activity) and
decides how to use the available plans in Π for achieving the deliberated task (means-end
reasoning).
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3.3.1. User Modelling

The Human Profiling module allows the robot to map the outputs of its own perception
in two tuples of beliefs PH =< βspH k

, . . . , βspH k+n
>∈ BspH and τ0 =< α0, p0 >. PH

represents the user’s socio-physical profile inferred by the robot on the basis of its capability
to perceive and infer specific user’s features, both physical and social (i.e., age, level of
education, personal interests and so on); τ0 is the task the user intends to delegate to the
robot. The task τ0 can be not only explicitly delegated to the robot, but it can also be derived
by the robot’s capability to attribute mental states to the user and build a profile of her. We
define user’s modelMH = (BH ,GH , ΠH) as a set of beliefs BH , goals GH and plans ΠH . Each
belief βi ∈ ΩR is represented and refers to the features defining the user’s profile which
are perceivable by the robot itself. This representation of beliefs determines stereotypes [65],
useful for the robot to activate a task (for example, if the user likes modern art, the robot will
typically propose a modern art collection). Given PH , the architecture allows us to select
the most suitable user’s modelMH ; in particular, each belief βmsH i ∈ MH is selected on the
basis of a measure of suitability Sβ. The suitability of a belief quantifies how much the belief
is adapted to a specific type of user on the basis of the profile attributed to her. Let us give
an example of building the user’s model: a robot plays the role of museum assistant, and it
has the goal to provide to the user a personalized museum exhibition to visit. During an
initial interaction with a user, the robot retrieves perceptual information that allows it to
infer that the user is young, with a high level of education, likes impressionism and hates
ancient art. These features collected in the profile are integrated in the robot’s beliefs base.
The robot exploits the inferred profile in order to attribute specific behaviors and mental
states to the user, leveraging the suitability value associated with each belief represented in
its own beliefs base.

3.3.2. Active Goals Selection

The effective process leading the robot to adopt the final task starts after it defines
PH . The complex module of Reasoning Task Adoption implements an algorithm that infers
goals and plans of the user after she has (directly or indirectly) delegated a task. Because
of their definition in ΩR (see Section 3.1), plans can be considered hierarchical constructs
of elementary or complex actions. Consider Figure 2, part (a): the same task (α0, g0)
represents the node of different complex plans, which involve the achievement of several
other actions/goals. If the robot decides to over-help the user by choosing a much more
complex plan/goal than the delegated one (delegated task is still part of the new complex
one), it has to take into account the modelMH in order to select those goals/actions that
are suitable for her. Furthermore, let us consider part (b) of the same figure: the same goal
(g1) is achieved by two different plans. If the robot decides to adopt a critical help strategy
by choosing a different plan than the delegated one, which allows it to achieve the goal
delegated by the user, it has to take into account the modelMH in order to select those
plans that are suitable for the user herself.

We define active goal gA as a goal that the user, with a specific profile and set of mental
states, did not delegate but that might represent a state of affairs she could be interested in
or has already planned. In practice, these additional goals or interests of the user (active
goals) are deduced on the basis of the profile that the robot builds and the consolidated
knowledge on potential categories. Given the set of plans Π ∈ ΩR and the user’s profile
PH , the Active Goals Plans Selection module allows us to enrich the modelMH with further
goals (in addition to the delegated one) by sorting the plans πj ∈ Π(j = 1, .., s) on the
basis of their corresponding value of suitability Sπj . If two or more plans have the same
suitability, they are also sorted on the basis of the highest number of goals they satisfy.
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Figure 2. Example of plans in ΩR exploited by the robot in order to perform respectively over help
(a) and critical help (b).

