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Abstract: A 6-bit 20 GS/s 16-channel time-interleaved (TI) analog-to-digital converter (ADC) using a
two-step flash ADC with a sample-and-hold (S/H) sharing technique and a gain-boosted voltage-to-
time converter (VTC) is presented for high-speed wireline communication systems. By sharing one
S/H between coarse and fine stages in the two-step flash ADC, the input bandwidth as well as area
and power efficiency can be improved without a gain error between coarse and fine ADCs. Thanks to
an eight-time interpolation using the gain-boosted VTC, the fine ADC has a small gate capacitance
without a speed penalty, even in a small input voltage range. A prototype ADC implemented in a
40 nm CMOS process occupies a 0.1 mm2 active area. The measured differential non-linearity (DNL)
and integral non-linearity (INL) after offset and gain calibrations were 0.45 and 0.39 least significant
bit (LSB), respectively. With a 9.042 GHz input, the measured signal-to-noise and distortion ratio
(SNDR) and the spurious-free dynamic range (SFDR) were 30.12 and 40.23 dB, respectively. The
small input capacitance of the sub-ADC enables a power-efficient track-and-hold amplifier (THA),
resulting in a power consumption of 56.2 mW under a supply voltage of 0.9 V. The prototype ADC
achieves a figure of merit (FoM) of 107.4 fJ/conversion-step at 20 GS/s.

Keywords: two-step; time-interleaving; time-domain; interpolation; voltage-to-time converter;
sample-and-hold; flash; reference embedding; clock generation

1. Introduction

The demand for wired input/output bandwidth within data center networks is
steadily increasing, driven by significant increases in data generation on wireline communi-
cation systems, such as cloud computing, mobile devices, and the Internet of things (IoT). In
order to meet the demand, high-speed wireline communication systems applied with a mul-
tilevel signal modulation format, such as a pulse amplitude modulation 4-level (PAM-4),
are required. In these wideband data communication systems, DSP-based high-speed serial
links using an analog-to-digital converter (ADC) enable more complex and flexible applica-
tions of back-end digital signal processing. However, due to the addition of high-speed
ADCs, the characteristics of input bandwidth, sampling rate, effective resolution, area,
and power consumption of the ADC have a significant impact on the performance of the
systems [1–7]. Recent studies show that a time-interleaving (TI) architecture is essential
to convert the data above 10 GHz, and the performance of sub-ADC is a large portion of
the TI ADC. At a medium resolution and a 20 GS/s conversion rate, sub-ADC types for
the TI ADCs are generally divided into the flash and successive approximation register
(SAR). Due to the fastest conversion speed of the flash ADC, the flash-based TI ADCs
have the advantage of reducing the number of interleaving channels, which can reduce
the hardware burden, such as a clock distribution and channel mismatch calibration on
the TI ADC. However, many comparators required in the flash ADC and the burden on
the offset calibration circuits for them directly affect the area and power consumption of
the flash-based TI ADCs [6–10]. Recent studies on tens of GS/s TI ADCs have shown that
the conversion speed of the SAR ADCs, used as the sub-ADC of the TI ADC, has been im-
proved to the GHz level thanks to the advanced CMOS process [11–14]. However, the SAR
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ADC requires not only the high-speed design for the comparator and logic corresponding
to the number of conversion cycles, but also the management of internal clock signals for
the comparator.

On the other hand, single-channel two-step flash ADCs have often been utilized to
maximize the aforementioned advantages of the flash and SAR ADCs [15–21]. However,
it was previously reported that the two-step flash ADCs have drawbacks, which are as
follows: (1) settling time required to select the reference voltage ranges for the fine ADC
(FADC) [15–17]; (2) large input capacitance and offset calibration complexity due to the
full flash hardware in the FADC [18–20]; (3) bandwidth mismatch due to an additional
input sampler [21]. Because of these limitations, SAR and flash architectures have been
preferred over the two-step flash architecture as a sub-ADC for the TI ADC. With these
reasons as a motivation, in this paper, a competitive TI two-step flash ADC suitable for
a high-speed data conversion was proposed by improving the drawbacks of the existing
two-step structures and applying them to the TI ADC.

The two-step flash ADC architecture used in this proposed TI ADC could be imple-
mented with a low power, small area, and wide input bandwidth thanks to sample-and-
hold (S/H) sharing and reference-embedding eight-time interpolation techniques [22]. The
two-step flash ADC could guarantee inherent gain matching between the coarse and fine
stage and could reduce the sampling capacitance as well by utilizing the S/H sharing
technique. In addition, thanks to the reference-embedded interpolation technique, only
one capacitive digital-to-analog converter (C-DAC) is required for the coarse stage, and
a reference resistor-string (R-string) for the FADC and its settling speed burden are elimi-
nated. As a result, the two-step flash ADC could be designed with a low-power and wide
input bandwidth. The small input capacitance of the sub-ADC leads the input sampling
network of the TI architecture, such as a track-and-hold amplifier (THA), to be fast and
power efficient. Therefore, in this design, only four-channel THAs, each operating at 5 GHz,
are used for the 20 GS/s sampling rate, which realize the wide input bandwidth and reduce
the complexity of the channel mismatch calibration.

