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Abstract: A malware family classification method based on Efficient-Net and 1D-CNN fusion is
proposed. Given the problem that some local information of malware itself as one-dimensional data
will be lost when the malware is imaged, the malware is converted into an image and one-dimensional
vector and then input into two neural networks. The network of two-dimensional convolution
architecture is used to extract the texture features of malware, and the one-dimensional convolution is
used to extract the features of local adjacent information, the deep characteristics of different networks
are fused, and the two networks are modified at the same time during backpropagation. This method
not only extracts the texture features of malware but also saves the features of the malware itself as
one-dimensional data, which shows better performance for multiple datasets.

Keywords: deep learning; malware family classification; image classification; feature fusion

1. Introduction

Generally, after malware is detected, to analyze it more deeply to obtain important
information such as its attack purpose, it is often necessary to classify its family. After
determining the family to which the malware belongs, it is convenient for malware analysts
to conduct a more targeted analysis. Especially in today’s era of big data, the number of
malware families has exploded [1].

To better analyze and trace the malware, the research on the classification of malware
families is still of great significance [2–6]. In recent years, with the success of deep learning
in machine vision, natural language processing, and other fields, more and more scholars
have begun to combine malware family classification problems with deep learning. The
main classes of malware detection techniques are based on static and dynamic analyses.
Among them, the static analysis starts with the program file itself, without actually ex-
ecuting it. For example, [7,8] designed a classifier capable of static analyzing malware,
and [9,10] designed byte-level features for malware static detection. Different from the
essence of the static analysis of malware, dynamic analysis is a method of recording the
runtime behavior of malware when running it and extracting the signature, which generally
needs to be executed in a controlled virtual environment. In addition, [11,12] used a file,
registry, and network activity information to train dynamic analysis malware classifiers.

However, there are several obvious dilemmas with these approaches. On the one
hand, the malware itself is not 2D data, and by transforming it into an image of 2D data,
unnecessary priors are introduced [13]. On the other hand, when generating malware
images, it is necessary to specify an additional hyperparameter, that is, the width of the
image for tuning. The specified width often means unpredictable truncation of the malware,
and this truncation may cause the original contextual malware to be truncated, which may
lead to the loss of local features of some malware.

In view of the above issues, this paper proposes a malware family classification method
based on Efficient-Net and 1D-CNN. The main work of this method includes the following
three points:
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1. To avoid the information loss caused by the conversion into images, we convert
the binary files of malware into one-dimensional vectors at the same time and use
one-dimensional convolution to extract the features of local adjacent information.

2. To improve the accuracy of classification, we introduce Efficient-Net with good quanti-
tative adjustment ability to obtain the best network parameters conducive to malware
classification, and we integrate the texture features and adjacent features of malware
to discriminate malware categories from multiple angles.

3. To adapt to different lengths of malware, we also discuss the setting of the image
width and extract an adaptive image width setting method.

The rest of this paper involves the following parts: Section 2 introduces representative
malware detection methods. The overall framework and design details of the model
proposed are described in Section 3. Section 4 is indicated the comparison results and
analysis through experiments. Ultimately, the full text is summarized in Section 5.

2. Related Work

Moskovitch et al. [7] first proposed an opcode-based machine learning method to
detect unknown malicious files and used a variety of classification algorithms to classify
the opcode feature set. Later, Shabtai et al. [8] extended the research work of Ref. [7],
divided the opcode sequence into four different sizes, and used multiple classifiers for
classification, and the classification accuracy reached 96%. The opcode-based method is
time-consuming to extract features. Later, Kim et al. [14] proposed a technique for malware
detection based on PE headers, which improved the efficiency. However, this technique will
not work well if the original PE header of the file is obfuscated. Besides opcodes, the API
of PE files and their system calls are also very distinguishing features. Research has shown
that API calls can be used to model the behavior of programs. Essentially, API functions
and system calls are related to services provided by the operating system, and accessing
system resources means calling APIs, so calls to specific APIs provide key information that
represents the behavior of the malware. However, it is very difficult to extract the API calls
of the obfuscated malware, and this method has a high false-positive rate. There are also
some studies using lower-level byte-level features for malware detection [9,10], but they
are still inherently vulnerable to obfuscation attacks.

