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Abstract: Geographical object classification and information extraction is an important topic for the
construction of 3D virtual reality and digital twin cities in urban areas. However, the majority of
current multi-target classification of urban scenes uses only a single source data (optical remote sensing
images or airborne laser scanning (ALS) point clouds), which is limited by the restricted information
of the data source itself. In order to make full use of the information carried by multiple data sources,
we often need to set more parameters as well as algorithmic steps. To address the above issues, we
compared and analyzed the object classification methods based on data fusion of airborne LiDAR
point clouds and optical remote sensing images, systematically. Firstly, the features were extracted and
determined from airborne LiDAR point clouds and high-resolution optical images. Then, some key
feature sets were selected and were composed of median absolute deviation of elevation, normalized
elevation values, texture features, normal vectors, etc. The feature sets were fed into various classifiers,
such as random forest (RF), decision tree (DT), and support vector machines (SVM). Thirdly, the
suitable feature sets with appropriate dimensionality were composed, and the point clouds were
classified into four categories, such as trees (Tr), houses and buildings (Ho), low-growing vegetation
(Gr), and impervious surfaces (Is). Finally, the single data source and multiple data sources, the
crucial feature sets and their roles, and the resultant accuracy of different classifier models were
compared and analyzed. Under the conditions of different experimental regions, sampling proportion
parameters and machine learning models, the results showed that: (1) the overall classification
accuracy obtained by the feature-level data fusion method was 76.2% compared with the results of
only a single data source, which could improve the overall classification accuracy by more than 2%;
(2) the accuracy of the four classes in the urban scenes can reach 88.5% (Is), 76.7% (Gr), 87.2% (Tr),
and 88.3% (Ho), respectively, while the overall classification accuracy can reach 87.6% with optimal
sampling parameters and random forest classifiers; (3) the RF classifier outperforms DT and SVM for
the same sample conditions. In this paper, the method based on ALS point clouds and image data
fusion can accurately classify multiple targets in urban scenes, which can provide technical support
for 3D scene reconstruction and digital twin cities in complex geospatial environments.

Keywords: airborne LiDAR point cloud; feature extraction; point cloud classification; machine
learning; feature fusion

1. Introduction

For the needs of urban 3D (three dimensional) scene modeling, digital twin city and
urban resource management, the accurate classification and extraction of feature objects
in urban areas is a key issue that needs to be addressed urgently. Airborne LiDAR (Light
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Detection And Ranging) technology is widely used in the military, agriculture, mapping,
and other fields [1], and can directly and quickly obtain high-precision 3D information
on surface objects in urban areas, which has become an important remote sensing data
source and is now widely used in the fields of urban 3D reconstruction and urban road
detection and planning [2–5]. Remote sensing image data are also an important data source
for feature classification and extraction, and many scholars use images for building and
road extraction [6–8].

However, the current objective classification in urban scenes usually uses a single
data source or homogenous data, which has the advantage that the homogenous data
have the same information storage structure and can be fused with the source data during
the data pre-processing stage. However, urban areas are usually a complex and dynamic
environment, and this complexity makes it difficult to meet all the requirements of a single
sensor in remote sensing data for urban applications [9]. Therefore, a single sensor is not
sufficient to provide all the important information regarding feature extraction and classifi-
cation purposes [10]. Some scholars just extract features from LiDAR data: for example,
Song et al. [11] describe a study which evaluated the utilization of LiDAR data in land
cover classification. By transforming the point cloud into a grid format and categorizing
the intensity data obtained into four groups—grass, trees, asphalt pavement, and house
roofs—this method’s key is to identify objects based on reflection intensity. Bellakaout
et al. [12] mentioned a classification method that uses a single-echo LIDAR for contour
identification of ground objects: upper contour, lower contour, uniform, and non-uniform
surfaces, which in turn extracts soil, vegetation, buildings and roads. Zhang et al. [13] used
a surface growth method to cluster point cloud data, object-oriented construction of feature
vectors, and classification of point clouds based on SVM (support vector machine).