This paper is organized as follows. The overall ADC with an input network and sub-
ADC is described in Section 2. Detailed circuit implementations of a pseudo-differential
comparator for a coarse ADC (CADC) with an offset calibration capability, a gain-boosted
voltage-to-time converter (VTC) for an FADC, and a high-speed clock generation scheme
with a digitally-controlled delay line (DCDL) are explained in Section 3. Section 4 shows
the measurement results and Section 5 concludes the paper.

2. Proposed ADC Architecture

A block diagram of the proposed 6-bit 20 GS/s TI two-step flash ADC is shown in
Figure 1a. The TI ADC consists of 4-channel 5 GS/s input samplers with a source follower
(SF) buffer (i.e., THA), 16-channel 6-bit 1.25 GS/s two-step flash ADCs with one S/H
shared by 2.5b CADC and 4b FADC, multi-phase clock generators (CG) for 5 GHz main
sampling clocks (ΦTH) and 1.25 GHz sub sampling clocks (ΦS and ΦCM), memory for
digital calibration, and a decimator for real-time measurement. Ten-gigahertz differential
clocks (ΦBOP and ΦBOM) are applied to the clock initial logic through the clock buffer based
on the low-voltage differential signaling (LVDS) I/O [23]. As shown in Figure 1b, the clock
initial logic ensures that the first rising edge of the positive output clock (ΦIOP) always
precedes the first rising edge of the negative output clock (ΦIOM) whenever the ADC is
enabled. In this way, the order of the output clocks (ΦM0∼M3) of the main clock generator
(Main CG), which generates multi-phase clocks based on a ring-counter, can always be
guaranteed. The sub-clock generator (Sub CG) makes the input and common voltage
sampling clocks (ΦS0,4,8,12 and ΦCM0,4,8,12) of the 4-channel sub-ADCs using the 5 GHz
clock (ΦDL0). The delay matching (DM) logic is added to generate a delay corresponding
to the gate delay of the sub-clock generator. Each sampling time skew of the THAs (i.e.,
the falling edge of ΦTH0∼TH3) is controlled by the DCDL, and the digital input codes of
the DCDL are obtained by the digital calibration engine implemented with the off-chip.
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The details of the circuit implementations related to the clock generation will be covered
in Section 3.3.
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2.1. Input Network

Figure 2 shows the input sampling network of the proposed 20 GS/s TI ADC. In this
design, 4-channel THAs are used to achieve a wide input bandwidth over the Nyquist
input and to reduce sampling errors, such as a charge injection and clock feed-through,
induced by the interference between the sub-ADCs. As shown in Figure 2, the THA consists
of NMOS sampling switches (M1 and M2) with dummy switches (M3–M6) and PMOS-
based SF buffers. The cross-coupled dummy switches (M3 and M4) prevent the signal
feed-through during the hold time (i.e., ΦTH is low), and the dummy switches (M5 and M6)
with the source and drain nodes shorted compensate for the clock feed-through, which
changes the input common voltage of the SF buffers [24,25]. Since the differential swing
range of the input voltage and the input common mode voltage of the TI ADC are 400 mV
and 200 mV, respectively, the clock boosting circuit for the NMOS sampling switches is not
required. The tracking times for the track-and-hold (T/H) of the THA and the S/H of the
sub-ADC are approximately 50 ps and 150 ps, respectively, at a sampling rate of 20 GS/s.
At the falling edge of ΦTH, the input voltage is sampled to the parasitic capacitance (CP),
which is approximately 28 fF, formed by the SF buffer, dummy switches, and routing metal.
Note that the sampling switches for the 4-channel THAs are not turned on at the same time.
That is, the input bandwidth is defined by the resistance of the sampling switch and the
parasitic capacitance for only one THA. Therefore, the input network of the proposed TI
ADC is suitable for a wide input bandwidth [11]. Similar to the sampling method of the
THA, the sampling switches of the 4-channel sub-ADCs driven by one SF buffer are not
turned on at the same time. Moreover, due to the S/H sharing and reference-embedding
techniques, the sampling capacitance of the sub-ADC was designed to be approximately
18 fF. As a result, the THA could be designed to be very compact, consuming 3.6 mW at a
0.9 V supply voltage.
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2.2. Two-Step Flash ADC

The small input capacitance, compact area, and low offset calibration burden of the
sub-ADC are high priority factors for the realization of a power-efficient TI ADC with
a wide input bandwidth. For this reason, in this design, the two-step flash architecture,
considering the aforementioned factors, was applied to the sub-ADC for the TI ADC. The
two-step flash ADC has been applied to the 7-bit 3 GS/s two-channel TI architecture in [22],
and the advantages of the low-power, small area, and wide input bandwidth obtained by
the S/H sharing and reference-embedding techniques have already been verified based
on the measurement results. In this design, compared to [22], the two-step flash ADC was
modified to be more suitable for the 20 GS/s TI ADC under the changed design conditions,
such as the number of channels, input voltage range, and resolution.