Earlier research focused on features based on API call sequences; Rhode et al. [15]
collected API call sequences and machine metrics through a sandbox and then fused
the two feature vectors into a single vector using neural networks, random forests, and
(Support Vector Machine) SVM as a classifier to detect malware. There is also a combined
machine learning framework proposed by Lu et al. [16], which extracts API sequence
features and uses the random forest and recurrent neural network processing to process
them separately. Finally, the two methods were combined. The detection accuracy of the
method reached 99.3%. In some recent studies, researchers have turned their attention
to in-memory; Yucel et al. [17] proposed a technique based on an in-memory image of an
executable file, they used a virtual machine to execute a malware sample and created a
3D image of the memory, using the similarity calculation between 3D images and known
malware to detect malware. In addition, there are some studies on exploiting the network
traffic of malware [18,19] for detection.

At present, there are relatively few anti-obfuscation studies on malware detection at
home and abroad. An earlier study [20] used a dynamic taint analysis method to record the
runtime behavior of the target to build a signature library and optimize the signature library
to better identify obfuscated malware. The use of dynamic analysis is a path-dependent-
driven obfuscated malware detection method proposed by An et al. [21]. This method
uses ISR for dynamic debugging and drives malware by solving the constraints of path
conditions during the debugging process. The code executes different paths for deeper
detection to hide malware. In addition, there are also studies [22] that improve the problem
that the N-gram feature extraction algorithm is easily affected by obfuscation operations
and realizes the removal of obfuscated features by dynamically calculating the obfuscation
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threshold in different malware samples. With the development of malware visualization
technology, some research [23] proposed the construction of anti-aliasing image texture
features. The fusion feature of interference solves the problem that the accuracy of global
feature classification decreases sharply when the grayscale image of malware has a high
similarity or large difference. However, the method based on dynamic analysis is time-
consuming and has the problem that the execution logic of malware cannot be completely
covered, and some malware will detect that it is executing in the sandbox, thereby hiding
its malicious behavior. The existing classical malicious code analysis methods are shown
in Table 1.

Table 1. Summary and comparison of existing methods.

Class Ref. Method Characteristic Disadvantage

Static
analysis

[7] An opcode-based detection Using multiple classifiers to
detect the opcode feature set.

They are difficult to extract the
API calls of the obfuscated
malware and have a high

false-positive rate.

[8] Multiple classifiers for detection
[14] A PE headers-based detection Extracting features from PE

header files and API files[9,10] Low byte-level features for detection

Dynamic
analysis

[15] API call sequences and machine metrics
Using machine learning for

detection
Time-consuming, the execution

logic of malware cannot be
completely covered

[16] Combined machine learning framework
[11,12] Network activity info to train classifiers

[17] A method based on the in-memory
images of executable files Biased towards in-memory

[20] A dynamic taint analysis method
Anti-obfuscation research

[23] A method based on constructing
anti-aliasing image texture features

As mentioned above, on the one hand, the existing static analysis methods are simple
and easy to implement, and they extract low-level features for static detection of malware.
However, they have difficulty extracting the API calls of the obfuscated malware, as well
as a high false-positive rate. On the other hand, the existing dynamic analysis methods
make full use of machine learning knowledge, which is more conducive to malicious file
detection and de-obfuscation in memory. However, they currently introduce unnecessary
priors when the malware is imaged, and their imaging hyperparameter also results in the
truncation of the malware unpredictably by imaging 2D images. This truncation causes the
loss of local features of some malware. To alleviate this dilemma, the proposed method
integrates the deep features of the 2D convolutional network and the 1D convolutional
network; 1D vectors can compensate for the loss of functional features in 2D images, with
the advantage of uniform scaling with other neural networks. This can compensate the
problem of feature loss caused by malicious image truncation.

3. The Proposed Method

This paper proposes a malware family classification method based on Efficient-Net
and 1D-CNN to reduce these dilemmas. The overall architecture of the method is shown
in Figure 1.

From Figure 1, we can clearly see the work flow. The input of the whole architecture
is the PE file of malware, and the output is the extracted malicious code detection feature.
Firstly, the input PE file is mapped into a 2D gray image and a 1D sequence, so as to extract
their features later; the 2D gray image is converted according to the corresponding gray
value of the PE file. Then, the transformed 2D gray image uses the efficient-Net with
pyramid feature fusion to extract features of different dimensions so that the location and
detail information of the low-level features and the semantic information of the high-level
features are fused. For the 1D feature, a simple and efficient CNN neural network is used
to extract local strong dependencies. Finally, we combine the features extracted by the two
methods and use them as the basis for detecting malware.