3.4. The Task Selection Process

A crucial property that promotes intelligent help is the capability to apply the right
level of help with which the robot intends to adopt the delegated task. Intelligent collabora-
tion expresses the ability to consider the literal user’s request as an element to integrate with
other contextual elements (i.e., user needs, physical environment). Sometimes, the interpre-
tation of these elements implies risks of errors and failures; sometimes, although correctly
assessed, they can lead to an excess of collaboration that is not necessarily appreciated
by the recipient. For doing that, we consider different robot dispositions that correspond
to different levels of proactiveness with which the robot intends to achieve the delegated
task. In particular, we define levels of a robot’s proactiveness, literal and over. The first
level allows the robot to try to achieve the goal delegated by the user (at most by changing
the plan and performing critical help); the over level allows the robot to carry out a much
more complex plan/goal than the delegated one of which the delegated task is still a part.
Each robot’s disposition corresponds to a specific heuristic for task selection, (collected in
the module Heuristics for Task Selection) that implement different task selection algorithms
(based on the two level of proactiveness defined above) through which the robot adjusts its
own level of collaborative autonomy by restricting or expanding the delegated task on the
basis of the mental states it has represented in its own Beliefs Base (see Section 3.1). The
sub-help level defined in Section 2 occurs every time the robot fails to accomplish the task
defined in the literal or critical help levels, but at least a sub-goal of g0 is achieved.

In this work, we provide results of an experiment where the heuristic exploited by
the robot just allows it to perform literal or critical help. (We do not consider the case of
over-help). This means that the robot tries to adopt exactly what has been delegated by the
user (performing literal help), but when it believes that there is a more suitable way for the
user to achieve the same goal (based on the mental states attributed to the user and those
attributed to other agents involved in the interaction), the robot changes the user’s plan,
performing critical help. In Section 4, we will describe the heuristic exploited by the agent
in the pilot study. As mentioned, the use of this heuristic does not exclude the presence of
other heuristics. For example, the robot can be equipped with other heuristics that allow it
to perform over-help whenever it believes there is the context to go beyond what has been
delegated by the user without changing her plan but including it within a hierarchically
superior plan, which includes active goals not declared by the user. The common thing of
every heuristic is to make a decision based on the mental states attributed to the user, always
trying to satisfy her goals or needs as much as possible, also taking into consideration the
presence of other agents involved in the interaction.
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3.5. The Task Adoption Explanation

After the robot completes the task and provides the results to the user, it can provide an
explanation about the why it adopted a specific strategy for achieving the delegated task in
that way. The robot’s reasons provided for justifying the task adoption are the mental states
exploited during each phase of the perception, reasoning and action process implemented
by the cognitive architecture. In particular, the explanation includes a mechanism to
construct a behavior log, to which the robot attributes beliefs or goals to the user, on the
basis of its capability to profile the user and to have a ToM both of the user and of other
agents involved in the interaction. During the reasoning process implemented by the
architecture, the robot records information (encoded as beliefs) that will be useful for
building the explanation.The behavior log is the flowchart structure represented in Figure 3:
initially the robot describes the task, then it describes the relevant beliefs it has attributed
to the user based on its capability to profile her and to represent her mental states and that
have been crucial for the robot’s choice. In this phase, the robot also describes (if they exist)
the active goals attributed to the user. After that, the robot introduces its disposition which
corresponds to the levels of proactiveness defined in Section 3.4.

Figure 3. Flowchart exploited by the robot in order to provide an explanation about the reasons that
led it to complete the task.

Based on the heuristic implemented, the robot exploits the beliefs that it has logged
during the task selection to provide the explanation of the criteria with which it has chosen
the final task, regardless of whether it coincides with the task delegated by the user. In the
experiment section (Section 4), we provide an example of the explanation produced by the
robot based on the heuristic exploited by the robot in the experiment.

