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Abstract: The distributed Bragg reflector (DBR) has been widely used in flip-chip micro light-emitting
diodes (micro-LEDs) because of its high reflectivity. However, the conventional double-stack DBR has
a strong angular dependence and a narrow reflective bandwidth. Here, we propose a wide reflected
angle Ti3O5/SiO2 DBR (WRA-DBR) for AlGaInP-based red and GaN-based green/blue flip-chip
micro-LEDs (RGB flip-chip micro-LEDs) to overcome the drawbacks of the double-stack DBR. The
WRA-DBR consisting of six sub-DBRs has high reflectivity within the visible light wavelength region
at an incident angle of light ranging from 0◦ to 60◦. Furthermore, the influence of the WRA-DBR and
double-stack DBR on performances of RGB flip-chip micro-LEDs is numerically investigated based on
the finite-difference time-domain method. Owing to higher reflectivity and less angular dependence
of the WRA-DBR, the RGB flip-chip micro-LEDs with the WRA-DBR have a stronger electric field
intensity in the top side in comparison with RGB flip-chip micro-LEDs with the double-stack DBR,
which indicates that more photons can be extracted from micro-LEDs with the WRA-DBR.

Keywords: distributed Bragg reflector; flip-chip; micro-LED; FDTD

1. Introduction

Micro light-emitting diodes (micro-LEDs) have been highlighted as a promising can-
didate for the realization of next-generation display panels with high dynamic range
(HDR) and high resolution because of their numerous advantages such as high luminance,
outstanding power efficiency, fast response time, stability, long lifetime, and wide color
gamut [1–9]. The full-color micro-LED display panels can be realized by a combination of ef-
ficient red, green, and blue micro-LEDs (RGB micro-LEDs) [10–13]. However, to realize the
above applications, the external quantum efficiency (EQE) of RGB micro-LEDs should be
further improved. A number of methods applied to broad-area LEDs for improving the effi-
ciency could also be applied to micro-LEDs, such as flip-chip technology [6,14–20], surface
roughening [21,22], chip shaping [23–25], and patterned sapphire substrate (PSS) [26–29].
Among these methods, flip-chip technology is widely used in micro-LEDs due to its advan-
tage in light extraction efficiency (LEE), heat dissipation, and current spreading.

It is well known that the light generated in the multiple quantum wells (MQWs) active
region emits in all directions. In flip-chip micro-LEDs, we expect that light emits to air
mainly from the top substrates. However, a myriad of light generated in MQWs travels
downward, which does not make any contributions to the LEE. A bottom reflector plays
an essential role in improving the LEE by reflecting the light back into the top substrates.
The distributed Bragg reflector (DBR) has been extensively used as the bottom reflector
owing to its high reflectivity in a specific wavelength region [30–32]. A typical DBR is
made by stacking low refractive index dielectric layers (e.g., SiO2) and high refractive
index dielectric layers (e.g., TiO2 and Ti3O5), exhibiting a low absorption in the visible light
region. Five pairs of TiO2/SiO2 single-stack DBR designed for GaN-based green LEDs
exhibited that the reflective bandwidth with a high reflectivity (>80%) was larger than
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100 nm [31]. A double-stack DBR optimized for two different central wavelengths was
designed to provide a higher reflectivity and a larger reflective bandwidth in comparison
with a single-stack DBR [33]. Nevertheless, the double-stack DBR still shows severe angular
dependence, which hinders further improvement of LEE in flip-chip micro-LEDs. A full-
angle DBR composed of 14 sub-DBRs optimized for central wavelength in blue, green, and
red wavelength regions exhibited a wide reflective bandwidth and alleviated the angular
dependence [34]. However, the reflective bandwidth of the full-angle DBR is limited in
the blue and green light wavelength region, which is not suitable for red micro-LEDs.
Therefore, to improve the performance of the RGB flip-chip micro-LEDs, a DBR with wider
reflective bandwidth covering the whole visible light wavelength region and less angular
dependence is required.

To overcome the above-mentioned drawbacks of the DBRs, we propose a wide re-
flected angle Ti3O5/SiO2 DBR (WRA-DBR). The WRA-DBR is composed of six sub-DBRs
optimized for different central wavelengths ranging from the blue light wavelength region
to the red light wavelength region. The WRA-DBR has a superior reflectivity within the
whole visible light region and exhibits less angular dependence. The average reflectivity
of the WRA-DBR at a normal incident angle of light within the wavelength region from
400 nm to 700 nm can reach up to 99.73%. Furthermore, the average reflectivity of the WRA-
DBR is up to 97.93% when the incident angle of light is 60◦. Compared to conventional
double-stack DBR, the WRA-DBR exhibits a wider reflective bandwidth and alleviates
the angular dependence. To further evaluate the effect of the WRA-DBR on the optical
performance of RGB micro-LEDs, a simulation was carried out by using finite difference
time domain (FDTD) method. The result demonstrates that the WRA-DBR can act as a
potential candidate for realizing high-efficiency RGB flip-chip micro-LEDs.

