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Abstract: Effective access control techniques are in demand, as electronically assisted healthcare 
services require the patient’s sensitive health records. In emergency situations, where the patient’s 
well-being is jeopardized, different healthcare actors associated with emergency cases should be 
granted permission to access Electronic Health Records (EHRs) of patients. The research objective 
of our study is to develop machine learning techniques based on patients’ time sequential health 
metrics and integrate them with an Attribute Based Access Control (ABAC) mechanism. We pro-
pose an ABAC mechanism that can yield access to sensitive EHRs systems by applying prognostic 
context handlers where contextual information, is used to identify emergency conditions and permit 
access to medical records. Specifically, we use patients’ recent health history to predict the health 
metrics for the next two hours by leveraging Long Short Term Memory (LSTM) Neural Networks 
(NNs). These predicted health metrics values are evaluated by our personalized fuzzy context han-
dlers, to predict the criticality of patients’ status. The developed access control method provides 
secure access for emergency clinicians to sensitive information and simultaneously safeguards the 
patient’s well-being. Integrating this predictive mechanism with personalized context handlers 
proved to be a robust tool to enhance the performance of the access control mechanism to modern 
EHRs System. 

Keywords: sequential health data; decision making; context-aware services; attribute-based access 
control; electronic health records; emergency services; long short term memory; machine learning; 
neural networks; medical prognosis 
 

1. Introduction 
Handling access to medical information is essential as the safeguarding of the pa-

tient’s sensitive data privacy, e.g., her health history, is of prime importance. Access con-
trol models are related to the privileges an entity has upon handling particular data ob-
jects. These are based on user identity access control models, such as Role-Based Access 
Control (RBAC), Discretionary Access Control (DAC) and Mandatory Access Control 
(MAC) [1]. As well as these static approaches, the Attribute-Based Access Control (ABAC) 
paradigm has been developed, which is dynamic and flexible in nature [2]. In ABAC, there 
are connections’ snapshots that are produced and dynamically altered based on the cur-
rent context, instead of statically-defined lists of permissions that link entities with objects. 

In the medical sector, contextual information which characterizes an emergency in a 
patient’s healthcare state should be deemed when controlling access to the healthcare sen-
sitive information to guarantee the most efficient treatment. Accordingly, the implemen-
tation of access control models which integrate the context concept, such as the notion of 
dynamically changing contextual attributes which indicate the current status, is needed. 
More specifically, context is considered as any information characterizing the status of an 
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entity, such as person, place or object, related to the association between an application 
and a requestor [3]. Exploiting contextual data facilitates the implementation of access 
control policies by taking into account the conditions of access requests’ evaluation. For 
instance, in critical situations, an emergency healthcare professional intends to partially 
access the patient’s healthcare data to properly address a critical condition. The values of 
contextual information are obtained, for instance, from IoT devices, such as a wearable 
able to gauge blood pressure. We report that context handlers are beneficial for imple-
menting processes of dynamic authorization which consider the critical status of a specific 
medical acute care event before making a decision on access control. In critical conditions, 
the emergency medical teams should access immediately the patients’ medical records. 

The research objective of our study is the investigation of whether real-time health 
data, e.g., from medical devices and sensors, can be used to identify acute care conditions 
and permit access to sensitive medical information. We examine the application of ma-
chine learning methods to derive dynamic and personalized access control policies for 
yielding access decisions with respect to sensitive EHRs data based on the current context. 
Specifically, we are going to use the patient’s recent health history in order to predict key 
health metrics of the next couple of hours by implementing Long Short Term Memory 
(LSTM) Neural Networks (NNs) and use the predicted values to assess the criticality of 
the health condition of the patient. Our research takes advantages of recent developments 
in Artificial Intelligence in solving complex technical problems, see, e.g., in engineering 
[4], image processing [5] and e-commerce [6]. We develop an intelligent access control 
mechanism, which, based on a prediction model and a personalized fuzzy context handler 
[7], examines recent health metrics of a patient and outputs the patient’s health criticality 
assessment, which, in turn, controls access to the EHRs system. 

2. Related Works 
2.1. Access Control in Emergency Situations 

Access to patient’s private data is a sensitive topic because there is the danger for 
patient’s sensitive data to be revealed to malicious subjects. Yielding access to EHRs in 
emergency cases increases the quality of patient’s life and improves medical decision-
making [8]. Povey et al. [9] presented a retrospective access control scheme so that the 
system is not misused, and where transactions are utilized to make sure that the system’s 
integrity can be recovered in a data breach incident. The authors propose a break-glass 
mechanism which warns about misuse before it is activated. According to the authors, in 
a critical case, the users can operate the tool but, after the event, they have to provide 
explanation to the administrator of the system so as to avoid the associated penalty. 