Through the above-mentioned scholars’ studies, it is easy to find that, due to the
complexity of airborne LiDAR point cloud data due to its scene and irregular spatial
distribution, segmentation and classification using only LiDAR data in multi-objective
classification in urban areas are prone to misclassification, which can lead to problems such
as features that are similar in 3D morphology not being identified. In order to obtain more
accurate objective classification results, these scholars usually optimize their algorithms
or design more complex algorithms based on the actual data, which is the limitation of a
single data source. Therefore, some scholars classify point cloud data or remote sensing
image data with the aid of other data sources. Zhou et al. [14] used super voxels as the basic
unit to fuse airborne LiDAR point clouds and DIM (digital intensity models) point clouds
at the feature level using different weights, and used an improved binary TrAdaboost
classifier to classify the point clouds into three categories: building, ground, and vegetation.
Guo et al. [15] proposed a multi-source framework by combining multi-echo LiDAR data,
full-waveform LiDAR data and multispectral image data to classify dense urban areas. Su
et al. [16] extracted the elevation information from LiDAR data to participate and assist in
urban land cover classification from remote sensing images, which effectively increased
the production accuracy of buildings. Cheng et al. [17] used spectral information to first
separate vegetation and then elevation information to separate surface roads and buildings.
Suarez et al. [18] investigated the combined use of aerial photography and airborne LiDAR
for more accurate classification and tree height estimation in forestry. Wang and Li. [19]
used the density of corner points (DCP) in spectral images to quantify spatial features,
dual-time very high resolution (VHR) satellite data and airborne LiDAR data to generate
dual-time height and corner features, and combined both data to assess building damage
after a disaster. Awrangjeb et al. [20] used color and texture information to classify point
clouds into broad categories by effectively integrating LiDAR data and multispectral
orthophotos, and then achieved automatic extraction of building roofs by area growth. S. Y.
Sadjadi and S. Persian [21] used machine learning algorithms for HS- and LiDAR-fused
data to achieve accurate extraction of buildings at the pixel level. In addition, it has been
shown in the studies of many scholars that the classification accuracy of features can be
effectively improved by using methods that fuse different data [22–25]. However, most of
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the above scholars’ ways of utilizing multi-source data are to first filter one kind of data
based on some unique information (color information of images or elevation information
of point cloud data, etc.) of another kind of data, and then classify the filtered data into
objectives, and they do not make full use of the differences between the information of
multi-source data.

To make fuller use of the information from multiple sources to improve the accuracy of
objective classification, scholars often choose machine learning or deep learning methods;
the difficulty of deep learning lies in the adjustment of numerous parameters and the time
consumption required to train them and the need for high-end hardware platform support,
so this paper chooses the more efficient and convenient machine learning method. In terms
of which machine learning classifier to choose, scholars often need to choose the type of
classifier according to the actual situation. Currently, the use of 3D point clouds for urban
remote sensing information extraction using machine learning methods has become a popu-
lar area of research, which can use the features extracted from 3D point clouds for automatic
learning of mathematical models and rely on feature information to effectively discriminate
or classify different objects in complex urban areas. In terms of the use of machine models,
different scholars have chosen different classifier methods including DT (decision tree),
RF (random forest), SVM, XGBoost (eXtreme gradient boosting) [26–30], etc. Du et al. [31]
extract building classes and vehicle classes in urban areas by DT model, but it requires
manual setting of constraints on the features and has certain requirements on point cloud
density and area topography. Sukhanov et al. [18] present an ensemble-based approach
based on MS (multi-spectra), LiDAR, HS (high-spectra), and RGB imagery for urban land
use and land cover classification. This approach contains RF and Gradient Boosting Ma-
chine (GBM) classifiers and convolutional neural networks (CNNs). Xu et al. [32] converted
LiDAR point clouds into 2D raster data and combined them with image data to extract
various features for classification objects and selected a SVM classifier for urban feature
classification. Dong. [33] introduced SVM into point cloud and image fusion classification to
effectively reduce the misclassification rate of trees and buildings. Hamid et al. [34] used the
Improved Vector Machine for the classification of clustered bodies. Based on LiDAR point
cloud data and color information of the images, Hu et al. [35] classified the point clouds
using a random forest model through a method based on fusion of multi-basis element
feature vectors. However, the above-mentioned scholars’ studies generally only focus on
single or two terrain targets for classification extraction, while for the processing of multiple
terrain targets, the selection and combination of features often needs to be optimized.

The classification performance of a classifier is limited by various aspects, and the
selection and combination of features is the most critical part of it. The availability of many
features (e.g., spectral, spatial, morphological, geometric, and textural features) makes
the exact selection of features difficult. Second, too many feature dimensions make the
training time of the classifier longer and may lead to dimensional disasters, so feature
selection methods are necessary [36], and some scholars believe that a reasonable selection
of fused features can provide better performance to the classifier [37]. Chehata et al. [38]
summarized 21 common features of 3D point cloud data.

In summary, for the problem of how to improve the accuracy of multi-place object
classification in urban scenes, in this study we used machine learning for classification to
improve the classification extraction accuracy of urban scene objects based on airborne LiDAR
point clouds and high-resolution optical remote sensing images by fusing the 2D spectral and
textural information of images and 3D information and spatial structure information of point
clouds through feature extraction. It also demonstrates the following points and objectives in
this study through three aspects (data source, selection of feature set and classifier): (1) The
superiority of multi-source data fusion compared to single-source data for the extraction
of multi-object targets in urban scenes, (2) The importance of suitable classifiers, (3) The
necessity of optimizing feature combinations; also, it analyzes the sampling ratio parameters
as well as the classifier optimization parameters., aiming to provide a general and flexible
framework for the multi-classification problem in urban scenes.



