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Abstract: An accurate frequency estimator for real sinusoid based on Discrete Fourier Transform
(DFT) is proposed. The proposed estimator is based on the interpolation of the maximum DFT spectral
line and two Discrete-Time Fourier Transform (DTFT) spectral lines and can operate with both the
rectangular window and the maximum sidelobe decay (MSD) window. In the coarse estimation
step, the proposed estimator with the MSD window is used. According to the value of the coarse
estimate, the negative frequency spectral component is removed. In the fine estimation step, the
proposed estimator with the rectangular window is utilized to achieve the Cramer–Rao lower bound
(CRLB). Simulation results show that the performance of this algorithm is better than that of the AM
algorithm, Candan algorithm, Djukanovic algorithm, and FDIAM algorithm.

Keywords: DFT; frequency estimator; real sinusoid; MSD windows

1. Introduction

Frequency estimation of sinusoidal signal in white noise is a classic topic in the field
of digital signal processing. It can be widely used in numerous fields—for instance, in
communications, radar signal processing, sonar, electronic measurement, etc. [1–5]. For
example, Orthogonal Frequency Division Multiplexing (OFDM) technology is often used
to realize multi-carrier transmission schemes. As we know, OFDM technology is very
sensitive to frequency offsets, which will destroy the orthogonality between the subcarriers.
Thus, it is necessary to accurately estimate the value of the frequency offset.

The existing frequency estimators can mainly be divided into two categories: time
domain algorithms and frequency domain algorithms. Time domain algorithms include
the maximum likelihood (ML) algorithms [6,7], the autocorrelation algorithms [8,9], the
linear prediction algorithms [10], and the least square algorithms [11]. Nevertheless, due
to the large amount of computation required, these algorithms are difficult to use in
real-time applications. Frequency domain algorithms are usually implemented based on
DFT [12–20]. These algorithms usually have small computational requirements. Therefore,
they are suitable for real-time applications. Frequency estimators implemented based
on DFT generally have two steps: coarse search and fine search. The coarse search is
used to determine the maximum amplitude of DFT samples by a simple maximum search
procedure. The fine search obtains the relative frequency deviation between the signal
frequency and the coarse estimate by means of certain interpolation methods. The difference
between different interpolation algorithms lies only in the second step. The Aboutanios and
Mulgrew (AM) algorithm uses two spectral lines located halfway between the maximum
spectral line and its two neighbors for the fine search [17]. Candan achieves the fine search
by using the maximum spectral line and two spectral lines on the left and right of the
maximum one [18]. Fang et al. firstly perform N-point time-domain zero-padding on the
N-point sinusoidal sampling sequence, then use the amplitudes of the two spectral lines
adjacent to the largest one in the 2N-point DFT spectrum to estimate the relative frequency
deviation [19]. The recent progress of the fast algorithms based on DFT is discussed in [20],
which utilizes prior knowledge of signal spectrum sparsity and signal detection index to
reduce the computational complexity and improve the estimation performance. Candan
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obtains the fine frequency estimation by multiplying the sinusoid with arbitrary window
functions and performing the interpolation of three spectral lines [21].

The signal model of all the above estimators is complex sinusoid. The real sinusoidal
signal model is also often used in practical applications, and the frequency estimation of
the real sinusoid is more complicated than that of complex sinusoid due to the problem of
spectrum leakage from the negative frequency spectrum component of the signal. Many
researchers have presented their algorithms for real sinusoid [22–29]. In [22], a frequency
estimation algorithm similar to ML based on the spectrum matching method is proposed.
The algorithm avoids the spectrum leakage problem by incorporating it into the signal
or spectrum model. However, this algorithm requires an exhaustive search, which needs
large amount of computation. In [23], the frequency of a real-valued tone can be estimated
by extracting the instantaneous frequency based on the maximum distribution energy
of the signal calculated from the time–frequency distribution (TFD). In [24], Djukanovic
derives an algorithm based on the Candan algorithm [21] and AM algorithm [17], and
the negative frequency spectrum component is shifted via modulation before the fine
frequency estimation. When the signal-to-noise ratio (SNR) is sufficiently high or the
frequency is small, the performance of the algorithm degrades [28]. In [28], a frequency
domain iterative algorithm based on the AM (FDIAM) algorithm is proposed, which can
realize the frequency estimation of real sinusoids without windows. In [29], a frequency
estimator of real sinusoid combined with the algorithm in [12] is proposed, which has a
high accuracy.