Saberi et al. [10] introduced a synthesis of blockchain and interplanetary file system. 
Blockchain is utilized as a secure integrated mechanism for ABAC break-glass paradigms, 
and as an interplanetary file system which produces a distributed file storage infrastruc-
ture to store big files of health records. Additionally, the proposed conceptual model of 
Saberi et al. [11] was relied on the technology of blockchain, on an interplanetary file sys-
tem and on ABAC, which does not require circumventing the access control mechanism 
in order to constitute the patient’s medical information available. Especially in emergency 
cases, the doctors receive access to the EHRs almost just in time with respect to the attrib-
ute-based security rights which are set by the patients. 

Manasa et al. [12] presented an access control paradigm to achieve patient-centric 
privacy regarding medical health information in emergency situations. The model pro-
posed by Tsegaye et al. [13] ensures the EHRs confidentiality via RBAC and ABAC, while 
guarantying integrity by exploiting the Clark–Wilson model that protects the EHRs from 
both authorized healthcare professionals and unauthorized entities. Furthermore, by im-
plementing their paradigm, the EHRs can be safeguarded and any access issues can be 
dealt with while yielding EHR access in a critical case. Li et al. [14] introduced an access 
control framework for personal medical data within the environment of cloud computing. 



Electronics 2022, 11, 3040 3 of 17 
 

 

The authors leveraged the Attribute-based Encryption (ABE) paradigm to encrypt pa-
tient’s health records. Additionally, the proposed scheme supports users’ on-demand rev-
ocation access, and break-glass access under critical situations. 

Jagdale et al. [15] integrated a system for controlling data access to medical infor-
mation in cloud servers. The mechanism provides ABE encryption to encrypt health rec-
ord files. The mechanism enables modification of file attributes or access policies and 
break-glass access for emergencies. Farinha et al. [16] presented an implementation of the 
break-glass paradigm in a real medical situation so as to enforce the legislation about ge-
netic information. Furthermore, the authors evaluated the process of integrating legisla-
tion into the medical practice and the impact of break-glass use by concluding that the 
break-the-glass features are able to filter the non-authorized accesses which would not 
otherwise be prevented. 

Brucker et al. [17] introduced a break-glass model with a SecureUML extension. The 
authors proposed a security paradigm supporting break-glass that comprises a transfor-
mation from break-glass SecureUML policies to eXtensible Access Control Markup Lan-
guage (XACML). Georgakakis et al. [18] presented the spatio-temporal Emergency RBAC 
model which is based on spatiotemporal context of time, location, and hierarchy of roles 
so as to yield exception access in critical situations. In their model, users can access re-
sources either through the regular process of assigned roles according to the security pol-
icy of the organization or request access to a resource through the emergency access pro-
cedure. Kabbani et al. [19] proposed to integrate situation-based authorization policies by 
utilizing XACML which provides an attribute-based policy language and a policy-based 
management architecture. Utilizing XACML, they embody situations as attributes that are 
used and aggregated in rules, while they transfer to the policy their values’ dynamicity. 

Marinovic et al. [20] proposed a break-glass system that builds a break-glass policy 
by establishing the reason why the access was not permitted. Their model represents con-
flicting and missing data, permitting the policy to produce a more informed decision 
when faced with missing or inconsistent knowledge. Maw et al. [21] proposed an access 
control model in wireless sensor networks and networks of body area, which provides a 
flexible control of accessing data in emergencies. Guan et al. [22] introduced a scheme 
leveraging the patients’ fingerprints to help medical professionals to get temporary au-
thorization access of personal health records. In case a patient is in a coma, the medical 
professional needs to access the patient’s personal health records urgently in order to take 
effective aid measures. Künzi et al. [23] proposed an emergency access mechanism for 
EHR systems that employ digital rights management protection of medical information. 
Due to the usage of their emergency mechanism, their scheme mitigates emergency key 
distribution problem and is able to be integrated in highly distributed mechanisms. 

2.2. Contextual Attributes for Access Control 
Context characterizes a particular condition by taking into consideration the circum-

stances where an event arises. Each contextual attribute serves as a quantitative primitive, 
such as the requestor’s location. Attributes in ABAC are classified into four following cat-
egories [24]: (a) subject attributes characterize the user requesting access, such as age; (b) 
action attributes characterize the requested action such as read; (c) object attributes char-
acterize the resource of access such as a health record; and (d) environment attributes are 
correlated with dynamic access control factors, such as time. 