4. The Pilot Study

In order to test the potentiality of our computational model, we ran a human–robot
interaction pilot study. A total of 26 participants, aged between 25 and 75, were recruited
for this pilot study. Each participant: (i) has interacted with the humanoid robot Nao; (ii)
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carried out an entire interaction with the robot (trial); (iii) has the goal to visit (delegated
task) the virtual museum, corresponding to a specific artistic period; and (iv) is aware of
the fact that the tour will be chosen by the robot that manages the virtual museum, who
will choose the most suitable tour for her. In this scenario, the robot is a museum assistant
that handles a virtual museum, and it provides a museum tour (adopted task) to the user.

The virtual museum is organized in multiple thematic tours (Figure 4), each containing
artworks (Figure 5) of the same artistic period (e.g., Impressionism, Surrealism, Baroque,
Greek Art and so on). The museum is organized in such a way that it covers the entire body
of the history of art. The categorization of the history of art periods follows the schema
shown in Figure 6 and it is based on the work of one of the most important art historians of
the 20th century, Giulio Carlo Argan [66].

The museum is designed to establish potential assumptions believed by the users:
for example the artistic periods belonging to the same category are more homogeneous
and therefore corresponding in the preferences of the users with respect to artistic periods
of other categories. A user that indicates as the preferred artistic period “Impressionism”
probably will be more inclined to “modern art” rather than “ancient art”.

Three attributes describe a thematic tour: Relevance, Accuracy, and Category.

• The Relevance of an artistic period is defined on the basis of the originality of the
artworks that compose it and the impact they had in the field of art history.

• The Accuracy, on the other hand, specifies the detail in the description of each artwork
present in a thematic room.

• Each thematic tour (artistic period) belongs to a Category, which collects different
artistic periods; for example, the “Impressionism” tour belongs to the same category
as the “Surrealism” and “Cubism” tour, which are in the more general class named
“modern art”. This is replicated for any artistic period.

Figure 4. A thematic tour is a collection of artworks of the same artistic period (i.e., Baroque).
By clicking on OPEN, it is possible to access a more detailed description of the artwork itself.
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Figure 5. Example of artwork. On the left is a copy of the artwork, the right part contains the artwork’s
data sheet. If the level of accuracy is high, the user can read, in addition to basic information such as
title, author, time, technique, place, a more detailed description. The description can be read by the
robot (by clicking on HERE button), as well as by the user. If the level is low, the bottom description
is excluded. (Image credits : Galleria Borghese/photo Luciano Romano).

Figure 6. History of Art categorization exploited for designing the virtual museum.
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In this experiment, we consider three levels of relevance (high, medium, low) and two
levels of accuracy (high, low). The user can explore the museum room by choosing the
artwork she wishes, and she can leave the museum at any time.

Each trial is organized in four phases:

1. Starting Interaction: The robot introduces itself to the user, describing its role and the
virtual museum it manages.

2. User artistic profiling: The robot asks the user a series of questions which aim to
investigate her artistic interests in terms of her favorite artistic periods and artistic
periods of no interest. In this phase, the interaction is supported by a GUI through
which the user can express her artistic preferences, and the robot can collect useful
data to profile the user. In addition to defining the artistic periods of interest and
non-interest of the user, the robot asks the user with what degree of accuracy she
intends to visit the section.

3. Tour visit: Once the user profile has been established, the robot exploits the heuristic
defined in the Section 4.1 to select the tour on behalf of the user. Once the selection
has been made, the robot activates the corresponding tour in the virtual museum and
leaves the control to the user who can visit the room, selecting the artworks inside.

4. End museum tour: The user can leave the recommended tour and therefore the museum.
Once this happens, the robot returns to interact with the user, asking her questions.
These questions, which belong to a short survey, are used to investigate how satisfied
the user was after the visit.

5. Explanation phase: The robot provides to the user an explanation of its behavior
in order to justify the reasons that lead it to recommend that specific museum tour.
After the explanation, the robot asks the user if she wants to answer the short survey
administered in the previous phase again.