The block diagram of the single-channel 6-bit 1.25 GS/s two-step flash ADC is shown
in Figure 3. The ADC consists of a 2.5-bit CADC, a 4-bit reference-embedded 8-times
interpolating FADC, a C-DAC for the input sampling and residue generation, a R-string
for the references of both the CADC (VR [1:6]) and the C-DAC (VRT and VRB), and a 6-bit
digital encoder. Note that, unlike [22], a bootstrapped circuit for the input sampling switch
is not used in this design. For a 6-bit resolution, the resolution of the CADC was selected to
be 2.5-bit instead of 1.5-bit. The smaller resolution at the coarse stage can further reduce
the input capacitance but consequently increases the hardware burden on the fine stage.
Although the FADC can reduce its gate capacitance and power consumption thanks to the
eight-time interpolation technique, the hardware complexity of the FADC increases relative
to that of the CADC because the interpolation linearity and the offset calibration of the
FADC should be considered. Moreover, the input capacitance of a single-channel ADC is
mainly determined by the CDAC rather than the coarse comparator and is designed to be
small enough thanks to the S/H sharing and the interpolation techniques.
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In this paper, the operation of the two-step flash ADC is briefly explained. For details,
please refer to my previous work [22]. The 2.5-bit CADC is a flash architecture consisting
of six comparators and switches for the input sampling and residue generation. Each input
node of the comparators is intentionally untied to use the six 2Cus as the C-DAC elements
for the fine conversion. Note that, as the sampling is actually conducted in the top-plate
sampling manner, there is no gain error between the sampled input and the reference
voltages from the R-string regardless of the parasitic capacitance at the top-plate node.
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The thermometer output codes of the comparators (CO [1:6]) directly control the switches
and generate the residue voltage (VRES) at the top-plate node of the C-DAC for the fine
stage by using the six 2CUS. The 4-bit FADC has only three reference-embedded VTCs at
its front-end, and with the time-domain eight-time interpolation introduced in the flash
ADC [26]. Thanks to the time-domain interpolation, the FADC greatly reduced the loading
effect on the C-DAC; that is, the signal attenuation caused by the parasitic capacitance at
the top-plate node of the C-DAC could be lowered. Savings in the power consumption and
silicon area are other advantages of the interpolation technique. The reference-embedded
VTC is covered in Section 3.2.

Looking at the timing diagram shown in Figure 4, the conversion clocks for the CADC
and FADC (ΦCADC and ΦFADC) are delayed versions of the input sampling clock (ΦS) and
the common voltage sampling clock (ΦCM), respectively, which can be generated with a
simple inverter delay; that is, the sub clock generator only needs to transmit ΦS and ΦCM
to the sub-ADC. In this design, as the total capacitance of the C-DAC is as small as 12.8 fF
(excluding parasitic) with CU = 0.8 fF, the settling time of the C-DAC is very short. This
implies that the settling time can be generated by using a simple logic-gate delay from the
falling edge of ΦCM. As a result, the remaining time after the fast C-DAC settling could be
utilized for the FADC.
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3. Circuit Implementation
3.1. Comparator Design for CADC

In this design, six dynamic comparators were applied to the 2.5-bit flash CADC. Since
the unit capacitor of the C-DAC connected to the gate of the comparator is very small
at 0.8 fF, it is necessary to consider the input kickback noise induced by the comparator.
The kickback noise degrades the quality of the sampled signal to be used for the fine
conversion in the proposed two-step ADC architecture. Therefore, as shown in Figure 5,
the comparators were designed in a pseudo differential structure [22]. Note that the
signal-dependent kickback error can be eliminated by keeping the source node of the
input transistors to GND. Even though VDP/DM change during the latching operation, the
kickback by them will be eliminated because the net voltages of VDP/DM are charged from
GND and then discharged back to GND (eventually zero). Refer to [22] for more details on
eliminating the kickback error. The estimated 1-sigma offset of the comparators is 15 mV,
whereas the redundancy of the FADC is ±4 least significant bit (LSB), which is ±25 mV.
Thus, the offset calibration of the comparators is required to prevent the nonlinearity caused
by the offset mismatch. In this design, as shown in Figure 5, a differential pair connected
in parallel with the input transistors was added for the offset calibration without a speed
penalty. The gate voltages, VCALP and VCALM, were controlled by a 4-bit resistive digital-
to-analog converter (R-DAC) with a foreground calibration [26]. The range and accuracy of
the offset calibration engine could be designed to be ±90 mV and 11.25 mV, respectively.
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3.2. Gain-Boosted VTC for FADC