Mahalle et al. [25] combined three factors with fuzzy values in order to create fuzzy 
rules for data access control: the estimated trust value associated with factors such as 
knowledge, recommendation and experience. Their work additionally follows a fuzzy 
method and a trust-based access control architecture that receives, from devices which 
communicate with each other, as inputs the experience-based components of knowledge, 
recommendation and experience. D’Aniello et al. [26] used a series of agent layers to im-
plement a multi-agent fuzzy consensus model for situation awareness using, as fuzzy var-
iables, air temperature, air humidity and air wetness as inputs in their fuzzy cognitive 
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maps to detect infected corps. De Maio et al. [27] considered the bank intrusion as a situ-
ation awareness scenario, so as to support bank security operators in the prevention or 
detection of robbery and theft. 

In order to characterize contextual information that can facilitate the evaluation of 
emergency medical situations, we reviewed the following works. Nomikos et al. [28] ex-
amined patients’ conditions, described using attributes, such as the time when the stroke 
took place, the age, the Systolic Blood Pressure (SBP), the Diastolic Blood Pressure (DBP), 
the Glasgow coma scale value and the Scandinavian coma scale, which describe the level 
of consciousness of the patient. Mahmood et al. [29] estimated the crisp values of blood 
pressure parameters from Heart Rate (HR). Djam et al. [30] suggested a fuzzy expert sys-
tem for the management of hypertension using the fuzzy logic approach. As fuzzy inputs, 
the SBP, DBP, age and Body Mass Index (BMI) were considered to predict hypertension 
risk. 

Manasa et al. [12] took under consideration contextual information such as the pa-
tient’s prescriptions, allergies, medical history and basic profile. Additionally, an emer-
gency attribute is defined regarding emergency access. Α fuzzy expert system for predic-
tion of heart diseases, which uses the method of cuckoo search, is proposed by Moameri 
et al. [31] by taking into consideration the attributes of cholesterol level, maximum HR, 
electrocardiogram results, blood pressure, type of chest pain and age. 

A few studies consider users’ specificities for the evaluation of access policies. For 
example, the increased HR can be taken into account as critical for a particular patient 
only in case that her medical situation, her levels of activity or her age are taken under 
consideration. Zerkouk et al. [32] proposed an adaptable access control framework and its 
associated architecture, where the security policy is relied on an analysis of the monitored 
behavior of the user. Røstad et al. [33] described a mechanism for personalized access 
control for use in medical records. The model combines concepts and properties of RBAC 
and DAC in order to achieve the desired properties. Furthermore, the authors consider a 
set of common policies, which cannot be altered by the patient, along with a set of personal 
policies which can be edited by the patient. Petković et al. [34] proposed privacy and se-
curity enhancements in a RBAC system. Their approach comprises personalized access 
control that is a combination of role-based and user-managed access control, along with a 
cryptographic enforcement, which comprises efficient key management for the personal-
ized role-based access control in health records. 

Son et al. [35] proposed a dynamic access control approach for preserving the security 
of personal health information in a cloud environment, which takes under consideration 
contextual attributes for dynamic access. Their model uses the 5W1H ontological concept 
to process context-based attributes for dynamic access. A key component of their model 
is that it deals with the dynamic access control and the medical sector. 

2.3. Data Analytics in Healthcare 
Tomar et al. [36] have shown that analytics can help medical staff in disease treat-

ment, diagnosis and prediction by ameliorating the quality of service, which results in a 
reduction in the dataset’s cost information, both predictive (e.g., prediction of forthcoming 
historical information) and prescriptive (e.g., usage of scenarios which contribute to deci-
sion support). Analytics are classified as prescriptive, predictive and descriptive [37]. De-
scriptive analytics describe systems’ past performance; predictive analytics predicts sys-
tems’ future performance; and prescriptive analytics prescribes interventions so as to ame-
liorate systems’ future performance. Khalifa [38] identifies the analytics’ categories of dis-
covery, prescriptive, predictive, diagnostic and descriptive ones. Each one of them has its 
unique purpose in ameliorating health systems. Descriptive analytics works by aggregat-
ing, classifying, characterizing and categorizing data to be transformed to beneficial in-
formation to assist medical staff analyze and understand results, performance and deci-
sions. Prescriptive analytics assists in making a feasible decision and assisting profession-
als not only to examine the expected results and consequences of their actions and 
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recognize the problems and opportunities, but additionally to assess the best possible al-
ternative to use in a timely manner [39]. Discovery analytics [40] use information to dis-
cover new diseases, signs, symptoms, alternative treatments or medications and unknown 
side effects. Descriptive analytics explore distinct variables and examines any relations 
between these variables and patient’s probability of admission so as to decide which var-
iables to be utilized in order to develop this decision model [41]. Diagnostic health analyt-
ics are used in deciding the cause of an action [42]. They require broad exploration and 
directed data analysis by exploiting the visualization techniques tools to find the prob-
lem’s root causes or to assist professionals understand the problem’s impact and nature. 
For instance, the increased waiting time in implementing specific medical services could 
be the cause of patient and provider related factors. 