In particular, the survey’s questions that the user had to answer are the following:

• Q1: How satisfied were you with the duration of the visit?
• Q2: How satisfied were you with the quality of the artworks?
• Q3: How satisfied were you with the number of the artworks?
• Q4: How surprised were you with the artistic period recommended by the robot

compared to the artistic period you initially chose?
• Q5: How satisfied are you with the robot’s recommendation given the artistic period

you initially chose?

Each participant has been administered the same questions, rated using a 5-point Likert
scale [1 = worst case and 5 = best case]. For example, considering the question Q5, the value
1 means that the user was completely dissatisfied with the robot’s recommendation given
the artistic period initially chosen, value 5 means that the user wasn completely satisfied by
the robot’s decision. The same goes for the other questions. The participants communicate
any answer to the robot by voice. We have not given the users any prior instructions. Each
instruction was given by the robot during the entire interaction with the user.

4.1. The Heuristic for the Tour Selection

The Algorithm A1 in Appendix A describes the heuristic exploited by the agent in
order to select the most appropriate section to visit. The algorithm takes as input the
user-preferred artistic period (pF), the periods of non-interest (PD) and the level of accuracy
chosen by the user to visit the exhibition Accu. After obtaining the values of relevance (rpF ),
accuracy (apF ) and the category (cpF ) of the tour corresponding to the user preferred artistic
period, the algorithm checks multiple conditions. The algorithm allows us to discard artistic
periods that are not of interest to the user as well as the favorite period. The resulting set
(PM) represents the set of artistic periods different from the preferred one, which continue to
be of interest to the user. The first condition (condition C1) requires us to verify if the same
artistic period required by the user has maximum relevance from the museum curator’s
point of view (rMax) and if the accuracy of its description corresponds with that chosen
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by the user (apF = Accu). If these two conditions are true, then the robot will recommend
the visit of the corresponding tour (RtoVisit). If just the accuracy condition is not satisfied,
however, the algorithm chooses the period required by the user and presents it with a level
of accuracy different from that indicated. The accuracy will be the one believed by the
museum curator (condition C2). If condition C2 is not verified either, then the algorithm
investigates the tours corresponding to the artistic periods that the user has not discarded
(PM). If there is a tour with a high level of relevance which belongs to the same category
as the user-preferred artistic period and which requires a level of accuracy equal to that
chosen by the user, then the robot will recommend the visit of the corresponding tour
(condition C3). If not even this condition is verifiable, then the algorithm will try to select a
tour with a high level of relevance which belongs to the same category as the user-preferred
artistic period, regardless of the level of accuracy it requires; the accuracy will be the
one believed by the museum curator (condition C4). Condition C5 instead occurs when,
having not found any tour to recommend in the same class in which the required artistic
period was contained, there is a tour that corresponds to an artistic period belonging to the
next or previous category to the user-preferred artistic period and has a level of relevance
immediately following that of the user-preferred artistic period. Finally, if even C5 is not
acceptable, then the algorithm selects a random tour among those corresponding to the
artistic periods not discarded by the user (condition C6).

5. Results

In the pilot, three research questions (RQ) have been investigated:

• RQ1: How risky/acceptable is the critical help compared to the literal help? Does the
heuristic proposed help make this help much more acceptable?

• RQ2: Given the risks that the critical help in any case determines, in what situations
and how much critical help can be useful?

• RQ3: How much does the capability of the robot to explain why it perform critical-help
affect the acceptability of the critical help itself?

This study has been organized as a between-participants experiment. As mentioned
before, we recruited 26 real participants in total, which would allow us to detect an effect
size of d ≥ 1 with at least 0.8 power at an alpha level of 0.05 (calculated with the Jamovi
software [67]), which is a reasonable value for an experiment [68].