Figure 6a shows the simplified block diagram of the 4-bit FADC with the eight-time
time-domain interpolation technique. To generate 17 zero-crossing points (i.e., 4-bit resolu-
tion) in a flash-type conversion manner, the FADC consisted of three VTCs, a time-domain
interpolator (TDI) array, and a NAND- and NOR-based SR-Latch array. The interpolation
technique generates seven additional interpolated zero-crossing points between two ad-
jacent VTCs. Thanks to the simple inverter-based TDIs, this structure reduces the power
consumption, input capacitance, area, and burden of the offset calibration. The designed
input capacitance of the FADC, including the routing capacitance between the C-DAC and
the FADC, was only approximately 5 fF. This allowed the total capacitance of the C-DAC to
be as low as 12.8 fF, resulting in an approximately 28% signal attenuation.

The circuit of the reference-embedded VTC is shown in Figure 6b. Note that, in this
design, the 1 LSB voltage of the FADC was reduced by approximately 32% compared to [22].
Therefore, the voltage-to-time conversion gain must be increased to prevent a linearity
degradation caused by the input-referred offset of the back-end circuits, such as the TDIs
and SR-Latches. In this design, to enhance the time gain of the VTC, a positive feedback
loop, which consists of M5 and M6, was added to the output nodes of the dynamic amplifier
(i.e., SP and SM nodes) based on [27]. In addition, M7 and M8 was added to SP and SM
nodes to alleviate the linearity degradation caused by the positive feedback. Consequently,
the voltage-to-time gain of the VTC was increased from 0.9 ps/mV in [22] to 1.5 ps/mV.

The lower and upper VTCs (i.e., VTC<1> and VTC<3> shown in Figure 6a) have inten-
tional offsets for embedded reference. Therefore, only one C-DAC with 16Cus was required
for the residue generation, which means that the total number of the unit capacitance of
the two-step flash ADC could be designed to be smaller than that of a conventional SAR
ADC. The reference voltages for three VTCs were embedded by the different size ratio of
M1 and M2 shown in Figure 6b. In this design, the size ratios of M1 and M2 were 4:2, 3:3,
and 2:4 in that order for VTC<1:3> as shown in Figure 6a. The output time difference of the
lower and upper VTCs (i.e., VTC<1> and VTC<3>) cannot be constant over a wide input
range because of the transconductance (gm) nonlinearity of the input pair. However, in
this design, the reference range between VTCs was approximately 32 mV, which is almost
2/3 of the previous work in [22], so the VTC gain could be designed to be more linear than
that of [22].
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On the other hand, the size ratio design cannot guarantee the required offset of each
VTC accurately. Thus, an offset calibration for the VTCs is mandatory. In this design,
the offset mismatches of the reference-embedded VTCs were calibrated by the advanced
sequential slope-matching offset calibration technique in [22]. The embedded references of
the three VTCs for the calibration were implanted during the foreground calibration mode
by utilizing the 4Cus of the “OS calibration” part in the C-DAC shown in Figure 3, where
the weight of Cu corresponds to the step size of the VTC. Note that, in this VTC-based
time-domain interpolation, not only the differential offset of each VTC (OSDIFF) but also the
offsets of interpolated zero-crossing points generated by the outputs of two neighboring
VTCs (OSIP) should be taken care of with calibration. The OSDIFF and OSIP were calibrated
by the differentially controlled current sources (ICALP and ICALM) and by the tail current
(ITAIL), respectively, as shown in Figure 6b. One thing to note is that the change in the ITAIL
can also change the OSDIFF as well because it affects the operating condition of the VTC.
Therefore, even though the calibration for the OSDIFF is completed, it should be calibrated
repeatedly until the calibration for the OSIP is carried out to compensate for the changes in
the OSDIFF. The design details of the advanced sequential slope-matching offset calibration
were sufficiently covered in [22].

Figure 7 shows the output time difference according to the size ratios of the M5 (M6)
and M7 (M8) of the VTC shown in Figure 6b. In this design, the size ratio of M5 and M7
was selected as 4:1 considering the linearity and the time gain of the VTC. As shown in
Figure 7, when the size ratio of M5 and M7 is 4:1, the time gain varies from 1.56 ps/mV to
1.09 ps/mV within the interpolation range of the VTC; that is, the error of the time output
due to the nonlinearity of the VTC is approximately 0.3 LSB, which is improved by half
through the interpolation.
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according to the size ratios of M5 and M7 of the VTC.

3.3. High-Speed Multi-Phase Clock Generation

In order to implement a conversion rate of 20 GS/s in the proposed TI ADC, 5 GHz
4-phase sampling clocks (ΦM0∼M3) and 1.25 GHz 16-phase sampling clocks (ΦS0∼S15 and
ΦCM0∼CM15) are required for the 4-channel THAs and the 16-channel sub-ADCs, respec-
tively. Since these high-speed multi-phase clocks have a very short time difference cor-
responding to 20 GHz (i.e., 50 ps), they need to be carefully designed to stably generate
high-speed clocks. Therefore, this section deals with some design schemes for stably
generating high-speed multi-phase clocks without systematic time mismatches between
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the 4-channel THAs, including the DCDL logic for the monotonicity of the controlled
sampling clocks.