The society Healthcare Information and Management Systems characterizes health 
analytics [43] as the fundamental utilization of healthcare information and relevant man-
agement information through the appliance of analytics methods and means, such as 
qualitative and quantitative statistics, analysis of context and predictions to build insights 
and information based operational and strategic management for even more efficient 
healthcare. Health analytics encompasses a wide range of dimensions and aspects of big 
data analysis. This analysis is related to data accessibility and availability and information 
derived via efficient interoperability and implementation of a wide spectrum of technol-
ogies like web applications, data warehouses and systems of electronic medical records 
and medical decision support [44]. 

The tools of health analytics are taken into account as a set of systems of decision 
support regarding the medical professionals, providing knowledge among others to phar-
macists, health policy makers, health administrators, nurses or physicians, to make even 
more efficient evidence and acquire vision according to medical decisions [45]. Chen et al. 
[46] report that health analytics is characterized as a manner of converting information 
and data into actions and plans using insights and analysis for problem solving and med-
ical decision making. Bates [47] reports that, typically, medical centers healthcare organi-
zations have already implemented descriptive analytics to clinical cases and healthcare 
information. According to the authors, by exploiting technologies, tools and queries, the 
clinicians can have at their disposal categorized structured data and information on past 
performance. 

2.4. Health Analytics Using LSTM 
LSTM Neural Networks were introduced by Hochreiter and Schmidhuber in 1997 

[48] to address the overextended time intervals by recurrent back-propagation that takes 
a long time, essentially due to decaying, insufficient error backflow. LSTM NNs are 
widely used in the healthcare domain. Yin et al. [49] proposed a detection system of 3D 
human action regarding real-time inference for intelligent medical applications based on 
LSTM, which can be used in emergency warnings. Kadri et al. [50] proposed an approach 
for forecasting of everyday admissions of patients at the pediatric emergency room, de-
pendent on LSTM NNs. Tsai et al. [51] proposed an architecture in including bottleneck 
features of voice in a LSTM framework to recognize automatically the intensity of pain-
level of the patients in the emergency department during triage. Mantas [52] used LSTM 
recurrent NN to develop a model for emergency department wait time prediction in the 
next couple of hours by exploiting a random patient timestamp dataset of a common pa-
tient hospital process. Nwakanma et al. [53] proposed an LSTM-based detection system 
for critical situations, where the sensor aggregates vibration information which assists in 
predicting emergencies. Reddy et al. [54] presented a Recurrent Neural Networks (RNN) 
methodology with LSTM that uses longitudinal healthcare sequential information, is 
promising in predicting lupus patients’ readmission. Zhang et al. [55] used Convolutional 
Neural Networks (CNN) to analyze Wuhan COVID-19 emergency data. Mou and Yu [56] 
introduced a CNN LSTM method of blood pressure prediction dependent on pulse wave 
information. Chae et al. [57] performed ‘particulate matter’ prediction using the LSTM 
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among others, where the ‘particulate matter’ can cause various toxin-induced cancers, af-
fected lungs, and worsened asthma. Mumtaz et al. [58] applied LSTM for predicting the 
air pollutants concentration and the indoor environment quality, which is helpful for in-
dividuals who suffer from acute pulmonary disorders and COVID-19 patients. 

3. Methods 
In this study, we extend our previous work on context-aware access policies [7] by 

considering, apart from the patient’s current health situation, the prognosis of the pa-
tient’s future health status. The proposed methodology delivers an access control mecha-
nism which relies on Attribute-based Access Control (ABAC). The methodology combines 
machine learning techniques to predict the patient’s upcoming health condition along 
with fuzzy logic to reason about the context of the access request (Figure 1). 

 
Figure 1. Methodology. 

The predictive mechanism, implemented with LSTM, receives as input the recent 
health metrics and outputs the predictions of health metrics for the next two hours. Sub-
sequently, the fuzzy context handler assesses the criticality of the future health status of 
the patient, by taking into consideration (i) the patient’s age, (ii) the current health metrics 
and (iii) the predicted health metrics for the next two hours. The criticality assessment 
determines the decision about granting or not emergency access by healthcare profession-
als to the EHRs system. 

3.1. Fuzzy Context Handlers 
A context handler in XACML [59] is a system entity which transforms access requests 

from the initial format of requests to the canonical form of XACML [60]. Apart from using, 
or not, the XACML architecture, context handlers are exploited in ABAC to transform the 
attribute representations into mediums related to the environment of the application. 
Lower-level context is beneficial for uplifting context of higher level and understanding 
emergency conditions, for example in the situation of an acute care healthcare dispatcher 
case. This knowledge is responsible for determining if access to private medical infor-
mation should be permitted or not. 