Tables 1 and 2 contain, respectively, the survey question answers provided by the
users who have received literal help from the agent (the preferred artistic period selected
by the user coincides with the tour recommended by the robot) and those answers given
by the users who have received critical help (the preferred artistic period chosen by the
user does not match with the tour recommended by the robot). The agent provided literal
help to 11 users, while 15 users received critical help. Among all the answers given by
users, we focused on those related to the questions Q4 and Q5; these questions allow us to
investigate what has been the impact of the robot’s ability to propose to the user a tour in
fact different from what she expected. The answers to questions Q1, Q2 and Q3 have not
been analyzed. Their function in the survey will be explained in Section 5.2.

Table 3 shows the results obtained by running a parametric analysis of the answers to
question Q5, provided by all the users involved in the pilot study. We can observe that users
who have received literal help show a level of satisfaction (M = 4.36) on average higher
than that of the users to whom the robot performed critical help (M = 3). Thus, critical
help implies the risk of leaving the user at least partially dissatisfied because the robot
expressly violated her requests. However, although the difference between the averages in
the two cases is significant (D = 1.36), the mean value of the satisfaction referred to critical
help highlights how this type of help does not raise a low level of satisfaction. Indeed,
the value three in the scale exploited for the survey, corresponds to a medium level of
satisfaction. This result is relevant if we consider that no justification has been provided by
the robot for its behavior in contracting with the user requests. Due to the non-normal data
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distribution, we ran a confirmatory Mann–Whitney test on the same data exploited in the
t-test. The p-value associated to the non-parametric analysis is p = 0.007.

Table 1. The table summarizes the answers provided by the users to the questions in the survey
after the robot provided literal help to the user. The robot recommended a tour corresponding to the
artistic period the user indicated as preferred in the history of art.

User Preferred
Artistic Period

User
Accuracy

Recommended
Tour

Tour
Accuracy Q1 Q2 Q3 Q4

(Surprise)
Q5

(Satisfaction)

2 500’ Italian Painting High 500’ Italian Painting High 4 5 4 1 5

5 500’ Italian Painting High 500’ Italian Painting High 5 5 5 2 5

6 Greek Art Medium Greek Art Medium 5 5 5 1 5

7 Gothic Medium Gothic Medium 5 5 5 1 4

9 500’ Italian Painting Medium 500’ Italian Painting High 3 4 4 2 3

11 Caravaggio Low Caravaggio High 5 4 4 1 4

13 Gothic Low Gothic Low 1 1 1 1 2

14 Contemporary Art Medium Contemporary Art Medium 5 3 3 1 5

16 700’ Painting High 700’ Painting Medium 4 4 5 2 5

18 500’ Italian Painting High 500’ Italian Painting High 5 3 4 1 5

19 Contemporary Art High Contemporary Art Low 5 4 4 1 5

Table 2. The table summarizes the answers provided by the users to the survey questions after the
robot provided critical help to the user. The robot recommended a tour different to the preferred
user’s artistic period.

User Preferred
Artistic Period

User
Accuracy

Recommended
Tour

Tour
Accuracy Q1 Q2 Q3 Q4

(Surprise)
Q5

(Satisfaction)

1 Baroque Medium Caravaggio High 4 5 4 5 5

3 Baroque High Caravaggio High 4 5 5 4 4

4 Impressionism Medium Romanticism Medium 5 4 4 5 3

4 Cubism High Espressionism Medium 3 2 3 5 1

5 700’ Sculpture High 700’ Painting High 5 5 4 3 4

8 Cubism High Neoclassicism High 5 4 4 4 3

10 Impressionism High Espressionism Low 4 1 3 5 1

12 Impressionism High Surrealism Medium 3 3 4 3 4

15 Art Nouveau Medium Romanticism Medium 5 5 5 4 3

17 Art Nouveau Medium Neoclassicism High 5 5 4 3 4

20 Futurism Medium Romanticism Low 4 2 4 5 1

21 Cubism Medium Surrealism Medium 5 4 3 3 3

22 Baroque High 400’ Painting High 2 5 3 4 1

23 Romanticism Medium Simbolism High 1 5 4 3 4

24 Cubism Medium Surrealism Medium 5 3 5 5 4
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Table 3. Independent Samples T-Test run in order to evaluate the risk/acceptability of the critical help
compared to the critical help (RQ1 ). The p-value associated to the T-Test is p = 0.010; the Cohen’s d is
d = 1.11 that represents a large effect size.