Next, we will describe in detail the function and working principle of each part.
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3.1. Malware File Preprocessing

According to statistics, the current Windows PE files are the most common malware
types on web sites [3], so this paper focuses on the classification of Windows PE files for
malware families.

The main fields of the PE file include fields such as .text, .data, .rdata, .idata, and
.edata. The .text field is a code segment, which saves the actual code of the program. This
is the only code segment in the PE file, and the other fields are data segments. In the data
segment, the .data field saves important information such as the global variables and global
constants of the program. The .rdata field is the resource data segment, the type, size, and
location of the file that the PE file will use during the running process. The .idata field
stores the address of the imported function and the external function. Similarly, the .edata
field stores the address of the exported function, but it is not commonly used and will not
be introduced here.

Because the PE header has lower amounts of useful information, the PE header is
easily attacked by means such as obfuscation and encryption. This article extracts the
detailed information of the field part of the PE file and uses this information to visualize
the malware PE file. To extract these field data, it is necessary to disassemble the PE file
to obtain its corresponding .asm file. This article uses the IDA pro tool. It can be seen
that the .asm file disassembled by IDA pro has detailed information for each field. After
extraction of the data of each different field, the method of adaptively setting the width of
the malware image in this article is used to visualize the malware. After being converted
into an image and the 1D sequence, it can be used to study the problem of malware family
classification; the equation of the 1D sequence initialization is as follows.

Seq = random(0, 1) (1)

where Seq represents the 1D sequence converted by the malware family.

3.2. Width-Adaptive Malware Visualization Scheme

After obtaining the .asm file corresponding to the malware PE file, we can use it to
visualize the malware and obtain the grayscale image of the malware. A grayscale image
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is an image with a channel number of 1. Its storage method is a two-dimensional matrix.
Each value in the matrix corresponds to a pixel in the grayscale image, and its value range
is 0~255; 0 means full black, and 255 means full white. The value in the middle indicates
that the color of the pixel gradually becomes lighter from black to white. Based on this,
we know that the value of each pixel is between 0 and 255, which corresponds to 8 bits
in binary, that is, one byte. To convert the .asm file into a corresponding grayscale image,
we can read the asm file in binary mode and regard each byte of data in its binary string
as a pixel in the grayscale image, so that first the conversion of binary data to pixels is
completed. However, in this way, what we get is just a vector of pixel data arranged in
one dimension. We also need to set a hyperparameter, that is, the width W of the image,
and take the one-dimensional vector just obtained as a row for every W pixels to obtain a
converted grayscale image of the malware.

In the above-mentioned malware visualization process, the hyperparameter W needs
to be set manually based on experience. However, the file sizes of different types of malware
are often quite different. The small ones are only a few KB, and the large ones are dozens
of MB. If the width is set fixedly, the shape of the grayscale images of different types of
malware will be too different, thus affecting the final classification accuracy. Therefore,
Ref. [4] proposes a fixed-width method for malware files of different sizes. However, this
method is somewhat rough for today’s neural networks that are more sensitive to local
details (see Ref. [4]). When this method was proposed, the neural network algorithm was
not used for subsequent malware family classification. Today, the application of deep
learning is more extensive. In this paper, we will discuss a more suitable method for
adaptively setting the width based on the characteristics of image scaling during image
classification and will also discuss in the experimental part. Because of the neural network
of image classification, it is generally necessary to scale the image to the same length
and equal size for subsequent processing. The process of a width-adaptive malware
visualization scheme proposed in this paper is shown in Algorithm 1.

Algorithm 1: Width-Adaptive Malware Visualization Scheme

Input: Malware asm file.
Output: Grayscale image of malware.