Electronics 2022, 11, 3041 4 of 17

2. Materials and Methods
2.1. Technical Process

In this study, based on airborne LiDAR point cloud and high-resolution optical image
data, we studied feature extraction and fusion of 2D–3D information for application to
feature object classification extraction of complex urban areas. The technical route process
of this paper mainly includes four main steps: extraction and fusion of features and
construction of feature sets, optimization of feature combinations, extraction of samples,
establishment of classification models and classification results. The detailed technical
flowchart of this study is shown in Figure 1. It mainly includes: (1) Calculating the features
of optical images and LiDAR point clouds, combining them into different feature sets,
and comparing and analyzing the classification results of single-source and multi-source.
(2) Optimizing the feature sets so that they can reduce time consumption while ensuring
accuracy. (3) A certain sample size is taken as the input data of the machine learning model,
and the sensitivity of the sampling proportion parameter is analyzed to further improve
the classification accuracy. (4) To explore the effect of classifier selection on the classification
results, experiments are conducted using different classifiers.
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2.2. Feature Extraction and Fusion from Airborne LiDAR Point Clouds and Optical Images

In this study, feature extraction is performed for both airborne LiDAR point cloud
and optical image data separately, and feature set F_1 is constructed in the form of point
cloud features as the main feature and optical image features as the supplementary feature,
i.e., the feature fusion process of the two data sources. In the feature set F_1, all of them
are based on point neighborhood statistical features except for the normalized elevation
features (Normalized Height,), intensity, normalized green-red difference index (NGRDI),
and texture features. The calculation methods of each feature and their descriptions are
shown in Table 1.
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Table 1. Statistical results of point cloud data information.

Features Calculation Methods Descriptions

Normalized elevation values Nh = H − HDTM
Elevation values of features after

eliminating the effect of slope

Elevation Skewness Hskw =
∑n

1(Nhi−Nh)
3

[∑n
1(Nhi−Nh)

3
]
3/2

Measure of the direction and degree of
skewness of the distribution of elevation

statistics

Elevation kurtosis Hkur =
∑n

1(Nhi−Nh)
4

[∑n
1(Nhi−Nh)

3
]
2

A measure of outliers in elevation
statistics

Absolute deviation of median elevation MAD_1 = median(|Nhi −median(Nh)|)
Robust measures of sample variability in

elevation statistics

Absolute deviation of mean elevation MAD_2 = median
(∣∣Nhi − Nh

∣∣) Median of the difference between the
midpoint of elevation statistics and the

mean of elevation

Normalized Red-Green Difference Index NGRDI = G−R
G+R

Indicators of vegetation and
non-vegetation

Echo intensity value In Echo intensity value
The angle between the normal vector and

the vertical direction Sn
The angle between the normal vector and

the vertical direction

Coefficient of variation of texture features GLCM_V = ∑ (p(n)−m)2

n−1
M is the average DN value of the moving

window

Texture feature angle second order
moment GLCM_ASM = ∑

i
∑
j
[p(n)]2

Describes the uniformity of image
grayscale distribution and texture

roughness

Texture feature information entropy GLCM_ENT = −∑
i

∑
j

p(n) log p(n) Expresses the amount of information the
image has

Homogeneity of textural features GLCM_H = ∑
i

∑
j

((
1

1+(i−j)2

)
p(n)

∑i ∑j p(n)

) Intensity and amplitude of the
continuous variation of the gray level of

the image element and its neighbors

In Table 1, The DTM (Digital Terrain Model, DTM) in the normalized elevation feature
formulation is constructed by the fabric simulation algorithm proposed by Zhang et al. [39].
The domain of points involves the nearest neighbor query, and the KD (K-dimension)
tree [40,41] is used in this study to improve the search efficiency of the nearest neighbor
points. Texture features are extracted by the Gray Level Co-occurrence Matrix (GLCM)
method in this study. The concept of texture originates from the feedback of human skin
to the smoothness and roughness of the object surface, and the Gray Level Co-occurrence
Matrix is a classical statistical method to describe the texture of a region, and it is still
widely used in the texture feature extraction of high-resolution remote sensing images; the
size of the window to obtain the G Gray-level Co-occurrence Matrix is 5 × 5 pixels, the
step size is 1, and the directions are selected as 0◦, 45◦, 90◦, 135◦; The average value of the
four directions is taken as the value of the relevant feature, and if there is an infinite value,
the window size is automatically expanded gradually until the feature value is a valid and
normal value.

2.3. Feature Sets Selection and Determination by PCA and Artificial Knowledge

Five feature sets are created in this study using various strategies to examine the impact
of various selection techniques on the overall classification accuracy. First, F_1 is the feature
set created by combining all of the retrieved features. The feature set F_1 contains a total of
12 features: {Nh,Hskw,Hkur,In,Sn,NGRDI,GLCM_V,GLCM_ASM,GLCM_ENT,GLCM_H,
MAD_1,MAD_2}. Combine the features extracted from the point cloud into feature set
F_2: {Nh,Hskw,Hkur,In,Sn,MAD_1, MAD _2} and combining features extracted from opti-
cal images into feature set F_3: {NGRDI,GLCM_V,GLCM_ASM,GLCM_ENT,GLCM_H}.
Different features in the feature set F_1 contribute to the classification results to varying
degrees of importance; some of these features can be substituted for one another during
the classification process, while others cannot; however, these features’ relative impor-
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tance during the classification process varies greatly. Reducing the dimensionality of the
feature set can significantly shorten the training time for the classifier while maintain-
ing classification accuracy. By analyzing the features in feature set F_1 and removing
some redundant features, we obtain a feature set F_4 with proper dimensionality and
apply this feature set to the classification process of the overall point cloud. In this study,
the importance ranking of each feature is obtained by the method of principal compo-
nent analysis; through the order of this ranking, the features are added to the feature
set one by one, and the overall classification accuracy obtained by training the model
under the corresponding feature set is obtained. The change curve of the overall clas-
sification accuracy after adding each feature is analyzed, and the feature set obtained
by selecting a suitable combination of features is used as F_4. Finally, the features ex-
tracted in this study are selected based on expert experience to obtain the feature set F_5:
{Nh,NGRDI,GLCM_V,GLCM_ASM,GLCM_ENT,GLCM_H,In}.