Group Literal Help Critical Help

Mean 4.36 3.00

SD 1.03 1.36

N 11 15

Figure 7 focuses on the group of participants for whom the robot has performed critical
help (Table 2). The pie chart shows that 27% of participants evaluated the recommended
tour completely unsatisfactory, 27% of the them evaluated it with a medium level of
satisfaction, while 46% of them evaluated the tour satisfactory; of this 46%, 40% rated it
satisfactory and 6% very satisfactory. If we consider any satisfaction value greater than or
equal to three as a positive evaluation of the robot’s decision, we can conclude that 73% of
participants who received critical help by the robot evaluate this choice positively.

Figure 7. The pie chart reports the distribution of user satisfaction investigated through question Q5
in the case of the robot providing critical help to the participants.

This result is relevant if we consider that the participants were not instructed about
the possibility that their request could be changed by modifying the artistic period chosen.
Any prior information is communicated to the participant, and it is difficult for her to
directly deduce it. The surprise effect encoded by the answer to question Q4, confirms this
unexpected choice of the robot in the face of an explicitly different request.

In conclusion, we present the results related to the research question RQ3. As men-
tioned above, Tables 1 and 2 summarize the results obtained during the experiment,
referring, respectively, to the users who received critical help and those who received literal
help. Each user listened to the robot’s reasons in the explanation phase. After the robot
explanation, only some users considered it appropriate to respond again to the survey
administered by the robot at the end of the museum tour visit. Table 4 shows the users
who replied to the robot survey and the answers given before and after the explanation.
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The rows of the table highlighted in gray refer to users who have received critical help from
the robot, while the others refer to users who have received literal help. We can see how
six users in total decided to answer the questions proposed by the robot again; three users
received literal help, three users received critical help. The users who received literal help
did not change the evaluation of their level of satisfaction/surprise, while two-thirds of the
users who received critical help changed the evaluation of their satisfaction. We can observe
how in each of the two cases this evaluation corresponds to an increase in satisfaction.

Figure 8 shows the average of the satisfaction values evaluated before and after the
explanation, respectively, in the case of literal help (bar plot 1 on the left) and in the case of
critical help (bar plot 2 on the right).

Table 4. This table reports the answers to the questions in the survey posed by the robot before and
after the robot has provided the explanation about the task adoption. The rows highlighted in gray
refer to the cases in which the robot provided critical help to the user. Other rows indicate the case in
which the robot provided literal help to the user .

User
Preferred

Artistic Period
User

Accuracy
Recommended

Tour
Tour

Accuracy
Q4

(Surprise)
Q5

(Satisfaction)
Explanation

2 500’ Italian Painting High 500’ Italian Painting High 1 5 Before
2 500’ Italian Painting High 500’ Italian Painting High 2 5 After
3 Baroque High Caravaggio High 4 4 Before
3 Baroque High Caravaggio High 4 4 After
9 500’ Italian Painting Medium 500’ Italian Painting High 2 3 Before

9 500’ Italian Painting Medium 500’ Italian Painting High 2 3 After
10 Impressionism High Espressionism Low 5 1 Before
10 Impressionism High Espressionism Low 4 4 After
16 700’ Painting High 700’ Painting Medium 2 5 Before

16 700’ Painting High 700’ Painting Medium 2 5 After
21 Cubism Medium Surrealism Medium 3 3 Before
21 Cubism Medium Surrealism Medium 5 4 After

All users who received critical help either maintained the same level of satisfaction
(user 3) or increased it, in one case even considerably (user 10). Furthermore, although there
were cases (user 21) in which the evaluation of the surprise increased, this increase did
not have negative repercussions on satisfaction; on the contrary it resulted in an increase.
Conversely, when the surprise decreased (user 10), the satisfaction increased considerably.
We can conclude that if all users completed both the surprise and satisfaction evaluation,
the satisfaction ratings would have been higher.