In this paper, an accurate frequency estimator of real sinusoid based on DFT is pro-
posed. The proposed estimator is based on the interpolation of the maximum DFT spectral
line and two DTFT spectral lines and can operate with both the rectangular window and
the MSD window. In the coarse estimation step, the proposed estimator with the MSD
window is used. According to the value of the coarse estimate, the negative frequency
spectral component is removed. In the fine estimation step, the proposed estimator with the
rectangular window is utilized to achieve the CRLB. Computer simulation results indicate
that the performance of this algorithm is better than that of the AM algorithm [17], Candan
algorithm [21], Djukanovic algorithm [24], and FDIAM algorithm [28].

The rest of this paper is arranged as follows. In the second section, we propose the
new algorithm. In the third section, the performance of this algorithm is compared with
that of other algorithms and the CRLB. Conclusions are given in the last section.

2. Proposed Estimation Algorithm

The model of single tone real sinusoid in additive white Gaussian noise is

x(n) = s(n) + z(n) n = 0, 1, . . . , N − 1 (1)

s(n) = A cos(2π f0n + φ) n = 0, 1, . . . , N − 1 (2)

where N is the number of samples. A, f0, and φ are the amplitude, frequency, and initial
phase of the sinusoid, respectively. The noise term z(n) is assumed to be zero-mean additive
white Gaussian noise with variance σ2

z . Then, the SNR is SNR = A2

2σ2
z

. The signal frequency
can be expressed as

f0 = (km + δ)/N (3)

where km is the discrete frequency index value of the maximum DFT spectral line and δ
denotes the normalized fractional frequency offset, δ ∈ (−0.5, 0.5).

The CRLB of frequency estimation for real sinusoid is [24]

var
(

f̂0

)
≥ 3

π2SNR·N(N2 − 1)
(4)
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We know that the spectrum of a real sinusoid consists of positive and negative fre-
quency spectrum components. According to Euler formula, the real sinusoid in Equation (2)
can be expanded into

s(n) = Aejϕej2π f0n/2 + Ae−jϕe−j2π f0n/2 n = 0, 1, . . . , N − 1 (5)

The positive frequency part can be expressed as

s+(n) = Aejϕej2π f0n/2 (6)

and the negative frequency part is

s−(n) = Ae−jϕe−j2π f0n/2 (7)

The proposed estimation algorithm is implemented in three parts. In Section 2.1, a
frequency estimation algorithm based on DFT and rectangular window is proposed. In
Section 2.2, the estimator proposed in Section 2.1 is generalized to the case of MSD windows.
In Section 2.3, a frequency estimation algorithm for real sinusoid implemented based on
the estimators in Sections 2.1 and 2.2 is proposed.

2.1. Proposed Frequency Estimator Based on Rectangular Window

Firstly, the N-point DFT of s(n) is recorded as S(k). In view of the symmetry of the
DFT spectrum of a real sinusoid sequence, the negative frequency spectrum component is
ignored. Then, we can obtain

S(k) =
1
2

N−1

∑
n=0

Aejϕej2π f0ne−j 2π
N nkk = 0, 1, . . . , N/2− 1 (8)

For convenience, the N-point DFT coefficient is expressed as

Sl =
1
2

N−1

∑
n=0

Aejϕej2π f0ne−j2π(km+l)n/N (9)

where l represents the discrete frequency interval from km.
Then, Equation (3) is substituted into Equation (9), and we have

Sl =
Aejϕ

2N
1− ej2π(δ−l)

1− ej2π(δ−l)/N
(10)

When 2π(δ− l)� N, the following formula can be obtained

ej2π(δ−l)/N ≈ 1 + j
2π

N
(δ− l) (11)