3.3.1. Clock Initial Logic

In this design, to alleviate the design burden for the high-speed multi-phase clock
generation, the proposed TI ADC received externally applied 10 GHz differential clocks
(ΦEXTP and ΦEXTM) instead of a 20 GHz single clock, and the differential clocks were
transmitted to the input of the clock initial logic shown in Figure 8 through the clock buffer.
Since the multi-phase clocks for the THAs are generated by dividing the two 10 GHz clocks
(ΦIOP and ΦIOM) based on a ring-counter, the order between ΦIOP and ΦIOM triggering the
clock divider is very important. If the order between ΦIOP and ΦIOM is changed whenever
the ADC is activated, the order of operation between the sub-channels is also changed,
which can cause the TI ADC to malfunction. Therefore, the initial clock logic shown in
Figure 8a was applied to the clock path so that the positive clock always precedes the
negative clock among the two 10 GHz clocks. The operation of the clock initial logic can be
described with Figure 8b. When ΦBOP and ΦBOM are free running, the reset signal (RST)
of the ADC is converted from ”High” to “Low” for starting the clock generation of the TI
ADC. ENPre and ENP are triggered to “High” by the first and second rising edges of ΦBOM,
respectively, following the falling edge of RST. Keep in mind that the DFF1 is added to
alleviate the metastable issue of the D-type flip flop (DFF). ENM is triggered from “Low”
to “High” only after ENP becomes “High” in synchronization with the following rising
edge of ΦBOP. Therefore, the rising edge of ENM is always triggered with a delay of half
of the 10 GHz clock period (i.e., 50 ps at 20 GS/s conversion rate) as that of ENP. Finally,
based on the triggered sequence of ENP and ENM, ΦBOP and ΦBOM are bypassed by the
two NAND gates to ΦIOP and ΦIOM, respectively. One thing to note is that, for the normal
clock generation, the sum of the gate delay and set-up time of the DFF should not exceed
50 ps at the 20 GS/s conversion rate. If the design margin is insufficient, an additional
phase selector may be required. However, in this design, the sum of the gate delay and the
set-up time of the DFF was designed to be approximately 42 ps in the slow condition.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 20 
 

 

tively. One thing to note is that, for the normal clock generation, the sum of the gate de-
lay and set-up time of the DFF should not exceed 50 ps at the 20 GS/s conversion rate. If 
the design margin is insufficient, an additional phase selector may be required. Howev-
er, in this design, the sum of the gate delay and the set-up time of the DFF was designed 
to be approximately 42 ps in the slow condition. 

D Q

R

DFF1

D Q

R

DFF2

D Q

R

DFF3

RST
ФBOM

ФBOP

ENPre ENP ENM

ФBOP ФIOP

ФBOM ФIOM

D Q

R

DFF
Dummy

 
(a) 

ФBOM

ФBOP

RST

ENPre

ENP

ENM

ФIOP

ФIOM

TD,DFF < 50 ps  
(b) 

Figure 8. Clock initial logic. (a) Block and (b) timing diagrams. 

3.3.2. Main Clock Generation 
Figure 9a shows the block diagram of the main clock generator for the sampling 

clocks of the four-channel THAs. The main clock generator consists of two ring-counters, 
and has a DFF with a reset mode and a DFF with a set mode, and four NAND gates. As 
shown in Figure 9b, Φ୍୓୔ and Φ୍୓୑ drive their respective ring counter, and are divided 
into four-phase clocks, Φୈ୍୚଴~ୈ୍୚ଷ, with a 50% duty cycle, shifted by the phase difference 
between Φ୍୓୔ and Φ୍୓୑. Then, these four-phase clocks are converted to main sampling 
clocks, Φ୑଴~୑ଷ, with a 25% duty cycle for the THAs by the NAND gates. On the other 
hand, as shown in Figure 9c, the DFF is a true single-phase clock (TSPC) structure for 
low-power and high-speed clock triggering, and a dummy transistor was added to elim-
inate a phase mismatch caused by the transistors for the reset and set mode. Note that 
the phase mismatch in the path generating the sampling clock of the THAs is a factor 
that attenuates the accuracy of the time skew calibration engine. As mentioned in Sec-
tion 3.3.1, since the multi-phase was generated using the 10 GHz differential clocks se-
quentially applied by the clock initial logic instead of a 20 GHz single clock, the design 
burden of the DFFs to make 5 GHz four-phase clocks was halved. As a result, designing 
a high-speed and power-efficient main clock generator for TI architecture corresponding 
to a 20 GHz clock speed could be simplified. 