These results, although preliminary and based on a small sample, seem promising in
that they show the impact that the explanation of the task adoption strategy had on the
acceptance of critical help, in which the user’s requests were not completely fulfilled.
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Figure 8. The bar plot reports the mean values related to the answer to Q5 before and after the user
received an explanation from the robot in the case of literal help (left side) or critical help (right side).

5.1. Robot Explanation Example

Here we propose an example of the explanation proposed by the robot to user 21 (see
Table 4). The explanation is based on the algorithm represented in Figure 8, and it is based
on the heuristic described in Section 4.1.

The Figure 9 shows the explanation flow provided by the robot to the user after the
visit to the museum and after the user answers the survey. The robot starts by introducing
the task delegated by the user, which in this case is visiting the Cubism tour. After that,
the robot explains to the user some features of her model that the robot itself created in its
own belief base based on the user’s profile, which the robot was able to create thanks to an
initial interaction that investigated her artistic interests, both the favorite (Cubism) ones
and those of no interest (Greek Art, Roman Art, 600 s). The robot continues the explanation
by describing its level of proactiveness. In this case, the robot meets the user’s goals by
providing literal or critical help; the results derive from an internal mediation process that
takes into account both the user’s goals and the goals of the museum curators who have
designed the exhibitions. Furthermore, the robot exploits the reasoning process defined
by the heuristics introduced in Section 4.1 in order to explain the reasons that led it to
suggest the visit of the Expressionism tour rather than the Cubism tour. In reference to
the heuristic, the robot exploits condition C3: the Cubism tour has low relevance for the
museum curators, so the robot looks at a tour with a high level of relevance, which belongs
to the same category as the user-preferred artistic period (in this case modern art) and
which requires a level of accuracy equal to that chosen by the user (in this case medium
accuracy). Finally the robot recommends the visit of the corresponding tour. In this case,
the result of the selection is the Expressionism tour.
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Figure 9. Example of the explanation provided to user 21.

5.2. Experiment Limitations

The pilot study presents a series of limitations. First of all, the target sample size
is small. Despite that, the results we analyzed in Section 5 allow us to make different
considerations about the robot’s capability to provide adaptive and intelligent help every
time it has to perform a task for a user. Furthermore, the participants have been recruited
without considering specific criteria, such as their artistic habits or their previous experience
with robots, their comfort, and willingness to interact and accept the introduction of robots
in society. Especially with respect to the robot acceptability, we tried to reduce this bias by
tailoring the survey proposed by the robot in such a way that the user was forced to answer
preliminary questions (Q1, Q2, Q3) designed to focus the user on the content of the tour and
not only on the interaction with the robot. Finally, we built the survey with ad hoc questions.
This limitation can represent an obstacle in comparing our work with other similar works.
Although this preliminary experiment has a number of limitations, the obtained results
shown some significance. Because of that, we will try minimize the biases discussed above
by following much more standard methodological approaches [69–71].

6. Conclusions and Future Works

Over time, collaboration between human beings, one of the fundamental character-
istics of social development, has evolved and has been able to rely on more and more
advanced technological supports and tools. The collaboration is deep so it takes into ac-
count not only what is explicitly declared among participants but also the implicit contexts
of expectations and of a whole series of other factors. The creation of artificial autonomous
systems, such as robots and more generally intelligent agents, has moved collaboration
forward compared to the old technological supports of collaboration. Having their own
real spaces of autonomy allows these systems to fulfill their collaborative tasks in a much
more advanced way and in the direction of intelligent collaboration typical of humans: the
only one that has that added value that can provide intelligence. In this work we have
presented a cognitive architecture for social robots, and we showed its implementation
and a pilot study that highlights its potential for effective collaboration. The architecture
developed refers to consolidated theoretical principles: theory of adoption and delegation,
ToM, theory of social adjustable autonomy. The architecture gives a robot the capability to