In our earlier work [7], we developed context handlers governed by fuzzy rules to 
identify critical situations. A fuzzy context handler uses fuzzy rules that associate contex-
tual attributes with fuzzy values and generates as output an assessment of the criticality 
of the incident. The related contextual attributes, which are represented in a context 
model, are presented in detail in [61]. Here, we extend the fuzzy context handlers by tak-
ing into consideration apart from the patient’s current state her future one as well, by 
predicting the patient’s future health status. 
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3.2. Predicting Mechanism 
To implement the prediction mechanism, we rely on the long short term memory 

(LSTM) model [48], a variant of the recurrent neural network which is used to predict the 
patient’s future health metrics. LSTM networks have the capability of learning long-term 
dependencies. The LSTM network outperforms others in the prediction of the next se-
quence of process instances, because it predicts the next one by storing lengthy input sen-
tences. The LSTM prediction exhibits a considerable rise and aligns with the actual time 
series data [62]. 

The basic structure (i.e., a cell) of an LSTM module, as illustrated in Figure 2, com-
prises three separate gates: input, output and forget. Each cell persists values over arbitrary 
time intervals while the three mentioned gates adjust the information flow coming into 
and out of the cell. There are three sigmoid gates, to protect and control the cell state. Each 
sigmoid gate decides what information should be ignored from the cell state. Calculating 
the output of a cell involves first the decision on which information to remove from the 
previous cell. Output “1” or “0” indicate that all previous information should be kept or 
discarded, respectively. Additionally, the tanh gate serves to convert values to be between 
−1 and 1. This special structure, apart from the input Xt, takes, additionally as input, the 
output of the previous block Ht−1 along with the memory from the previous LSTM block 
Ct−1. The final output Ht is given by Formula (1). H = O ∗ tanh(C ) (1)

where:  O =  σ(W ∙ H , X b ) (2)         C = F ∗ C I ∗ C′   (3)          C′ =  tanh(W ∙ H , X b )  (4) I =  σ(W ∙  H , X b ) (5)   F =  σ(W ∙  H , X b ) (6) 

In the above equations, Wf, Wi, Wc and Wo are weights and bf, bi, bc and bo are biases, 
which are learned during the training phase of the network. We perform multi-step fore-
casting [63] of two next steps based on multivariate input time series. 

 
Figure 2. LSTM block architecture. 

As illustrated in Figure 3, the recent health metrics of SBP, DBP and HR are taken 
into consideration and constitute the input for the multivariate multi-step LSTM model 
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we developed. The model outputs the prediction of these three health metrics for the next 
two hours. 

 
Figure 3. LSTM model example. 

Next, we discuss an example use case in which our proposed system is used to assess 
the overall health situation of a patient (i.e., its criticality) for driving the access control 
decision with respect to emergency access to a certain EHR. In our previous work [7], we 
developed a fuzzy context handler which is able to map the input fuzzy variables Systolic 
Blood Pressure (m1) and Diastolic Blood Pressure (m2) to fuzzy values ‘Low’, ‘Normal’, 
‘Elevated’ and ‘High’, while the input fuzzy variable Heart Rate (m3) to fuzzy values 
‘Low’, ‘Medium’ and ‘High’. Last, the output fuzzy variable Criticality, is mapped to val-
ues ‘Low’, ‘Medium’ and ‘High’. 

In a general case, we can have the n health metrics m1 − mn. After having defined the 
fuzzy sets, the fuzzy rules per fuzzy variable are defined based on our previous work [7]. 
An example of a fuzzy rule regarding the SBP is “If SBP is Low then Criticality is High”. 
After this step, the fuzzy inferencing process is implemented, where the percentage of 
criticality is deduced per health metric. 

For example, for the health metrics of SBPcurrent = 123 mmHg, DBPcurrent = 72 mmHg 
and HRcurrent = 94 bpm, as presented in the current values of the patient with ID 17, shown 
in Figure 3, we deduce the following respective criticalities of: (i) criticality(SBPcurrent = 123 
mmHg) = 33%, (ii) criticality(DBPcurrent = 72 mmHg) = 38.61% and (iii) criticality(HRcurrent = 
94 bpm) = 63.6%. In this particular example, neither case is critical, because, as stated in 
our work [7], for a case to be critical, it should meet the maximum criticality percentage, 
which is 67% according to the specific fuzzy inferencing process. Therefore, after having 
calculated if the current case is critical or not, we proceed to the calculation of the critical-
ity for next two hours. In order to proceed to this particular calculation, we need to have 
at our disposal the values for the next two hours per each health metric. In order to achieve 
this goal, we predict these next two hours’ health values by implementing LSTM NNs by 
taking into consideration the last four-hour health history and the current health metrics. 
This particular prediction is essential for the emergency doctor so that he has at his dis-
posal a thorough perception of the patient’s clinical profile, and, additionally, is consid-
ered as input for the fuzzy context handlers. 