Figure 8. Clock initial logic. (a) Block and (b) timing diagrams.



Electronics 2022, 11, 3052 11 of 19

3.3.2. Main Clock Generation

Figure 9a shows the block diagram of the main clock generator for the sampling clocks
of the four-channel THAs. The main clock generator consists of two ring-counters, and
has a DFF with a reset mode and a DFF with a set mode, and four NAND gates. As
shown in Figure 9b, ΦIOP and ΦIOM drive their respective ring counter, and are divided
into four-phase clocks, ΦDIV0∼DIV3, with a 50% duty cycle, shifted by the phase difference
between ΦIOP and ΦIOM. Then, these four-phase clocks are converted to main sampling
clocks, ΦM0∼M3, with a 25% duty cycle for the THAs by the NAND gates. On the other
hand, as shown in Figure 9c, the DFF is a true single-phase clock (TSPC) structure for low-
power and high-speed clock triggering, and a dummy transistor was added to eliminate a
phase mismatch caused by the transistors for the reset and set mode. Note that the phase
mismatch in the path generating the sampling clock of the THAs is a factor that attenuates
the accuracy of the time skew calibration engine. As mentioned in Section 3.3.1, since
the multi-phase was generated using the 10 GHz differential clocks sequentially applied
by the clock initial logic instead of a 20 GHz single clock, the design burden of the DFFs
to make 5 GHz four-phase clocks was halved. As a result, designing a high-speed and
power-efficient main clock generator for TI architecture corresponding to a 20 GHz clock
speed could be simplified.
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3.3.3. Digitally-Controlled Delay Line

The main sampling clocks (ΦTH0∼TH3) of the four-channel THAs have a phase dif-
ference between the clocks due to process and layout mismatches. This phase difference
causes the sampling time skew error between the THAs, which is a major source of the
performance degradation according to increasing the input frequency in the TI architecture.
Therefore, in this design, the time skew errors were calibrated on-chip by the DCDL shown
in Figure 10, and detected off-chip based on [28,29]. Note that the time skew errors were
detected based on a single-tone sinusoidal input. As shown in Figure 10, the 6-bit binary
controlled DCDL consists of a capacitor array, an inverter chain, and a digital decoder. The
capacitor array is divided into four banks, DCDLS1~S4, in order to improve the calibration
accuracy and relieve the driving strength of the inverter buffers. As shown in Table 1, each
DCDL bank is sequentially selected from DCDLS1 to DCDLS4 by the thermometer control
according to the 2-bit most significant bit (MSB) codes (BS [5:4]). In addition, the capacitor
array of each DCDL bank is controlled by the 4-bit binary code (B1~4 [3:0]). Note that the
B1~4 [3:0] is BS [3:0] bypassed to each DCDL bank according to BS [5:4].
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Table 1. Truth table of DCDL.

BS [5:4] B1 [3:0] B2 [3:0] B3 [3:0] B4 [3:0]

00 BS [3:0] 0000 0000 0000
01 1111 BS [3:0] 0000 0000
10 1111 1111 BS [3:0] 0000
11 1111 1111 1111 BS [3:0]

3.3.4. Sub-Clock Generation

As mentioned in Section 2.2, only two 1.25 GHz clocks (ΦS and ΦCM) are needed for
the sub-ADC. The 1.25 GHz clocks can be generated by dividing the output of the DCDL,
which is a 5 GHz clock, by four; that is, the clocks for four-channel sub-ADCs following
one THA (e.g., ΦS0,4,8,12 and ΦCM0,4,8,12) can be generated with only one clock divider,
such as a 4-bit ring counter shown in Figure 11a, which can lead to reducing the area and
current consumption. In the process of generating ΦM and ΦS, one thing to note is that
the sampling clocks should be designed in consideration of an interference between the
sub-ADCs. In other words, the falling edge of ΦS should be non-overlapping with the
rising edge of ΦM for the other sub-ADC as shown in Figure 11b.

In this design, the non-overlap between the two clocks was realized using the DM
logic shown in Figure 12. The DM logic guarantees that the rising edge of ΦM always starts
after the gate delay of two inverters rather than the falling edge of ΦS.
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4. Measurement Results

A prototype 6-bit TI two-step flash ADC was designed to have a 20 GS/s conversion
rate in a 40 nm CMOS process. Figure 13 shows a die photograph. An active area of the
proposed TI ADC, including four-channel THAs, a main clock generator, four-channel
sub-clock generators, and sixteen-channel sub-ADCs, is 0.1 mm2, and the block for the
foreground offset calibration occupies an additional area of 0.12 mm2. The decimation logic
and memory were implemented on-chip for real-time measurement and channel mismatch
analysis, respectively. The memory can store 1024 samples (i.e., 64 samples per sub-ADC)
for the 6-bit TI ADC.
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Figure 14 shows the measurement setup for the 20 GS/s TI ADC. The input voltage
and clock signals via balun and bias-tee were applied to inside the chip differentially
matched to 100 ohm. Note that the differential signals, such as the input or clock, were
differentially matched by the matched cables. The decimated and serialized digital output
codes were transferred to the digital waveform analyzer to measure the performance in
real-time and to detect the inter-channel mismatch errors, such as the offset, gain, and
time skew.
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Figure 14. Measurement setup.