2.4. Classifier Models of Object Classification in Urban Areas

In the classification as well as extraction of data, the commonly used classifiers are
Logistic Regression, K-nearest neighbor, Decision Tree, Support Vector Machine, Plain
Bayesian, Random Forest, Gradient Boosting, etc. In classifying point clouds in urban areas,
this study needed to classify four objectives, which is a multi-classification problem, and the
data sets were not linear with each other. The DT model does not require pre-processing of
data such as normalization, and its training time cost is low, which is more suitable for the
point cloud multi-classification problem in urban areas. While random forest [42] uses DT
as the base classifier, which is an integrated machine learning with strong generalization
ability and can be used for high-dimensional data classification processing, SVM uses
kernel function to high-dimensional space. Unlike the above two classifiers, SVM is a
small sample learning method with a solid theoretical foundation. Based on the respective
advantages of the above models, DT, RF and SVM were finally selected as the classifiers for
point clouds in urban areas in this study.

3. Results
3.1. Experimental Data Sources

The airborne LiDAR point cloud for the experiments in this study was from Honolulu,
Hawaii, with an area of 796 m × 703 m, a density of 3.42 points/m2, and a total of
1914002 points, divided into four categories: tree category (Tr), house and building category
(Ho), impervious surface category (Is), and low-growing vegetation category (Gr); the
resolution of the optical image was 0.28 m, and the wavelength information was in the
visible red, green, and blue bands, as shown in Figure 2.
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As illustrated in Figure 2, the airborne LiDAR point clouds were separated into four
sections, with A1 and A2 serving as training regions for sample extraction and A3 and
A4 serving as testing regions. The sample set was randomly selected from the training
area by a certain percentage; different classifiers were used to train the sample set, and
the classification results obtained from the classifiers were statistically and analytically
compared with the real categories of the point clouds in the test area, and the accuracy of
the classification results was evaluated by using the confusion matrix. The four colors used
to represent the four feature categories in the top view of the point cloud were green for
trees, blue for buildings, red for impervious surfaces, and black for low vegetation.

3.2. Comparisons between Different Data Sources

Two single-source feature subsets F_2 and F_3 represented the features from the
airborne LiDAR point clouds and the features from the high-resolution optical images,
respectively. Random Forest was chosen as the classifier, 10% of the data in the sample
area was extracted as the training data, F_1, F_2 and F_3 were used for the training of the
classifier, and the point clouds in the test area A3 were used as the test data set for object
classification and evaluation, and the classification results and classification accuracy based
on different data sources were statistically obtained, as well as the respective classification
effect plots shown in Figure 3, where (a)~(d) are the top views of the point clouds, and
(e)~(h) are the corresponding side views of the point clouds.
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The classification results using a single data source were not as excellent as the classifi-
cation results utilizing fused data sources, as shown by the classification results of each
category of features and the total classification accuracy in Table 2. In terms of the accuracy
and recall rates of the four feature categories, the classification results using the F_1 feature
set were better than those using the F_2 feature set or the F_3 feature set, except for the low
vegetation category for which the recall rate of the F_1 feature set was slightly lower than
that of the F_2 feature set, including the overall accuracy index. Figure 3c,g shows that the
vegetation index features and texture features in the F_3 feature set had a certain role in the
classification extraction of the building class, and the contours of the extracted buildings
were more obvious, but there was a serious pretzel phenomenon; among the classification
results of the two single-source data, the classification results using the F_3 feature set from
the image data source were the worst.
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Table 2. Classification results of each type of objects with different feature subsets from different data
sources.

Precision Recall OA

Feature Sets Is Gr Tr Ho Is Gr Tr Ho

F_1 76.7% 76.3% 80.7% 70.7% 77.2% 10.3% 92.3% 87.0% 76.2%
F_2 76.2% 53.3% 80.6% 66.5% 76.0% 10.8% 88.1% 84.9% 74.2%
F_3 48.7% 24.3% 42.7% 49.6% 55.2% 3.6% 47.4% 50.1% 46.9%

3.3. Combination and Optimization of Features

In the process of classifying a test region, the more feature dimensions in the feature
set used is not the better. On the contrary, a reasonable selection of features and their
dimensions can guarantee the classification accuracy to a certain extent and shorten the
classifier’s training period.