Then, we substitute Equation (11) into Equation (10), obtaining

Sl =
bl

δ− l
(12)

in which

bl =
jAejϕ

4π

[
1− ej2π(δ−l)

]
(13)

Then, b0, b0.1, and b−0.1 are calculated according to Equation (13), and we have

b0 =
jAejϕ

4π

[
1− ej2πδ

]
(14)
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b0.1 =
jAejϕ

4π

[
1−Uej2πδ

]
(15)

b−0.1 =
jAejϕ

4π

[
1−Yej2πδ

]
(16)

in which
U = cos(0.2π)− j sin(0.2π) (17)

Y = cos(0.2π) + j sin(0.2π) (18)

Then, S0, S0.1, and S−0.1 can be expressed as

S0 =
jAejϕ

4π

1− ej2πδ

δ
(19)

S0.1 =
jAejϕ

4π

1−Uej2πδ

δ− 0.1
(20)

S−0.1 =
jAejϕ

4π

1−Yej2πδ

δ + 0.1
(21)

Then, we have
S0.1

S0
=

1−Uej2πδ

1− ej2πδ

δ

δ− 0.1
(22)

S−0.1

S0
=

1−Yej2πδ

1− ej2πδ

δ

δ + 0.1
(23)

After some algebra, we obtain

[S0.1 −US0]δ− (0.1)S0.1

[S−0.1 −YS0]δ + (0.1)S−0.1
=

1−U
1−Y

(24)

The estimation expression of δ can be obtained as

δ̂ = Re
{

(0.1)(1−Y)S0.1 + (0.1)(1−U)S−0.1

(1−Y)S0.1 − (1−U)S−0.1 + 2jS0 sin(0.2π)

}
(25)

2.2. Proposed Frequency Estimator Based on MSD Window

The frequency estimation of real sinusoid is more complicated than that of a complex
sinusoid because of the superposition of the positive and negative frequency spectrum
components of real sinusoid. Multiplying a real sinusoid with a proper window function is
an effective way to eliminate or reduce the estimation deviation. MSD windows have been
widely used in references [13–15]. The sidelobe decay rate of H-term MSD window is equal
to 6(2H − 1) dB/octave, which is the highest among all the H-term cosine windows. In this
part, an algorithm based on the estimator described in Section 2.1 and the MSD window is
proposed. The expression of the H-term MSD window is [15]

w(n) =
H−1

∑
h=0

(−1)hah cos
(

2π
h
N

n
)

n = 0, 1, . . . , N − 1 (26)

where ah is the window coefficient and H is the number of ah coefficients, H ≥ 1. The
expression of ah is

a0 =
CH−1

2H−2
22H−2 , ah =

CH−h−1
2H−2
22H−3 h = 1, . . . , N − 1 (27)

The real sinusoid is multiplied by the MSD window, and we obtain

xw(n) = x(n)·w(n) n = 0, 1, . . . , N − 1 (28)
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Then, we perform DTFT on xw(n), and have

Xw(λ) = AW(λ− δ)ejϕ (29)

If sufficiently large number of samples are obtained (N � 1), then we have

W(λ) = N sin(πλ)
π

H−1
∑

h=0
(−1)hah

λ
λ2−h2 e−jπλ

= W̃(λ)e−jπλn = 0, 1, . . . , N − 1
(30)

in which

W̃(λ) =
N sin(πλ)

π

H−1

∑
h=0

(−1)hah
λ

λ2 − h2 , |λ| < 2 (31)

From Equation (31), we can obtain

W̃ ′(λ) =
N
π
[sin(πλ) + πλ cos(πλ)]

H−1

∑
h=0

(−1)hah
λ2 − h2 −

2N
π

λ2 sin(πλ)
H−1

∑
h=0

(−1)hah

(λ2 − h2)
2 (32)

In Section 2.1, the estimation formula for the normalized frequency offset is expressed
as Equation (25). We denote the part in the braces of Equation (25) as P and replace its
corresponding spectral lines with Xw(0), Xw(0.1), and Xw(−0.1). Then, we have