2. Model and Methods

The DBR, based on the thin-film interference effect, is an array of multilayer stacks
composed of two kinds of dielectric layers with high and low refractive indices. The
dielectric layer thickness can be calculated by the following formula [35]:

n1 t1 = n2 t2 = λ/4, (1)

where the n1 and n2 are refractive indices of the high refractive layer and the low refractive
layer, respectively, the t1 and t2 are thicknesses of the high refractive layer and the low
refractive layer, respectively, and λ is the central wavelength.

Figure 1a shows the schematic illustration of the single-stack DBR. The single-stack
DBR consists of N periods of layer 1 and layer 2. The refractive indices of layer 1 and layer 2
are n1 and n2, respectively. The thicknesses of layer 1 and layer 2 are t1 and t2, respectively.
We consider the refractive indices of the incident medium and the substrate are n0 and
n3, respectively. The reflection coefficient and reflectivity of the single-stack DBR can be
calculated based on the transfer matrix method (TMM). From the TMM, the total transfer
matrix M can be calculated according to the following equation [36,37]:

M =

(
M11 M12
M21 M22

)
= D−1

0

[
D1P1D−1

1 D2P2D−1
2

]N
D3 (2)

the reflection coefficient can be expressed as

r =
M21

M11
, (3)
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the dynamical matrix for the medium α can be expressed as [36,37]

Dα =


(

1 1
nα cos θα −nα cos θα

)
for TE wave(

cos θα cos θα

nα −nα

)
for TM wave

, α = 0, 1, 2 and 3 (4)

the propagation matrix is given by

Pα =

(
exp(iφα) 0

0 exp(−iφα)

)
, α = 1, 2 (5)

and
φα =

2π

λ
nαtα cos θα, α = 1, 2 (6)

where λ is the wavelength of incident light, and θα is the incident angle of light in the
dielectric layer calculated by Snell’s law of refraction:

n0 sin θ0 = n1 sin θ1 = n2 sin θ2 = n3 sin θ3 (7)
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Figure 1. (a) Schematic illustration of a single-stack DBR consisting of N periods of layer 1 and layer
2. (b) Schematic illustration of DBR consisting of several sub-DBRs. Ni (i = 1, 2, 3 . . . ) is the periods
of the sub-DBRs.

Then, the reflectivity of the single-stack DBR can be calculated by the following equation:

R = r2 (8)

Figure 1b shows the schematic illustration of the DBR consisting of several single-stack
DBRs (sub-DBRs). Ni (i = 1, 2, 3 . . . ) is the periods of the sub-DBRs. The total transfer
matrix of the DBR is

M =

(
M11 M12
M21 M22

)
= D−1

0

[
D1P1D−1

1 D2P2D−1
2

] N1
· · ·
[
D1P1D−1

1 D2P2D−1
2

] Ni
D3 (9)

Then, the reflectivity of the DBR can be calculated from the above-mentioned equations.

3. Results and Discussion

Based on TMM, we investigate the angular dependence and reflective bandwidth
of the double-stack Ti3O5/SiO2 DBR. The double-stack Ti3O5/SiO2 DBR is designed and
modeled by TFCalc software. The double-stack DBR consists of two sub-DBRs, which
are composed of 12 periods of Ti3O5/SiO2. The refractive indices of Ti3O5 and SiO2 in
the simulation are fixed at 2.37 and 1.46, respectively. The central wavelengths of the two
sub-DBRs are optimized for 465 nm and 630 nm, respectively. Therefore, the thicknesses of
Ti3O5/SiO2 dielectric layers are 48.97 nm/79.68 nm and 66.34 nm/108.00 nm, respectively.
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Figure 2a shows the schematic illustration of the double-stack DBR structure. Figure 2b
shows the reflectance spectra of the double-stack DBR. The electroluminescent (EL) spectra
of red, green, and blue micro-LEDs are also shown in Figure 2b. The peak wavelengths of
red, green, and blue micro-LEDs are 630 nm, 520 nm, and 465 nm, respectively. It is clearly
seen in Figure 2b that the reflectivity of the double-stack DBR is high within the whole
visible light region when the incident angle of light is 0◦. However, as the incident angle
increases, the reflective bands exhibit a blueshift and the reflectivity decreases sharply in
blue and green light wavelength regions. This result indicates that the double-stack DBR
has a strong angular dependence.
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Figure 2. (a) Schematic illustration of double-stack DBR structure. (b) Reflectance spectra of the
double-stack DBR as a function of incident angle.