1: Count the number of segments N of the asm file;
2: Initialize the one-dimensional array Seg that stores the number of bytes of each segment, and
initialize the total number of bytes S = 0;
3: for i in 0, . . . , N − 1 do:
4: Segi: The number of bytes of the i-th segment;
5: S = S + Segi;
6: W = dSe;
7: if W×W = Sthen:
8: Jump to line 14;
9: else
10: for i in 0, . . . , N − 1 do:
11: Calculate the number of padding bytes required for the current segment Wi= W%Segi;
12: Padding the end of segment i with Wi zero bytes;
13: end if;
14: Initialize the matrix corresponding to the grayscale image IMGw×w, c = 0;
15: Read the binary stream of asm file B, initialization k = 0;
16: for i in 0, . . . , W×W− 1do:
17: initialize this pixel P = 0;
18: for j in 0, . . . , 7 do:
19: P← Bk × 2j+P, k← k + 1 ;
20: c← (c + 1)%W ;
21: r← c = 0, r + 1 : r ;
22: IMG(r,c)= P;
23: end for;
24: Save the matrix IMGw×w as a grayscale image;
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Since the number of sections often varies between different types of malware, some
malware only has .text sections, while other types have all the sections described earlier
in this article. For convenience, this article introduces malware with only two fields, .text
and .rdata, and other situations are similar. After inputting the asm file, count the number
of bytes in the .data section Seg0 and the number of bytes in the .rdata field Seg1 as in the
fourth line of the algorithm and then calculate the total number of bytes S = Seg0 + Seg1.
Then, calculate the width to set when it will be imaged, W = dSe. At this time, if W×W = S,
there is no need for padding; jump directly to line 14 and image the malware with W as the
width; otherwise, padding is required. To maintain the integrity of the mapping of the .text
field and .radta field in the image to different lines in the picture, they need to be populated
separately. Calculate the W0= Seg0%W that needs to be filled in the .text field. Similarly,
the number of bytes to be filled in the .text field is W1= Seg1%W, and then perform image
processing. During the visualization, since the total number of bytes of each field has been
guaranteed to be W2, the 15th line of the algorithm first initializes a matrix IMGw×w whose
long paragraphs are W, and then the algorithm on Lines 17~20 map every 8 bits (one byte)
of the binary sequence to the corresponding position in the image.

Compared with the fixed width setting method, the width setting method in this paper
has two advantages: first, the malware is fixedly mapped to a square, which reduces the
noise caused by scaling because neural networks generally use images. The interpolation
algorithm scales the input uniformly, generally a size with equal length and width. With
the use of the method in this paper, the malware image will be proportionally scaled by
the neural network, which will bring less noise. This paper will further verify and discuss
the experimental part. Second, the integrity of the different segments of the malware is
preserved, mapping the data of different segments to different rows in the image, rather
than having two or more segments in a row.

3.3. Convolutional Layer Design

The method designed in this paper includes multiple two-dimensional convolutions
and one-dimensional convolution layers. The two-dimensional convolution is used to
extract the texture features of malware images. Through two-dimensional convolution,
deep abstract features can be extracted; the equation is as follows.

Fn−1 = ∑
i

Fl−1
i ∗Kl

i + bl
i (2)

Fl = pool(fn(Fn−1)) (3)

where Fl represents the feature extracted by the l-th layer CNN, Kl
i and bl

i represent the
convolution kernel and bias of the l-th layer, pool(.) represents the pooling operation, and
fn(.) represents the activation of the n-th layer. For family classification tasks based on
grayscale images of malware, convolutional neural networks can achieve better learning
by retaining important features as much as possible and filtering redundant features. The
neural network parameters in the two-dimensional convolution structure used in this
model are shown in Table 2.

Table 2. Partial model parameters of two-dimensional convolution.

Stage Input Size Output Size Conv Kernel

1 224 × 224 × 1 112 × 112 × 32 224 × 224 × 1
2 112 × 112 × 32 112 × 112 × 16 112 × 112 × 32
3 112 × 112 × 16 56 × 56 × 24 112 × 112 × 16
4 56 × 56 × 24 28 × 28 × 40 56 × 56 × 24
5 28 × 28 × 40 14 × 14 × 80 28 × 28 × 40
6 14 × 14 × 80 14 × 14 × 112 14 × 14 × 80
7 14 × 14 × 112 7 × 7 × 192 14 × 14 × 112
8 7 × 7 × 192 7 × 7 × 320 7 × 7 × 192
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where stage 1 and stage 9 are conventional convolution operations. In stages 2–8,
MBConv is used as a basic convolution structure. Figure 2 shows the difference between
traditional convolution and convolution using MBConv.
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In the MBConv block, the deep-wise convolution and the subsequent 1× 1 convolution
are regarded as two independent modules. Deep-wise combined with 1 × 1 convolution
instead of traditional convolution is not only more efficient in theory, but also due to a large
number when using a 1 × 1 convolution, this can be done using an optimized math library.
Moreover, this separated convolution and the previous convolution prove that the output
form is the same.