The RF model is chosen as the classifier. By randomly selecting 10% of the data from the
training area as training data and using 5-fold cross-validation, the RF model is obtained to
classify the training area. The OA obtained by the PCA method is shown in Figure 4. Features
one to seven are {MAD_1,MAD_2}, {GLCM_V,GLCM_ASM,GLCM_ENT,GLCM_H}, {In},
{NGRDI}, {Hskw,Hkur}, {Sn}, {Nh}, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 18 
 

 

overall classification accuracy, and effectively reduces the feature dimensionality. The 
sampling proportion is now set to 30%, and the feature sets F_4 are selected for test areas 
A3 and A4 respectively using the above sequential stepwise selection method, and their 
respective feature sets F_4 are obtained as 
{ MAD_1 , MAD_2 , I , GLCM_V , GLCM_ASM , GLCM_ENT , GLCM_H } and 
{MAD_1,MAD_2,S ,I ,GLCM_V,GLCM_ASM,GLCM_ENT,GLCM_H}, respectively. After com-
parison, the overall classification accuracy of these two regions with feature set F_4 is 
75.8% and 82.6%, respectively, which is only 0.67% and 0.81% lower than the overall 
classification accuracy obtained with the total feature set F_1 (Figure 5). The overall clas-
sification accuracy decreases slightly when the last feature is added to the feature subset 
c{MAD_1 ,MAD_2 , I ,GLCM_V ,GLCM_ASM ,GLCM_ENT ,GLCM_H ,S ,N ,H ,H }, which 
shows that more dimensions of features in the feature set is not for the better. In addi-
tion, the increase in the overall classification accuracy after adding more features to the 
feature set F_4 is almost negligible, and the time to train the classifier increases accord-
ingly. While using feature set F_5 as the training sample of the RF classifier, the overall 
classification accuracy obtained on the A3 test area is 74.0%, which is lower than the re-
sult of feature set F_4. 

 
Figure 4. Overall classification accuracy after adding features according to PCA ranking. 

  
(a) A3 (b) A4 

 
Figure 5. Overall classification accuracy after adding features according to PCA ranking for test 
area A3, A4. 

3.4. Effect of Different Classifiers on Classification Results 
Under the same parameter conditions, the classification effect of different classifiers 

for the same test area may be very different. In this study, we used three different classi-
fiers (RF,DT,SVM) to classify the point clouds in test areas A3 and A4, and obtain the 
precision and recall rates, and the overall classification accuracy of two types of features, 

70.0%
72.0%
74.0%
76.0%
78.0%
80.0%
82.0%
84.0%
86.0%

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ

Figure 4. Overall classification accuracy after adding features according to PCA ranking.

According to Figure 4, the feature set F_4 of proper dimensionality obtained is
{MAD_1, MAD _2,GLCM_V,GLCM_ASM,GLCM_ENT,GLCM_H,In,NGRDI}, which cor-
responds to an overall classification accuracy of 84.5%, which is only 0.5% lower than the
highest overall classification accuracy, and effectively reduces the feature dimensionality.
The sampling proportion is now set to 30%, and the feature sets F_4 are selected for test ar-
eas A3 and A4 respectively using the above sequential stepwise selection method, and their
respective feature sets F_4 are obtained as {MAD_1,MAD_2,In,GLCM_V,GLCM_ASM,
GLCM_ENT,GLCM_H} and {MAD_1,MAD_2,Sn,In,GLCM_V,GLCM_ASM,
GLCM_ENT,GLCM_H}, respectively. After comparison, the overall classification accuracy
of these two regions with feature set F_4 is 75.8% and 82.6%, respectively, which is only
0.67% and 0.81% lower than the overall classification accuracy obtained with the total
feature set F_1 (Figure 5). The overall classification accuracy decreases slightly when the
last feature is added to the feature subset c{MAD_1,MAD_2,In,GLCM_V,GLCM_ASM,
GLCM_ENT,GLCM_H,Sn,Nh,Hskw,Hkur}, which shows that more dimensions of features
in the feature set is not for the better. In addition, the increase in the overall classification
accuracy after adding more features to the feature set F_4 is almost negligible, and the
time to train the classifier increases accordingly. While using feature set F_5 as the training
sample of the RF classifier, the overall classification accuracy obtained on the A3 test area is
74.0%, which is lower than the result of feature set F_4.
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Figure 5. Overall classification accuracy after adding features according to PCA ranking for test area
A3, A4.

3.4. Effect of Different Classifiers on Classification Results

Under the same parameter conditions, the classification effect of different classifiers
for the same test area may be very different. In this study, we used three different classifiers
(RF,DT,SVM) to classify the point clouds in test areas A3 and A4, and obtain the precision
and recall rates, and the overall classification accuracy of two types of features, namely
trees and buildings, by counting the classification results, as shown in Table 3, Figures 6
and 7. The extraction rate of the sample data was 10%, and the classification feature set
used is F_1.
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Figure 6. Classification effect of different models in training area A3: (a,d) are the classification results
of the RF model from a top and side view, respectively; (b,e) are the classification results of the DT
model from a top and side view, respectively; (c,f) are the classification results of the SVM model
from a top and side view, respectively.
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Figure 7. Classification results of different models in training area A4: (a,d) are the classification
results of the RF model from a top and side view, respectively; (b,e) are the classification results of
the DT model from a top and side view, respectively; (c,f) are the classification results of the SVM
model from a top and side view, respectively.