As seen throughout this example, the fuzzy context handlers, by having at their dis-
posal the current health metrics of SBP, DBP and HR, will make the criticality assessment 
(Figure 1) of the respective future health metrics for the next two hours. For example, as 
seen in Figure 3, if the patient, has for the last five hours, the following values, regarding 
the health metrics of SBP, DBP and HR, respectively: (i) 118 mmHg, 114 mmHg, 126 
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mmHg, 115 mmHg and 123 mmHg; (ii) 73 mmHg, 70 mmHg, 74 mmHg, 68 mmHg and 
72 mmHg; and (iii) 95 bpm, 92 bpm, 93 bpm, 92 bpm and 94 bpm, then our system predicts 
as their corresponding future two-hour SBP, DBP and HR values, respectively: (i) 107 
mmHg and 105 mmHg, (ii) 67 mmHg and 66 mmHg and (iii) 86 bpm and 83 bpm. 

After this specific step, we proceed to the criticality calculation of these future health 
metrics. Therefore, the criticality percentages for the next hour are: (i) criticality(SBPafter-1-h 
= 107 mmHg) = 60.2%, (ii) criticality(DBPafter-1-h = 67 mmHg) = 67% and (iii) critical-
ity(HRafter-1-h = 86 bpm) = 36.4%. Therefore, in this case, for the next hour we conclude that 
the situation is critical, because the criticality of at least one of the health metrics case 
reaches the maximum percentage of 67% according to the fuzzy inferencing process. 
Therefore, regarding the next two hours’ case, we have the following criticality percent-
ages: (i) criticality(SBPafter-2-h = 105 mmHg) = 67%, (ii) criticality(DBPafter-2-h = 66 mmHg) = 
67% and (iii) criticality(HRafter-2-h = 83 bpm) = 33%, where we conclude that similarly to the 
after one hour case the patient’s situation is critical because at least one of the criticality 
percentages reaches its’ maximum level. 

The overall criticality result is deduced based on the three individual results of the 
patient’s current and future state. In this case, even if regarding the current situation the 
patient’s situation is not considered critical, it is critical for both after one and two hours. 
The overall critically result is deduced based on the equation (8) of Section 4.2 which states 
that even one of the current or future states is critical, then in case the requestor is an 
emergency doctor, he can be granted access to the patient’s EHRs. 

Our methodology regarding the prediction of the patient’s future health metrics is 
presented in the following Algorithm 1. 

Algorithm 1 Prediction of future health metrics. 
CHOOSE NUMBER OF INPUT STEPS (health history of last 4 h) 

input_steps ← 5 
CHOOSE OUTPUT STEPS (future health metrics of the next two hours) 

output_steps ← 2 
CHOOSE FEATURES (number of health metrics) 

features ← 3 
REPEAT FOR ALL DATA FILES 

READ EACH DATASET’S FILE PER PATIENT 
SELECT TRAIN AND TEST SETS 

data_train, data_test ← devide(dataset, 0.8) 
SPLIT DATA ACCODING TO INPUT AND OUTPUT STEPS 

X_train, Y_train ← split_dataset(data_train, input_steps) 
X_test, Y_test ← split_dataset(data_test, input_steps) 

RESHAPE X_train and X_test 
Reshape X_train, X_test into (samples, inpute_steps, features) 

DEFINE MODEL 
add(LSTM(200, activation = ‘relu’, input_shape = (input_steps, features))) 
add(RepeatVector(output_steps)) 
add(LSTM(200, activation = ‘relu’, return_sequences = True)) 
add(TimeDistributed(Dense(features))) 

COMPILE MODEL 
compile(optimizer = ‘adam’, loss = ‘mse’) 

FIT MODEL (to improve the weights and biases of the network) 
model.fit(X_train, Y_train, epochs = 200, verbose = 0) 

EVALUATE MODEL 
SAVE MODEL 

model.save(model_file) 
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END REPEAT 
INPUT A PATIENT’S HEALTH METRICS FOR THE LAST 4 HOURS METRICS 

input_metrics: 
sbp_current, dbp_current, hr_current current health metrics 
sbp_before_1, dbp_before_1, hr_ before_1 health metrics before 1 h 
sbp_ before_2, dbp_ before_2, hr_before_2 health metrics before 2 h 
sbp_ before_3, dbp_ before_3, hr_before_3 health metrics before 3 h 
sbp_before_4, dbp_before_4, hr_before_4 health metrics before 4 h 