The measured differential non-linearity (DNL) and integral non-linearity (INL) profiles
before and after the offset calibration for the coarse comparators and fine VTCs and the
gain calibration for the four-channel THAs calibrated in the digital domain are shown in
Figure 15. The peak DNL and INL improved from +3.28/−0.64 LSB and +2.84/−2.84 LSB
to +0.45/−0.31 LSB and +0.38/−0.38 LSB, respectively.
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Figure 15. Measured DNL and INL.

Figure 16 shows the measured FFT spectra with a 0.828 GHz input at a sampling rate
of 20 GS/s. The results are decimated by a factor of 459. The signal-to-noise ratio (SNR),
spurious-free dynamic range (SFDR), and signal-to-noise and distortion ratio (SNDR) are
improved from 14.46, 19.84, and 9.36 dB to 32.93, 42.75, and 32.58 dB, respectively, as shown
in Figure 16a. The FFT spectrum without offset calibration shown in Figure 16a includes
tones due to the offset mismatches between the interleaving channels as well as tones due
to the offset mismatches of the comparators and VTCs used in the two-step flash ADC.
Note that, since the offset mismatches for the comparators and VTCs were calibrated based
on the same input common voltage used in the normal operation, the offset mismatches
between the interleaving channels were also calibrated by the offset calibration process
for the comparators and VTCs. Therefore, the noise floor as well as the interleaving offset
tones could be improved by the offset calibration process for the comparators and VTCs.
However, the gain mismatch tones between the interleaving channels still remain because
of the gain mismatch between the THAs and the I-R drop of the reference voltage used
by each C-DAC. These gain mismatch tones were calibrated in the digital domain based
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on [28], and as a result, SNR, SFDR, and SNDR were improved to 34.02, 45.81, and 33.96 dB,
respectively, as shown in Figure 16b.
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gain mismatch between the interleaving channels. 

Figure 17 shows the FFT spectrum at a 9.042 GHz input. SNR, SFDR, and SNDR 
without skew calibration are 26.05, 30.62 and 25.69 dB, respectively, and limited by the 
timing skew error of approximately 950 fs, assuming only a timing skew error. As men-
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network due to the low input capacitance implemented by the proposed S/H sharing 
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Figure 16. Measured FFT spectra with a 0.828 GHz input at a 20 GS/s sampling rate. (a) With and
without calibration for mismatches of comparators and VTCs. (b) With and without calibration for
gain mismatch between the interleaving channels.

Figure 17 shows the FFT spectrum at a 9.042 GHz input. SNR, SFDR, and SNDR with-
out skew calibration are 26.05, 30.62 and 25.69 dB, respectively, and limited by the timing
skew error of approximately 950 fs, assuming only a timing skew error. As mentioned
in Section 3.3.3, the timing skew error is detected off-chip, and then the sampling time is
calibrated on-chip by the DCDL. The SNR, SFDR, and SNDR are improved to 31.02, 40.23,
and 30.12 dB, respectively, through the skew calibration.
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Figure 17. Measured FFT spectrum with and without skew calibration at 20 GS/s with a
9.085 GHz input.

Figure 18a shows the measured dynamic performances (SNDR and SFDR) at various
input frequencies with the 20 GS/s sampling frequency. Thanks to the compact input
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network due to the low input capacitance implemented by the proposed S/H sharing
and the eight-time interpolation, the proposed TI ADC could be designed with a high
effective resolution bandwidth (ERBW) of approximately 8.5 GHz when the time skew is
optimally calibrated, as shown in Figure 18a. Without the skew calibration, SNDR begins to
be attenuated by the skew error above an approximately 3 GHz input frequency. Figure 18b
shows the measured SNDR and SFDR with various sampling frequencies at a 0.828 GHz
input frequency. It can be seen that the proposed TI ADC operates stably up to a conversion
rate of 20.3 GS/s, but the performance is rapidly degraded at conversion rates higher
than that.
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Figure 18. Measured SNDR and SFDR versus various (a) input frequencies at 20 GS/s and
(b) conversion rates with a 0.828 GHz input frequency.