P =
(0.1)(1−Y)Xw(0.1) + (0.1)(1−U)Xw(−0.1)

(1−Y)Xw(0.1)− (1−U)Xw(−0.1) + 2jXw(0) sin(0.2π)
(33)

According to Equations (29) and (30), when λ = 0, 0.1, and −0.1, we have

Xw(0) = AW̃(−δ)ejϕ (34)

Xw(0.1) = AW̃(0.1− δ)ejϕe−j(0.1π) (35)

Xw(−0.1) = AW̃(−0.1− δ)ejϕej(0.1π) (36)

Substituting Equations (34)–(36) into Equation (33), we have

P =
(0.1)(1−Y)W̃(0.1− δ)e−j(0.1π) + (0.1)(1−U)W̃(−0.1− δ)ej(0.1π)

(1−Y)W̃(0.1− δ)e−j(0.1π) − (1−U)W̃(−0.1− δ)ej(0.1π) + 2jW̃(−δ) sin(0.2π)
(37)

Carrying out the first-order Taylor series expansion for W̃(0.1− δ), W̃(−0.1− δ), and
W̃(−δ) near 0.1, −0.1, and 0, respectively, and ignoring the higher order terms, we have

W̃(0.1− δ) ≈ W̃(0.1)− W̃ ′(0.1)δ (38)

W̃(−0.1− δ) ≈ W̃(−0.1)− W̃ ′(−0.1)δ
= W̃(0.1) + W̃ ′(0.1)δ

(39)

W̃(−δ) ≈ W̃(0)− W̃ ′(0)δ (40)

In Equation (39), we use the conclusion that W̃(λ) is an even function and W̃ ′(λ) is an
odd function [13].

Substituting Equations (38)–(40) into Equation (37), we have

P =
(0.1)(1−Y)

[
W̃(0.1)− W̃ ′(0.1)δ

]
M + (0.1)(1−U)

[
W̃(0.1) + W̃ ′(0.1)δ

]
R

(1−Y)
[
W̃(0.1)− W̃ ′(0.1)δ

]
M− (1−U)

[
W̃(0.1) + W̃ ′(0.1)δ

]
R + jN sin(0.2π)

(41)

in which
M = cos(0.1π)− j sin(0.1π) (42)
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R = cos(0.1π) + j sin(0.1π) (43)

Then, the estimation expression of δ can be obtained as

δ̂w =
(1−Y)M(0.1− P)W̃(0.1) + (1−U)R(0.1 + P)W̃(0.1)− j sin(0.2π)P

(1−Y)M(0.1− P)W̃ ′(0.1)− (1−U)R(0.1 + P)W̃ ′(0.1)
(44)

2.3. Proposed Estimator for Real Sinusoid

In this part, an accurate frequency estimator for real sinusoid is proposed based on
the algorithms in Sections 2.1 and 2.2. Firstly, the algorithm proposed in Section 2.2 is used
for coarse frequency estimation. We show the iterative process of the coarse frequency
estimation in Table 1.

Table 1. Coarse frequency estimation step.

Step Description

1 xw(n) = x(n)·w(n) n = 0, 1, . . . , N − 1
2 Perform N-point DFT on xw(n)
3 Search the index number kw of the maximum spectral line

4
Calculate Xw(0), Xw(0.1) and Xw(−0.1) via

Xw(p) =
N−1
∑

n=0
xw(n)e−j2π(kw+p)/N , p = 0, ±0.1

5 Obtain δ̂w1 with Xw(0), Xw(0.1) and Xw(−0.1) according to (44)

6
Calculate Xw(δ̂w1), Xw(δ̂w1 + 0.1) and Xw(δ̂w1 − 0.1) via

Xw(p) =
N−1
∑

n=0
xw(n)e−j2π(kw+p)/N , p = δ̂w1, δ̂w1 ± 0.1

7 Obtain δ̂w2 with Xw(δ̂w1), Xw(δ̂w1 + 0.1) and Xw(δ̂w1 − 0.1) according to (44)
8 The coarse frequency estimate is f̂ c

0 = (kw + δ̂w1 + δ̂w2)/N

Then, the negative frequency spectrum component of the real sinusoid is removed,
and the signal is reconstructed. With the coarse frequency estimate f̂ c