Electronics 2022, 11, 3065 20 of 24

build a profile of the user and to exploit its profiling skills to attribute beliefs, goals, plans,
and intentions of the user and makes it capable of modulating its autonomy for completing
a delegated task. One of the main problems in intelligent collaboration between humans is
the possibility of misunderstandings that can lead to conflicts between collaborators. We
call these conflicts collaborative conflicts, as they are based on the desire to collaborate
beyond what is required but in doing so introduce errors and discrepancies. Explaining the
action/plan helps minimize these conflicts among collaborators. With autonomous intel-
ligent systems, this need to access explainability is becoming a major study requirement
because the new learning algorithms (deep learning) introduce several problems from this
point of view. In intelligent collaboration, this element of explanation becomes even more
pressing, all the more if created by an autonomous robotic system.

The cognitive architecture was tested in the domain of cultural heritage. The ex-
ploratory HRI study showed promising results. Because of that, the main future work
consists of a follow-up on this pilot study to systematize the preliminary results obtained
and to give consistency to the research questions we investigate. The experiment will try to
overcome all the limitations introduced in the pilot study, starting from the sample of users.
Furthermore, we intend to extend the computational model by integrating other levels of
help, as provided by the delegation and adoption theory and to test their impact through
other HRI experiments in real scenarios.

7. Related Work

Cultural heritages sites such as museums represent a complex scenario, suitable for
robots that are able to assist and interact with people in a natural manner. Different
pioneering work [72–76] has been proposed, with the goal of designing robots able to be
deployed in a museum and to integrate different human–robot interaction capabilities.
Despite their pioneering and remarkable work in autonomous navigation and human–robot
interaction, these approach do not realize a real Personalization [9] of the user experience.
Recent works [4,5,77] try to implement a much more effective and personalized user
experience by designing robots that are able to exploit their perceptive and decision-making
skills in order to establish a much more deep interactions with visitors However, these
approaches do not take into account the mental states of the interacting user; therefore,
they do not achieve a real personalization [78] based on complex models.
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Appendix A

The appendix reports the heuristic exploited by the agent in order to select the most
appropriate section to visit (Algorithm A1).
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Algorithm A1 Artistic Period Selection Algorithm

Input: pF, PD, Accu

1: procedure HEURISTIC FOR SELECTION
2: rpF ← getRelevance(pF)
3: apF ← getAccuracy(pF)
4: cpF ← getCategory(pF)
5: PM ← remove(PD, pF) . PM contains all section
6: if (rpF = rMax & apF = Accu) then . C1
7: RtoVisit ← pF
8: else
9: if (rpF = rMax) then . C2

10: RtoVisit ← pF
11: else
12: for pM ∈ PM do
13: rpM ← getRelevance(pM)
14: apM ← getAccuracy(pM)
15: cpM ← getCategory(pM)
16: if (rpM = rMax & cpM = cpF & apM = Accu) then . C3
17: RtoVisit ← pM
18: return RtoVisit
19: else
20: if (rpM = rMax & cpM = cpF ) then . C4
21: RtoVisit ← pM
22: return RtoVisit
23: else
24: cnext ← getNextCategory(pM,p f )
25: cprev ← getPreviousCategory(pM,p f )
26: rnew ← getNewRelevance(pM,p f )
27: if (rpM = rnew & (cpM = cnext|cpM = cprev)) then . C5
28: RtoVisit ← pM
29: return RtoVisit
30: else
31: RtoVisit ← getRandom(PM) . C6
32: end if
33: end if
34: end if
35: end for
36: end if
37: end if
38: end procedure
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