In addition to two-dimensional convolution, this paper also uses a one-dimensional
convolution structure to extract the features of adjacent data. The 1D convolutional struc-
ture used is shown in Figure 1. In the one-dimensional convolution structure of this paper,
three convolution kernels of different sizes are used, and their convolution sizes are 3,
4, and 5, corresponding to different sizes of receptive fields. In this way, malware with
different sizes can be extracted. Correlation features between adjacent data. The number of
convolution kernels is set to 100, and then a pooling layer is used to perform pooling opera-
tions on different feature maps to extract key data for compressing data and parameters to
improve computational efficiency.

3.4. Feature Fusion Details

In the feature fusion part of the model, this paper draws on the idea of the Feature
Pyramid Fusion Network. First, the feature maps in different convolution layers in Efficient-
Net are fused, and then these feature maps are combined with the 1D-CNN volume. The
feature maps obtained after the product are fused to obtain a new feature map, which is
used for final training and prediction. The equation of this part is as follows.

N = ∑
i

Fl−1
i (X(Hi,Wi,Ci)

) (4)

where (X(Hi,Wi,Ci)
) represents the dimension of the input tensor at the i-th layer. The

efficient-Net hyperparameter search strategy is also used.
First, the feature maps generated in stages 1, 3, 4, 6, and 8 in Table 2 are selected because

the resolution of the feature maps generated in each stage is 1/2 that of the previous stage,
and they are features with the same resolution The largest number of channels in the figure
(for example, the output feature map of stage 8 is 7 × 7 × 320, the output of stage 7 is
7 × 7 × 192, and the output of stage 8 is selected), which contains richer information. In
addition to the feature map of the 8th layer, which is the highest layer, the feature maps of
other layers are convolutional with a convolution kernel of 1 × 1 to increase the dimension,
which is convenient for fusion with the feature maps of the higher layer. The feature
maps of higher layers also need to be upsampled to make their resolution the same as the
convolutional structure of lower layers. The method of upsampling here is to perform
transposed convolution on the feature map. Transposed convolution is an operation that
converts a low-resolution feature map into a high-resolution feature map.

Taking the output M4 of the sixth layer as an example, we first need to perform
convolution with a convolution kernel size of 1 × 1 × 320 (size 1 × 1, number of channels
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is 320), and the size is 14 × 14 × 320 after the dimension is increased. The feature map a
and then the M5 directly obtained from the feature map of the 8th layer are transposed and
undergo convolutional upsampling; the same as in the 14 × 14 × 320 feature map b, M4
is the parametric addition of a and b. At this point, M4 contains the features of its layer
and higher layers. Similarly, M1~M3 of other layers can be calculated, which will not be
repeated here. In addition, it is necessary to perform 3 × 3 × 256 convolution operations
on M1~M5 to eliminate the stacking effect [5] caused by the fusion of different features and
scale them to the same size. At this time, we get P1~P5. The other channel also inputs data
into 1D-CNN in parallel. After different convolution kernels, different feature maps are
obtained, and then a global average pooling layer is scaled to the same dimension to obtain
P’1~P’3. The final fusion features are obtained by late fusion of P’1~P’3 in 1D-CNN and
P1~P5 generated in Efficient-Net.

Through the detailed description of the above four parts, the malicious code detection
features are obtained. Through the calculation of the Softmax classifier and loss function,
the feature vector is optimized. The equation for this part is shown as follows.

H(p, p) =−
n

∑
i=1

p(xi) log(p(xi)) (5)

θt+1 = θt −
η√

vt+ε
(6)

where p and p represent true and predicted labels, t represents the updated step, ε repre-
sents the learning rate, and θ represents parameters to be solved for update. In this way,
the final trained features are obtained. Next, we will verify the effectiveness of the above
models and processes through comparative experiments.