0 , the frequency of the
signal x(n) is shifted as follows

xm(n) = x(n)ej2π f̂ c
0 n (45)

As f̂ c
0 is fairly close to the sinusoidal frequency f0, the negative frequency spectrum

component can be shifted to the low-pass band. Moreover, the most significant part of
the negative frequency component energy lies in the DC component of xm(n). Then, the
negative frequency spectrum component can be removed from the signal as

xr(n) = xm(n)e−j2π f̂0
cn − Ane−j2π f̂0

cn (46)

where An is the amplitude of the negative frequency spectrum component, and its expression is

An = xm(n) (47)

where xm(n) represents the mean value of xm(n). After some derivation, the expression of
xr(n) can be finally reduced as

xr(n) = x(n)− Ane−j2π f̂0
cn (48)

After removing the negative frequency spectrum component, we need to perform DFT
on the reconstructed signal xr(n). Finally, the algorithm proposed in Section 2.1 is used for
the fine frequency estimation. We show the iterative process of obtaining the fine frequency
estimate in Table 2.
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Table 2. Fine frequency estimation step.

Step Description

1 Perform N-point DFT on xr(n)
2 Search the index number kr of the maximum spectral line

3
Calculate Xr(0), Xr(0.1) and Xr(−0.1) via

Xr(l) =
N−1
∑

n=0
xr(n)e−j2π(kr+l)/N , l = 0, ±0.1

4 Obtain δ̂r1 with Xr(0), Xr(0.1) and Xr(−0.1) according to (25)

5
Calculate Xr(δ̂r1), Xr(δ̂r1 + 0.1) and Xr(δ̂r1 − 0.1) via

Xr(l) =
N−1
∑

n=0
xr(n)e−j2π(kr+l)/N , l = δ̂r1, δ̂r1 ± 0.1

6 Obtain δ̂r2 with Xr(δ̂r1), Xr(δ̂r1 + 0.1) and Xr(δ̂r1 − 0.1) according to (25)
7 The fine frequency estimate is f̂ f

0 = (kr + δ̂r1 + δ̂r2)/N

3. Simulation Results

In this section, we conduct simulation experiments to test and verify the performance
of the proposed algorithm. We compare the proposed algorithm with the AM algorithm [17],
the Candan algorithm with the Kaiser window [21], the Djukanovic algorithm [24], and the
FDIAM algorithm [28]. For the FDIAM algorithm, the number of iterations qc = 4. The
simulation experiments are divided into three categories: RMSE of frequency estimation
versus SNR, RMSE versus the signal frequency f0, and RMSE versus the initial phase φ.