Table 3. Accuracy table of the classification results of these three different models.

Random Forest Decision Tree Support Vector Machine

Precision Recall OA Precision Recall OA Precision Recall OA

A3
Tr 80.7% 92.3%

76.2%
76.0% 90.8%

74.5%
83.0% 87.9%

68.6%Ho 70.7% 87.0% 67.3% 83.8% 59.0% 62.0%

A4
Tr 82.9% 91.1%

83.3%
79.3% 90.1%

80.8%
85.6% 83.3%

74.6%Ho 79.7% 83.1% 76.8% 80.6% 72.0% 60.2%

Figure 6 and (a) to (c) in Figure 7 show the top views of the point clouds in different
classifiers, and (d) to (f) show the corresponding side views.

According to the results in Table 3, for test areas A3 and A4, the overall classification
accuracy obtained using the RF model was the highest, 76.2% and 83.3%, respectively;
the DT was the second highest, 74.5% and 80.8%, respectively; and the SVM was the
worst, 68.6% and 74.6%, respectively. Combining the results in Table 3, Figures 6 and 7,
the classification results of RF and DT are significantly better than the SVM model, and
the RF classifier is more practical than the other two classifiers. The SVM, due to its
own characteristics, not only has the phenomenon of overfitting, but also has a more
serious pretzel phenomenon; the classification accuracy obtained using the sample data set
(sampling proportion of 30%) as the test data are 76.4%, while the classification accuracy
obtained using the test area A3 as the test data are 69.8%, as shown in Figure 6c,f and
Figure 7c,f. The feature classification results of the SVM model are poorer than the other
two classifiers, while the RF, as an integrated classifier with DT as the core, and in the
experimental results of this study, is slightly better in terms of overall classification accuracy
than the DT. It is worth noting that although the overall classification accuracy of the RF
is the highest, the recall rates of both tree points and building points are lower than the
results of the DT according to the accuracy analysis data in Table 3.

From Figures 6 and 7, it can be seen that there are some rather special areas in the
data species of this study: point clouds of other categories are included inside the building.
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In this study, we find a more typical special region S_1 and S_2 (red box in Figure 2) for
each of the test areas A3 and A4. The results of the three classifiers are compared, and
Figures 8 and 9 are obtained: it is obvious that both the RF and DT classifiers have better
classification results, and can effectively separate the tree points and impervious surface
points from the building itself, while the SVM classifier has a significant and large number
of misclassified points in this area.
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4. Discussion
4.1. Sensitivity Analysis of the Proportion of Sample Sets

In the process of building classifiers using sample sets, a sample set with too small
data volume may lead to overfitting; while a sample set with higher data volume will lead
to higher classification accuracy, it will definitely take a longer time to build classifiers,
especially for nonlinear classifiers, as the huge computation makes it difficult to build
classifiers quickly. In this study, we used 5% as the step size, the sample set was extracted
from 5% to 100%, and the extraction area was still the training area A1 and A2; then, we
used the K-fold validation (K = 5) method to analyze the impact of different ratios on the
classification results, and used the overall classification accuracy as the index to roughly
estimate the appropriate extraction ratio range, and used it for the subsequent experiments
to improve classification accuracy.

As can be seen from Figure 10, the sampling proportion in the process of constructing
the sample set shows a positive correlation with the overall classification accuracy, and the
sampling proportion at 30% can retain a certain amount of classification accuracy while
achieving an overall classification accuracy of 86.4%, which is only 1% lower than the
highest overall classification accuracy. Using A4 as the test dataset, the overall classification
accuracy of the 30% sampling proportion in the actual classification was verified to be
84.1%, which was only 0.05% lower than the highest overall classification accuracy obtained
by using 100% sampling proportion.



Electronics 2022, 11, 3041 13 of 17

Electronics 2022, 11, x FOR PEER REVIEW 13 of 18 
 

 

4. Discussion 
4.1. Sensitivity Analysis of the Proportion of Sample Sets 

In the process of building classifiers using sample sets, a sample set with too small 
data volume may lead to overfitting; while a sample set with higher data volume will 
lead to higher classification accuracy, it will definitely take a longer time to build classi-
fiers, especially for nonlinear classifiers, as the huge computation makes it difficult to 
build classifiers quickly. In this study, we used 5% as the step size, the sample set was 
extracted from 5% to 100%, and the extraction area was still the training area A1 and A2; 
then, we used the K-fold validation (K = 5) method to analyze the impact of different ra-
tios on the classification results, and used the overall classification accuracy as the index 
to roughly estimate the appropriate extraction ratio range, and used it for the subse-
quent experiments to improve classification accuracy. 