PREDICT AND OUTPUT PATIENT’S FUTURE HEALTH METRICS 
output_metrcs: 

sbp_next_1, dbp_next_1, hr_next_1 predicted health metrics after 1 h 
sbp_next_2, dbp_next_2, hr_next_2 predicted health metrics after 2 h 

output_metrics ← model_file.predict(input_metrics) 

4. Evaluation 
4.1. Technical Implementation 

We utilize the XACML architecture to implement the proposed context-based, pre-
dictive access control mechanism. XACML also known as a policy-based access control 
(PBAC) system, where attribute values associated with a resource, an action or a user are 
perceived as inputs into the access control decision, regarding a given user, a particular 
target resource and a specific way of access. RBAC can additionally be implemented in 
XACML as a specialization of ABAC. The XACML architecture contains: (a) the Policy 
Enforcement Point (PEP), able to protect data and applications, to intercept requests and 
to propagate authorization requests directed to the Policy Decision Point (PDP); (b) the 
Policy Information Point (PIP) that connects external attribute sources; and (c) the Policy 
Administration Point (PAP) responsible for handling access policies. 

Policies in ABAC associate attributes, to characterize allowable or not actions, and to 
grant or deny access to personal information. For instance, when a requestor intends to be 
granted access to a particular medical information, PDP intercepts her request. PDP eval-
uates related policies handled by PAP and exploiting attributes retrieved from PIP. ABAC 
has been used to manage access to EHR platforms [64]. 

To evaluate our work, we implemented the context-based, predictive access control 
mechanism based on the XACML architecture and integrated it in EHRServer [65]. EHR-
Server is a clinical information management system on the basis of the standard of 
openEHR [66]. A bird’s eye view of the integrated system architecture is shown in Figure 
4. The context handler communicates with the criticality evaluation mechanism, which, 
after having received the patient’s current health metrics, recent health history, age and 
the prediction of the future health metrics’ values for the next two hours, is able to calcu-
late via the inferencing process the criticality level of the patient, by considering her cur-
rent and future state for the two hours as well. 
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Figure 4. Integrated context-based, predictive access control in the XACML Architecture. 

We implemented python’s tensorflow and keras in order to develop the LSTM RNNs 
trained model per patient which predicts her future health metrics based on her recent 
health history. All trained models were integrated in our web user interface (Figure 5) so 
as to output the respective predictions by implementing the trained models and to calcu-
late the respective results per patient on the fly. 

 
Figure 5. Web user interface of context-based, predictive access control. 

The web user interface is divided into six panes. In the upper left pane, the patient‘s 
ID, gender, age, height, weight and BMI are presented, while in the upper center pane, 
the system’s global access decision is presented. Below this feature, the ABAC selectable 
options are illustrated, which are the following: (i) the baseline ABAC, which handles 
basic thresholds as limits so as to permit or not access; (ii) the ABAC non-personalized 
case, which considers only the fuzzy inferencing process; and (iii) the ABAC personalized 
case, which considers the fuzzy inferencing process as well as the personalization aspect 
of age. All the three ABAC methods above take into consideration the SBP, DBP and HR 
health metrics, as presented in our previous work [7] regarding the patient’s diagnosis of 
present medical status, and we extend it in our current approach by including the patient’s 
prognosed health metrics after one or two hours by leveraging LSTM NNs. In the upper 
right pane, the patient’s current health metrics are demonstrated along with the current 
health status result of the prognostic context handlers case, which has already been se-
lected on the previous pane, as well as the individual access results per health metric re-
garding the patient’s current status. In the lower left pane, the patient’s current health 
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history within the last five hours is presented. In the lower center pane, our LSTM NN 
mechanism predicts the health metrics values for the next two hours along with the cor-
responding access requests by leveraging the fuzzy inferencing system of our previous 
work [7]. Finally, in the lower right pane, there is the button “Evaluate” for the system’s 
decision based on the chosen ABAC case. 

4.2. Evaluation Scenarios and Datasets 
We tested three scenarios as follows: first, access control was handled by the baseline 

ABAC. In particular, if the requestor is an emergency department (ED) health professional 
and at least one of the patients’ health metrics values is above the suggested threshold, 
then the patient’s situation is critical and, thus, the health professional can have access to 
the patient‘s healthcare data. The policy rule is presented as follows: If (requestor = ED Cilinician) AND contextual expression (SBP SBP  OR DBP DBP  OR HR HR  OR SBP _ _ SBP  OR DBP _ _ DBP  OR HR _ _ HR  OR SBP _ _ SBP  OR DBP _ _ DBP  OR HR _ _ HR ) then (Critical Situation) 

(7) 

In the second and third scenarios, we modified policy rule (7) with non-personalized 
and personalized context handlers, respectively. The policy rule now includes the pa-
tient’s predicted health metrics after one or two hours. (For details about how personali-
zation in context handlers is achieved, please refer to [7].) If ((requestor = ED Clinician) AND context expression   ((CRITICAL _  = true) OR  (CRITICAL _ _ _  = true) OR  (CRITICAL _ _ _ = true))) then (Critical Situation) 

(8) 

We tested the three scenarios using the publicly available dataset [67], comprising 
4000 patients and including one file per patient. Each patient file, among others, includes 
SBP, DBP and HR health metrics history. These time-series sequential data are taken spo-
radically every ten minutes, or twenty minutes or even 1 h or more. The raw format of the 
dataset is shown in Figure 6. 