4. Experimental Results and Analysis

To verify the effectiveness of the method proposed in this paper, a series of comparative
experiments were carried out. Specifically, first the experimental environment, datasets,
and hyperparameter settings are described. Then, we conduct experiments on different
hyperparameters of the malware family classification method based on the model fusion
architecture, explore the influence of different hyperparameters on the experimental results,
and determine the optimal hyperparameters. In addition, the method of malware image
classification using only a 2-dimensional convolution structure is compared with the model
method proposed in this paper. At the same time, to further illustrate the effectiveness of
this method, the class activation vector [24] of the feature map is used in this paper. Finally,
a comparative experiment was carried out with the methods of other researchers, which
further demonstrated the effectiveness of this method.

4.1. Experimental Setup
4.1.1. Experimental Environment

The experimental environment of this paper is a server, the CPU configuration is an
Intel Core i9-9820k, the physical memory size is 64 GB, and the graphics card is a GeForce
RTX 2080Ti with 11 GB video memory.

4.1.2. Experimental Dataset

In this paper, we run the experiment on the VirusShare and MalImg datasets.
The VirusShare dataset consists of 100 G of crawled public samples of malware from

the VirusShare website, and for these samples, we filter files except those in the PE format.
For files in PE format, we filter and remove samples without .text fields because they have
no code segment and cannot be executed, which is equivalent to dead pixel data. We
obtained the original malware PE file dataset. For the original PE file dataset, we need
to get their labels. This article used Kaspersky Anti-Virus to scan to get the classification
information for each PE file. Since we study the problem of fine-grained classification of
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Trojans, we screen out the PE samples labeled as Trojans. Further, since each sample has a
small label, each malicious sample can be divided into different categories according to the
small label. After statistics, due to a large number of samples, there are many kinds of them.
There are more than 9000 categories in total. Finally, the categories with several samples
greater than 100 are screened out as the final dataset, and there are 38 categories in total.

The MalImg dataset is a public dataset [4]. It is widely used in some malware classifi-
cation research. This dataset contains malware grayscale images of malware samples of 25
malware families. The number of samples in each family ranges from 80 to 2949, for a total
of 9339 samples. The details of the dataset are shown in Table 3. In the dataset, the method
proposed in this paper is used for experiments, and the 10-fold cross-validation method is
also used for testing.

Table 3. MalImg malware image dataset.

No. Class Number of Samples No. Class Number of Samples

1 Adialer.C 122 14 Swizzor.gen!E 128
2 Agent.FYI 116 15 Swizzor.gen!I 132
3 Fakerean 381 16 VB.AT 408
4 Instantaccess 431 17 Wintrim.BX 97
5 Lolyda.AA1 213 18 Yuner.A 800
6 Lolyda.AA2 184 19 Allaple.L 1591
7 Lolyda.AA3 123 20 Alueron.gen!J 198
8 Lolyda.AT 159 21 Autorun.K 106
9 Malex.gen!J 136 22 C2LOP.gen!g 200
10 Obfuscator.AD 142 23 C2LOP.P 146
11 Rbot!gen 158 24 Dialplatform.B 177
12 Skintrim.N 80 25 Dontovo.A 162
13 Allaple.A 2949 \ \ \

4.1.3. Hyperparameter Setup

This paper firstly explores the influence of different output parameters of 1D-CNN
in the proposed method on the experimental results of malware family classification. The
experimental results are shown in Table 4.

Table 4. Experimental results of different parameters.

Embedding
Dim Acc (%) The Number of

Kernels Acc (%) Convolution
Kernel Size Acc (%)

3 97.5013 3 97.5354 (2, 3, 4) 97.5183
4 97.5183 4 97.4585 (3, 4, 5) 97.5354
5 97.5100 5 97.4395 (4, 5, 6) 97.5250
6 97.4757 \ \ \ \

Table 4 shows that when the embedding dimension is 4, the classification performance
of the model is the best, which is 97.5138%. Subsequently, the embedding dimension of
1D-CNN was fixed, and the effect of different convolution kernels on model performance
was also evaluated. When the number of convolution kernels was set to 3, the model per-
formance reached the highest level. The best was 97.5354%. Similarly, after the embedding
dimension and the number of convolution kernels was fixed, and experiments were also
carried out for different convolution kernel sizes. When the size of the convolution kernel
was set to (3, 4, 5), the classification performance of the model was the best. The subsequent
series of experiments were carried out based on these hyperparameters. Therefore, the
embedding dimension was set to 4, the number of kernels was set to 3, and the convolution
kernel size was (3, 4, 5). At the same time, the batch size was set to 32, the learning rate
was 0.01, the momentum was 0.9, and the optimizer used Adam; K-fold cross validation re-
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quested 10 folds. The malware was filled with values of 0; when this length was insufficient,
the longest length in each batch was used.