As can be seen from Figure 10, the sampling proportion in the process of construct-
ing the sample set shows a positive correlation with the overall classification accuracy, 
and the sampling proportion at 30% can retain a certain amount of classification accura-
cy while achieving an overall classification accuracy of 86.4%, which is only 1% lower 
than the highest overall classification accuracy. Using A4 as the test dataset, the overall 
classification accuracy of the 30% sampling proportion in the actual classification was 
verified to be 84.1%, which was only 0.05% lower than the highest overall classification 
accuracy obtained by using 100% sampling proportion. 

According to the above classification results, the feature set F_1 was used as the 
classification feature set to participate in the training, and the classifier was chosen as RF 
with a sample set extraction ratio of 30% to classify and count the overall point clouds; 
the final overall classification accuracy was 84.3%, among which the overall classifica-
tion accuracy of the point clouds within the training area A2 was the highest at 91.5%; 
the overall classification accuracy of the training area A1 ranked second. The overall 
classification accuracy of the point clouds in the training area A2 was the highest, at 
91.5%. Also, we can note that with the same classifier (RF) and sampling ratio (30%), the 
overall classification accuracy of the whole point cloud is 87.6% and the accuracy of the 
four objects is 88.5% (Is), 76.7% (Gr), 87.2% (Tr) and 88.3% (Ho) after training the classi-
fication model using the feature set F_4 obtained through the A4 region. It also shows 
that the selection of features is very necessary. 

 
Figure 10. The relationship between sampling rate and overall classification accuracy. 

  

84.8%

85.0%

85.4%
85.8%

85.9%
86.4%

86.4%

86.6%

86.6%

86.6%

86.7%

86.9%

86.9%

86.9%

87.0%

87.0%

87.0%

87.2%

87.3%

87.4%

84%

85%

85%

86%

86%

87%

87%

88%

88%

5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

OA

Sampling ratio

Figure 10. The relationship between sampling rate and overall classification accuracy.

According to the above classification results, the feature set F_1 was used as the
classification feature set to participate in the training, and the classifier was chosen as RF
with a sample set extraction ratio of 30% to classify and count the overall point clouds;
the final overall classification accuracy was 84.3%, among which the overall classification
accuracy of the point clouds within the training area A2 was the highest at 91.5%; the overall
classification accuracy of the training area A1 ranked second. The overall classification
accuracy of the point clouds in the training area A2 was the highest, at 91.5%. Also, we can
note that with the same classifier (RF) and sampling ratio (30%), the overall classification
accuracy of the whole point cloud is 87.6% and the accuracy of the four objects is 88.5%
(Is), 76.7% (Gr), 87.2% (Tr) and 88.3% (Ho) after training the classification model using the
feature set F_4 obtained through the A4 region. It also shows that the selection of features
is very necessary.

4.2. Differences Analysis between Selected Feature Sets

Different types of features have different roles and respective degrees of importance
in the classification process of different regions, and there is a mutual suppression effect
among features of the same type. The experimental results show that the five elevation-
related features of MAD_1,MAD_2,Nh,Hskw,Hkur have the relationship of mutual influence,
and the MAD_1,MAD_2 features can suppress the improvement of the other three features
in classification accuracy.

The MAD_1,MAD_2 features are classified based on the neighborhood statistics of
normalized elevation, which can effectively classify features with a certain elevation such
as buildings and trees. The features show the direction of the normal vector, which can
effectively distinguish between flat and non-flat features, so the features contribute a more
important role in distinguishing buildings and trees. Texture features can obtain texture infor-
mation and help machine learning models to classify features with large textural differences.

Figures 5 and 6 above show that in feature set F_1, the features that have the greatest
influence on the classification results are MAD_1,MAD_2 features; for the classification
results in different sources, the features with the second highest importance differ, for
regions A1 and A2 corresponding to texture features, region A3 corresponding to intensity
features In, and region A4 corresponding to normal vectors Sn. The four regions are
selected step by step according to the order to get the feature set F_4 which all contain
MAD_1,MAD_2,GLCM_V,GLCM_ASM,GLCM_ENT,GLCM_H,In features.

In Figure 11, features 1 to 7 are, respectively, {MAD_1,MAD_2};Sn;{GLCM_V,
GLCM_ASM,GLCM_ENT,GLCM_H};In;Nh;{Hskw,Hkur};NGRDI. As seen in Figure 11,
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in the first round of conducting the first feature selection, five features related to elevation
show different degrees of importance, and features occupy the first and second impor-
tance rankings, respectively, and the overall classification accuracy obtained from other
features is significantly different, and the overall classification accuracies obtained by using
them as feature sets are 67.8% and 58.1%, respectively; these two types of features are
related to elevation, and the Nh features are normalized elevation values, while the feature
{MAD_1,MAD_2} are based on the neighborhood elevation statistics. Moreover, according
to the feature selection process in the later rounds, it can be found that the degree of
improvement of the Nh features on the overall classification accuracy is always inferior
to that of In,Sn,{GLCM_V,GLCM_ASM,GLCM_ENT,GLCM_H} in the case that there are
already {MAD_1,MAD_2} features in the feature set; in the other two features Hskw,Hkur
related to elevation, the improvement of the overall classification accuracy is even weaker.
With the other features whose attributes do not come from the elevation and its statistics,
adding them to the feature set can instead effectively improve the overall classification
accuracy. For example, the feature with the lowest improvement in overall classification
accuracy in the first round was selected in feature set F_4 because it ranked second in the
second round and first in the third round. The same performance is also observed for
feature Sn, which ranked fourth in the first round and first in the second round.
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Figure 11. Detailed data for each round of feature selection in the A3 region.