Firstly, we examine the frequency estimation RMSEs of different algorithms versus the
SNR in Figure 1. We show the simulation results for N = 128, φ = π/8, and f0 = 0.1917.
The SNR varies from−10 dB to 50 dB with a step of 2 dB. For each value of SNR, 20,000 time
Monte Carlo experiments have been considered. The simulation results of the algorithm
we proposed with the three-term MSD window are very similar to those when the signal is
multiplied by two-term MSD window. Therefore, only the results of the proposed algorithm
with a two-term MSD window are shown. It can be seen that the RMSE of the proposed
algorithm with a two-term MSD window is closer to the CRLB than the other methods. The
RMSE of the Candan algorithm is clearly larger than that of the other algorithms. When
the SNR is higher than 10 dB, the RMSE of the AM algorithm gradually departs from that
of the CRLB. Therefore, the accuracy of the proposed algorithm is higher than that of the
AM algorithm, Candan algorithm, Djukanovic algorithm, and FDIAM algorithm.
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Then, we evaluate the RMSEs of five different algorithms versus the sinusoid frequency
f0. We show the simulation results in Figure 2 for N = 256, φ = π/8, and SNR = 10 dB.
f0 varies in the interval of [0.01, 0.49] with a step of 0.02. For each value of f0, 20,000 time
Monte Carlo experiments have been considered. We can see that the RMSE curve of
the proposed algorithm is closer to that of CRLB than the other algorithms. Although the
Candan algorithm reduces the bias caused by the superposition of the positive and negative
frequency spectrum components with Kaiser window, its RMSE is still about 2.5 dB higher
than that of the CRLB. The RMSE curve of the AM algorithm fluctuates greatly. Therefore,
the accuracy of the proposed algorithm is the highest among all the five estimators. The
proposed algorithm is not sensitive to the signal frequency.
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Figure 3 shows the RMSEs of five different estimators versus the sinusoid frequency
f0 for, SNR = 30 dB and the other parameters remain unchanged, as shown in Figure 2.
For each value of f0, 20,000 time Monte Carlo experiments have been considered. We can
see that the performance of the AM algorithm is still poor and that its RMSE is large. The
RMSE of the Candan algorithm with a Kaiser window is about 2.5 dB higher than that of
the CRLB, and the RMSEs of the other three algorithms are fairly small. From the partially
enlarged image, we can see that the RMSE of the proposed algorithm is smaller than that
of the Djukanovic algorithm and FDIAM algorithm, except when f0 is very close to 0 and
0.5. The proposed algorithm is not sensitive to the signal frequency, except for the cases
when f0 is very close to 0 and 0.5.
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Finally, we evaluate the RMSEs of different algorithms versus the initial phase φ
for N = 128, f0 = 0.1917, and SNR = 10 dB in Figure 4. φ varies in the range (0, 2π)
with a step of (1/25π). For each value of φ, 20,000 time Monte Carlo experiments have
been considered. We can see that the Candan algorithm has the largest RMSE among
all the estimators. The RMSE of the AM algorithm changes periodically and is higher
than the RMSE of the Djukanovic algorithm, the FDIAM algorithm, and the proposed
algorithm. From the partially enlarged figure, we can see that the performance of the
proposed algorithm is better than that of the other algorithms. The proposed algorithm is
not sensitive to the initial phase.
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When SNR = 30 dB and the other parameters maintain unchanged, as shown in
Figure 4, the RMSEs of different estimators versus initial phase φ are shown in Figure 5. For
each value of φ, 20,000 time Monte Carlo experiments have been considered. We can see
that the accuracy of the proposed estimator is the highest among all the estimators, and the
proposed estimator is not sensitive to the initial phase. The RMSE of the AM algorithm still
changes periodically and is relatively large. The RMSE of the Candan algorithm is about
2.5 dB higher than that of the CRLB.
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We suppose that N-point Fast Fourier Transform (FFT) requires N log2 N complex
multiplications and complex additions. We also ignore all operations of O (1) complexity,
where O (·) represents the big O notation. Then, the proposed algorithm has the same com-
plexity order O(N log2 N) as the AM algorithm, Candan algorithm, Djukanovic algorithm,
and FDIAM algorithm [24,28].

4. Conclusions

An accurate frequency estimator for a real sinusoid based on DFT is proposed. The
proposed estimator is based on the interpolation of the maximum DFT spectral line and
two DTFT spectral lines and can operate with both the rectangular window and the MSD
window. In the coarse estimation step, the proposed estimator with the MSD window
is used. According to the value of the coarse estimate, the negative frequency spectral
component is removed. In the fine estimation step, the proposed estimator with the
rectangular window is utilized to achieve the CRLB. Computer simulation results show
that the estimation accuracy of the presented algorithm is higher than that of the AM
algorithm, Candan algorithm, Djukanovic algorithm, and FDIAM algorithm. The presented
algorithm is not sensitive to the initial phase and signal frequency in most situations.
The presented algorithm has the same computational complexity order as the competing
estimators. Therefore, the presented algorithm can reduce the estimation bias caused
by the superposition of the positive and negative frequency spectrum components of a
real sinusoid. In future research, we will focus on improving the estimation accuracy for
extremely small and large values of signal frequency.
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