 
Figure 6. Initial data file before processing of patient with ID 132540. 
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The first lines of each file, annotated with time “00:00”, indicate the beginning of the 
metrics’ recording. The first lines denote the characteristics of each patient including age, 
gender, height or weight. Subsequent lines contain time-series measurements, recorded 
in chronological order, and the related timestamps from the beginning of the measure-
ments. These measurements were reported at regular intervals ranging from hourly to 
daily, or at non-frequent timestamps. The metrics of interest to our study are Systolic Ar-
terial Blood Pressure (SysABP), Diastolic Arterial Blood Pressure (DiaABP) and Heart 
Rate (HR). 

We developed an additional software component to extract the health metrics of 
every hour, and we excluded all the files that had time gaps more than one hour. An ex-
ample file is shown in Figure 7. 

 
Figure 7. Data file after processing of patient with ID 132540. 

After data pre-processing, 2086 patient files remained. For each patient, a trained pre-
diction model was developed and used for the prediction of the criticality for the next 
couple of hours. 

4.3. Results 
Table 1 presents the error in criticality prediction after one and two hours, for the 

three previously-mentioned cases of: (i) baseline ABAC method, (ii) ABAC with non-per-
sonalized fuzzy context handler and (iii) ABAC with personalized context handler as de-
scribed in our previous work [7]. 

Table 1. Error of the predicted criticality. 

Access Control Case Criticality Prediction Error 
ABAC with Personalized Fuzzy context handler. 6.86% 
ABAC with non-Personalized Fuzzy context handler. 17.31% 
Baseline ABAC. 17.74% 

The total number of patients whose future health state is falsely predicted per ABAC 
case is calculated using Formula (9). This number comprises the patients who are: (i) in 
non-critical state based on both of the predictions of the next two hours, but in a critical 
situation based on the real next two-hour situation where at least one the situations of the 
next two hours is critical, and (ii) in critical state based on at least one of the next two 
hours prediction, but in a non-critical situation based on both health states of the real next 
two hours. Formula (10) computes the falsely predicted criticality percentage (criticality 
prediction error). Number_of_Patients_Total_Error = Number of patients where  contextual expression   ( ((CRITICAL _ _ _ _ = false AND   CRITICAL _ _ _ _ = false) AND 
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  (CRITICAL _ _ _ _ = true OR                                      CRITICAL _ _ _ _ = true)) AND (9)                 ((CRITICAL _ _ _ _ = true OR    CRITICAL _ _ _ _ = true) AND    (CRITICAL _ _ _ _ = false AND    CRITICAL _ _ _ _ = false)) )  Criticality_Prediction_Error =  Number_of_Patients_Total_ErrorNumber_of_all_patients  ∗  100  (10) 

The criticality prediction in the ABAC with personalized context handler case exhib-
its the lowest percentage error (6.86%) while the corresponding errors of the ABAC with 
non-personalized context handler and the baseline method are 17.31% and 17.74%, respec-
tively. 

5. Conclusions 
In emergency healthcare situations, the health criticality of patients should be con-

sidered when permitting access to their EHRs. That is, recognizing life threatening situa-
tions in automated healthcare access control systems is imperative. Our work introduces 
an innovative access control method by taking into consideration machine learning tech-
niques by estimating the patient’s future health metrics, based on her recent history. The 
access control method provides secure access for emergency healthcare professionals to 
sensitive healthcare information and simultaneously safeguarding the patient’s health. 

Results show that personalization of fuzzy context handlers improves the accuracy 
of the access control results, in comparison with non-personalized context handlers. Our 
evaluation has shown that the Personalized ABAC Fuzzy Context Handler exhibits a low 
percentage error in predicting the overall health criticality of a patient. The integration of 
the predictive mechanism within the personalized context handler proved to be a robust 
tool to enhance the efficiency of the access control mechanism in EHRs System. 

Limitations of our approach include the incorporation of only the patient’s age and a 
small number of health metrics in the fuzzy rules. Additional metrics, such as BMI, exist-
ence of chronic diseases, the glucose and the oxygen levels in blood or smoking or drink-
ing habits, could be included in the future. 
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