4.3. AdaBoost (Adaptive Boosting) Classifier and Sample Imbalance Problem

According to the results in Table 2, the recall of feature Gr is obviously too low because
the sample size of the feature is too small and there is an imbalance problem between the
feature and other samples, while the integrated classifier AdaBoost based on augmented
learning can effectively solve the sample imbalance problem. The main idea of the AdaBoost
classifier is to use a multi-round iterative approach, where each iteration of training will
update the sample weights based on the previous classification. The main idea of the
AdaBoost classifier is to use multiple iterations, where each iteration updates the weights of
the samples based on the previous classification results and adds new basic classifiers until
a predefined small enough error rate or a pre-specified maximum number of iterations
is reached. In this paper, the DT classifier is used as the basic classifier, the number of
iterations is set to 30, Bayes is used to optimize the training process of this classifier, and the
final feature Gr recall obtained with the DT classifier with single-source and multi-source
data as training data are shown in Table 4. Moreover, the recall rate of Gr features obtained
using fused data + AdaBoost is 40.1% under the condition that the sampling proportion
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parameter is 30%, which is much higher than the corresponding value of 17.1% obtained
using optical image data + AdaBoost, thus demonstrating again that the use of data feature
fusion can effectively improve the classification accuracy of small samples. On the other
hand, under the condition of two data sources, the AdaBoost classifier can improve the
recall rate of Gr features from the optical image source data by 8.6%, which is about double,
indicating that the reinforcement learning of the AdaBoost classifier can also solve the
sample size imbalance problem; however, in the fused data source, it decreases by 0.4%
instead, thus showing that the use of feature fusion is more important than the use of a
more advanced classifier.

Table 4. Recall of Feature Gr under different combination schemes.

Method
F_1 F_3

Precision Recall OA Precision Recall OA

DT 47.90% 8.50% 50.40% 81.70% 40.50% 83.30%
AdaBoost 48.30% 17.10% 52.50% 85.90% 40.10% 86.20%

4.4. Limitations of the Proposed Method

In this paper, optical image data of 2D structure types and point cloud data of 3D
structure types are fused in the feature fusion stage, and then feature information is
extracted from different dimensions to increase the accuracy of classification; however,
some points that overlap in vertical direction have some shared features, which leads to
some classification errors. Secondly, there are other problems in this study: the unbalanced
sample size of different features is the main reason for misclassification of features with
small sample size. Due to the complexity of urban features, the recall rate of features with a
smaller percentage is not high. We have tried to train the classifier model using the same
sample size, but the final accuracy obtained is not high. In addition, the small density of
LiDAR point clouds caused some certain point clouds not to be classified correctly. Due to
the small point cloud density of the airborne LiDAR in this paper, and the incomplete shape
of residential buildings under lush tree canopies, and even the existence of point cloud
regions where the boundaries of the buildings and the tree canopies are indistinguishable,
some difficulties were encountered in the classification process of the classifier.

5. Conclusions

In this study, LiDAR point cloud data and high-resolution optical image data were
used as research objects, and feature sets were constructed by analyzing their respective data
characteristics and extracting their features, using single-source feature sets as well as multi-
source feature sets to train three models of RF, DT, and SVM, respectively, using the trained
models to classify the point cloud data for the common urban areas of trees, buildings,
impervious surfaces. The four types of features, namely trees, buildings, impervious
surfaces, and low vegetation, were classified using the trained models. The following
conclusions were obtained during the experiments: under the conditions of using the
same number of samples and the same model, the effect of machine learning classification
based on multi-source data was better than that of single-source data; the experiments on
feature selection showed that some features play a similar role in the classification process
of point clouds; in addition, the classification results of different classifiers vary greatly:
the best result was obtained by the random forest classifier, while the SVM classifier had
the worst result. With the increase in sample size, the overall classification accuracy of the
three classifiers also showed a positive correlation growth, and from the perspective of
classification accuracy and time consumption, the random forest model was more suitable
for point cloud data classification in this study.

In the representation of point cloud data, there are certain differences between urban
feature types, especially between spatial distributions, while image data has rich texture
information and spectral information that point cloud data does not have, and the fusion
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of the two features can effectively improve the classification accuracy. If more point cloud
features are added that are specific to different feature types, or richer multispectral features
are added, the accuracy of point cloud classification may be further improved, and finer feature
extraction can be performed. With the development of technology, point cloud classification
methods under the fusion of more multi-source data will be explored in future work.
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