The method performance indices include the Acc (accuracy rate), P (precision rate), R
(recall rate), and F1 (F1-score). The indices are as follows.

Acc =
TP + TN

TP + FP + TN + FN
(7)

P =
TP

TP + FP
(8)

R =
TP

TP + TN
(9)

F1 = 2× P× R
P + R

(10)

4.2. Experiments on the VirusShare Dataset
4.2.1. Experiments with Different Widths of Grayscale Images

To verify the problem that the forcible truncation of malware proposed in this paper
will cause the loss of some features of the malware, this paper designed Experiment 1. By
setting the hyperparameter of the width of different malware images, the experimental
results obtained are shown in Figure 3.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 15 
 

 

= TP
P

TP + FP
  (8)

= TP
R

TP + TN
 (9)

2
×= × P R

F1
P + R

 (10)

4.2. Experiments on the VirusShare Dataset 

4.2.1. Experiments with Different Widths of Grayscale Images 

To verify the problem that the forcible truncation of malware proposed in this paper 

will cause the loss of some features of the malware, this paper designed Experiment 1. By 

setting the hyperparameter of the width of different malware images, the experimental 

results obtained are shown in Figure 3. 

 

Figure 3. Model performance with different widths of malware grayscale images. 

As shown in Figure 3, setting different image widths greatly affected the detection 

performance of the final model. At the same time, this paper also proposed a method for 

adaptively setting the image width, such as width = sqrt in the above table. Compared 
with other methods of setting the default width, the model obtained by this method had 

the best performance. It can be seen that the width adaptation proposed in this paper for 

the malware visualization method improved the classification performance of the model 

to a certain extent. 

4.2.2. Comparison of Model Fusion 

We used 10-fold cross-validation for testing. At the same time, to verify the effective-
ness of the efficient-net and 1D-CNN model fusion method proposed in this paper, the 

performance of the traditional method using only CNN for detection and the method pro-

posed in this paper was compared. As shown in Figure 4, the loss of the method proposed 

in this paper decreased during training (Figure 4a), which was relatively smooth and did 

not have some fluctuations that appeared in the comparison method. In the test set loss 
curve, this phenomenon was more obvious. The figure shows that the curve of the com-

parison method had an obvious fluctuation phenomenon, which indicates that the model 

did not converge. The model proposed in this paper converged when the epoch was about 

30. 

Figure 3. Model performance with different widths of malware grayscale images.

As shown in Figure 3, setting different image widths greatly affected the detection
performance of the final model. At the same time, this paper also proposed a method for
adaptively setting the image width, such as width = sqrt in the above table. Compared
with other methods of setting the default width, the model obtained by this method had
the best performance. It can be seen that the width adaptation proposed in this paper for
the malware visualization method improved the classification performance of the model to
a certain extent.

4.2.2. Comparison of Model Fusion

We used 10-fold cross-validation for testing. At the same time, to verify the effec-
tiveness of the efficient-net and 1D-CNN model fusion method proposed in this paper,
the performance of the traditional method using only CNN for detection and the method
proposed in this paper was compared. As shown in Figure 4, the loss of the method
proposed in this paper decreased during training (Figure 4a), which was relatively smooth
and did not have some fluctuations that appeared in the comparison method. In the test
set loss curve, this phenomenon was more obvious. The figure shows that the curve of
the comparison method had an obvious fluctuation phenomenon, which indicates that the
model did not converge. The model proposed in this paper converged when the epoch was
about 30.
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The specific results of the experiment are shown in Table 5, i.e., the lowest, highest,
and average accuracy in 10-fold cross-validation. The best accuracy rate of the model in this
paper was 98.1438%, the average accuracy rate was 97.5354%, and the minimum accuracy
rate was 96.9088%. The data of the method proposed in this paper are better than the
comparison methods, which shows the effectiveness of the method in this paper.

Table 5. Accuracy comparison results of the proposed methods.