The ADC core operates at a 0.9 V single supply and consumes 56.2 mW at a sampling
rate of 20 GS/s. Figure 19 shows the power breakdown. The portion of the 16-channel
sub-ADCs including the C-DAC with R-string is 32%, and the clock logics, including the
main clock generator, sub clock generator, and the DCDL, take 32%. The digital encoder and
calibration logic take 7.2% and 3.2%, respectively. Thanks to the small input capacitance of
the sub-ADCs, each THA consumes 3.6 mW, so the four-channel THAs consume 14.4 mW,
which is 25.6% of the total power consumption.
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In Table 2, the performance of the proposed TI ADC is summarized and compared
with those of recently reported 6-8-bit TI ADCs with sampling frequencies above 20 GS/s.
The proposed 16-channel TI two-step flash ADC is capable of high-speed operation at
20 GS/s with a single supply voltage of 0.9 V. The proposed TI ADC could be designed
with a competitive area and power consumption thanks to the S/H sharing technique
and the reference-embedded eight-time interpolation technique using the gain enhanced
VTC. As a result, the calculated Walden figure-of-merit (FoM) at the Nyquist input is
107.4 fJ/conversion step.

Table 2. Performance comparison.

This Work
JSSC14
V. Chen

[8]

JSSC17
S. Cai

[20]

VLSI16
Y. Frans

[2]

JSSC17
B. Xu
[30]

VLSI19
D. Pfaff

[3]

SSCL20
S-J Kim

[31]

VLSI21
M. Zhang

[32]

Technology (nm) 40 32 SOI 65 16 FinFET 28 7 FinFET 16 FinFET 65

Architecture TI Two-Step
Flash TI Flash

TI
Multi-bit

Search
TI SAR TI SAR-TDC TI SAR TI

Flash-TDC
TI Time-
domain

# of channels 16 8 8 32 16 32 16 8
Supply (V) 0.9 0.9 1.0 0.9/1.2/1.8 0.85/0.95 - 0.9 1.0/1.2

Resolution (bit) 6 6 6 8 6 8 8 8
FS (GS/s) 20 20 25 28 24 28 20 20

VIN (mVdiff) 400 300 500 1200 2 ~240 - 500 450
DNL/INLMAX (LSB) 0.45/0.38 0.47/0.42 0.64/0.60 - 0.25/0.22 - 0.95/2.39 -

SNDR@Nyq. (dB) 30.1 30.7 29.7 31.5 28.9 29.4 35.4 38.8
SFDR@Nyq. (dB) 40.2 39.4 42 39.1 41 39.1 - 52.5
ENOB@Nyq. (bit) 4.71 4.81 4.62 4.9 4.51 4.6 5.6 6.15

Power (mW) 56.2 69.5 88 280 23 150 175 129.9
Active area (mm2) 0.1 0.25 0.24 2.8 3 0.03 0.09 4 0.1 0.22

Walden FOM 1

(fJ/conv.-step) 107.4 124.1 143 325.7 42 221 180 91.3

1 Walden FoM = power/(2ENOB × sampling frequency). 2 Tx swing range. 3 Dual transceiver active area.
4 Including AFE.

5. Conclusions

This paper has presented a 40 nm CMOS 6-bit 20 GS/s 16-channel TI ADC using
the two-step flash ADC with the S/H sharing and the reference-embedded eight-time
interpolation techniques. The input bandwidth, area, and power efficiency of the single
channel ADC could be improved by sharing a single S/H between the coarse and fine
stages. The time gain of the VTC used in the eight-time time-domain interpolating FADC
was boosted by the positive feedback loop, resulting in improving the linearity of the multi-
bit interpolation. As a result of these, four-channel THAs consisting of the input network
of the TI ADC could be implemented with a high speed and low power. In addition, the
design burden of the multi-phase clock generation for the sub-ADCs could be alleviated by
using the two-step flash structure. Thanks to these efforts, the prototype TI ADC operates
at 20 GS/s with a single supply voltage as low as 0.9 V and consumes 56.2 mW. The
effective number of bits (ENOB) at 0.828 GHz and 9.042 GHz inputs are 5.34 bit and 4.71 bit,
respectively, and the Walden FoM at a 9.042 GHz input is 107.4 fJ/conversion step.
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Abbreviations
ADC Analog-to-Digital Converter
TI Time-Interleaved
SAR Successive Approximation Register
S/H Sample-and-Hold
C-DAC Capacitive Digital-to-Analog Converter
R-DAC Resistive Digital-to-Analog Converter
R-string Resistive string
THA Track-and-Hold Amplifier



Electronics 2022, 11, 3052 18 of 19

CADC Coarse ADC
VTC Voltage-to-Time Converter
FADC Fine ADC
DFF D-type Flip Flop
DCDL Digitally-Controlled Delay Line
SF Source Follower
LVDS Low Voltage Differential Signaling
CG Clock Generator
DM Delay Matching
T/H Track-and-Hold
MSB Most Significant Bit
LSB Least Significant Bit
TDI Time-Domain Interpolator
TSPC True Single Phase Clock
DNL Differential Non-Linearity
INL Integral Non-Linearity
SNR Signal-to-Noise Ratio
SFDR Spurious-Free Dynamic Range
SNDR Signal-to-Noise and Distortion Ratio
ERBW Effective Resolution Bandwidth
FoM Figure of Merit
ENOB Effective Number of Bits
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