Convolution Kernel Acc (Max) Acc (Min) Acc (Mean)

Efficient net 98.0938% 96.8588% 97.4686%
Efficientnet + 1dcnn 98.1438% 96.9088% 97.5354%

To further verify the effectiveness of the features extracted by the proposed method,
the class activation vector was visualized in this paper, which can effectively show which
parts of the feature map have a greater contribution to the classification. The class activation
feature heatmaps of some samples of the proposed method are shown in Figure 5. Since the
model architecture proposed in this paper fuses two networks and finally performs feature
fusion, the weight of the final fully connected layer corresponds to two parts; one part is the
weight of the feature map output by Efficient-Net, and the other part is the 1-dimensional
convolution The weights of some output feature maps and their sizes are not the same, so
their class activation feature heatmaps are output separately. In the example of each sample,
the upper part is the class activation feature heatmap output by Efficient-Net, and the lower
part is the heat map of the class activation features obtained by 1-dimensional convolution.
In the heat map, the darker the color, the more the classification model pays attention to the
features there when classifying malware families. From some examples in Figure 5, we can
see that when the classification model classifies many samples, in addition to the feature
map output by Efficient-Net, the feature map obtained by 1-dimensional convolution also
plays a role that cannot be ignored. The heat map shows that the classification model
is used for this part. The features are also more involved. As mentioned earlier in this
article, this is because 1-dimensional convolution can make up for the loss of some local
features caused by the visualization of malware, and the characteristics of 1-dimensional
convolution are the features of extracting local data. Therefore, the classifier will also pay
attention to the features extracted by the 1-dimensional convolution when calculating the
class weight.
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4.3. Experiments on the MalImg Dataset

To verify the effectiveness of the method proposed in this paper, this method was
compared with several other methods using this dataset, and the comparison results are
shown in Table 6. Compared with most methods, the method proposed in this paper has
better classification accuracy.
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Table 6. Comparison with other scholars’ malware family classification techniques.

Index Gibert [25] Cui [26] Venkatraman [27] Proposed

Acc 98.48% 94.5% 96.3% 98.55%
R 96.56% 94.5% 91.5% 97.98%
P 95.8% 94.6% 91.8% 97.95%
F1 95.8% 94.5% 91.6% 97.97%

Preprocessing time \ \ 3 h 0.5 h
Mean forecast time \ \ 1.5 s 0.07 s

Time complexity O(H ×W× L) O(H ×W× L)
O(H ×W× L) or O(l2

)
or O(N3

S + N2
Sl+NSdL l)

O((H ×W× L)n) or O(H ×
W× L + l)

where the bold indicates the best performance. “h” and “s” represent hour and second. H and W represent
the size of convolutional kernel, and L represents the number of input channels. NS represents the number of
support vectors, dL represents the dimension of the input vector, l is the number of the training sample, and n
represents the number of layers of the feature pyramid. Since the proposed method is a parallel structure, the
time complexity is the larger of the two parts. It can be seen that the method proposed in this paper is superior to
the existing methods in various indexes such as Acc, R, and so on.

In conclusion, in terms of performance, the proposed method is superior to the best
results of other studies, which indicates the effectiveness of the proposed method. In terms
of pretreatment time and prediction time, the efficiency of this paper is significantly higher
than that of other research, which shows that the method in this paper is more practical.

5. Conclusions

Aiming at the problem of unpredictable truncation caused by the setting of the image
width after the malware is imaged, the local features of the malware will be lost, and a
malware family classification method based on Efficient-Net and 1D-CNN is proposed.
This method can compensate for the lack of semantic information. In addition, this paper
also proposes a width-adaptive malware visualization method for the width of malware
visualization. The experimental results show that the method proposed in this paper is
superior to other methods, and the method has the following advantages: (1) The pro-
posed width-adaptive malware visualization method brings less noise and achieves better
performance than direct fixed-width methods, avoiding the disadvantages of effective infor-
mation truncation when processing images. (2) The malware family classification method
of the proposed architecture can effectively extract its local features while retaining the
texture features of malware. However, the proposed approach has certain limitations. The
approach may hardly handle packed malware by advanced packing techniques. In the fu-
ture, we intend to apply some advanced automatic unpacking/deobfuscation techniques to
address this problem. Moreover, the approach is not very effective for classifying unknown
malware whose families are not in the training data. We plan to combine unsupervised
techniques to improve our proposed approach.
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