To suppress the sharp decrease in the reflectivity in blue and green light wavelength
regions, DBR III is designed by inserting a sub-DBR stack into the double-stack DBR. The
inserted sub-DBR is optimized for a central wavelength at 520 nm, and the thickness of
Ti3O5/SiO2 of the inserted sub-DBR is 55.81 nm/90.82 nm. The total periods of DBR III are
the same as that of double-stack DBR, which means that DBR III is composed of 24 periods
of Ti3O5/SiO2. Therefore, each sub-DBR of DBR III is made of eight periods of Ti3O5/SiO2.
Figure 3b shows the reflectance spectra of DBR III as a function of incident angle of light.
After adding a sub-DBR, the sharp decrease of reflectivity of the double-stack DBR in the
blue and green light wavelength region is alleviated, revealing that the added sub-DBR
can broaden the reflective bandwidth. However, the reflectivity of DBR III in the red light
wavelength region at a large incident angle of light remains relatively low.
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To further improve the reflectivity of the DBR in the red light wavelength region,
DBR IV with a combination of DBR III and another sub-DBR optimized for the central
wavelength at 650 nm is designed, and the thickness of Ti3O5/SiO2 of the inserted sub-DBR
is 68.45 nm/111.38 nm. Each sub-DBR of DBR IV is composed of six periods of Ti3O5/SiO2.
Figure 4a shows the schematic illustration of the DBR IV structure. Figure 4b shows the
reflectance of DBR IV. As shown in Figure 4b, the reflectivity is high when the incident angle
of light is below 40◦. However, the reflectivity of DBR IV at a large incident angle of light
is not greatly improved in comparison with DBR III. To further enhance the performance
of DBR IV, we investigate the influence of the sub-DBR optimized for different central
wavelengths on the reflectivity. Figure 4c shows the reflectance spectra of DBR IV with the
added sub-DBR optimized for different central wavelengths when the incident angle of
light is 60◦. The average reflectivity increases as the central wavelength of the sub-DBR
increases from 650 nm to 730 nm. When the central wavelength of the inserted sub-DBR is
730 nm, the average reflectivity of DBR IV is larger than 90%. Therefore, we adopted the
inserted sub-DBR optimized for the central wavelength at 730 nm.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 10 
 

 

wavelength at 650 nm is designed, and the thickness of Ti3O5/SiO2 of the inserted sub-DBR 
is 68.45 nm/111.38 nm. Each sub-DBR of DBR IV is composed of six periods of Ti3O5/SiO2. 
Figure 4a shows the schematic illustration of the DBR IV structure. Figure 4b shows the 
reflectance of DBR IV. As shown in Figure 4b, the reflectivity is high when the incident 
angle of light is below 40°. However, the reflectivity of DBR IV at a large incident angle of 
light is not greatly improved in comparison with DBR III. To further enhance the perfor-
mance of DBR IV, we investigate the influence of the sub-DBR optimized for different 
central wavelengths on the reflectivity. Figure 4c shows the reflectance spectra of DBR IV 
with the added sub-DBR optimized for different central wavelengths when the incident 
angle of light is 60°. The average reflectivity increases as the central wavelength of the 
sub-DBR increases from 650 nm to 730 nm. When the central wavelength of the inserted 
sub-DBR is 730 nm, the average reflectivity of DBR IV is larger than 90%. Therefore, we 
adopted the inserted sub-DBR optimized for the central wavelength at 730 nm. 

 
Figure 4. (a) Schematic illustration of DBR IV structure; (b) reflectance spectra of the DBR IV as a 
function of incident angle; (c) reflectance spectra of DBR IV with an added sub-DBR optimized for 
different central wavelengths at an incident angle of 60°. 

To overcome the drawbacks outlined above, the WRA-DBR structure with a combi-
nation of DBR IV and another two sub-DBRs is designed. The thicknesses of Ti3O5/SiO2 of 
the two sub-DBRs are 46.34 nm/75.39 nm and 78.98 nm/128.51 nm, respectively. Mean-
while, the central wavelengths of sub-DBRs and number of periods of Ti3O5/SiO2 in the 
WRA-DBR are 440 nm/4 periods, 465 nm/4 periods, 520 nm/4 periods, 630 nm/5 periods, 
730 nm/3 periods, and 750 nm/4 periods, respectively. Figure 5a shows the schematic of 
the WRA-DBR structure. Figure 5b shows the reflectance spectra of the WRA-DBR at dif-
ferent incident angles of light. Among all the mentioned DBRs, the WRA-DBR possesses 
the widest reflective bandwidth. It should be mentioned that the average reflectivity of 
the WRA-DBR at a normal incident angle of light is 99.73% within the wavelength region 
from 400 nm to 700 nm. The reflectivity of the WRA-DBR can reach up to 97.93% within 
the wavelength region from 400 nm to 700 nm when the incident angle of light is 60°, 
indicating that the WRA-DBR has alleviated the angular dependence. 

Figure 4. (a) Schematic illustration of DBR IV structure; (b) reflectance spectra of the DBR IV as a
function of incident angle; (c) reflectance spectra of DBR IV with an added sub-DBR optimized for
different central wavelengths at an incident angle of 60◦.

To overcome the drawbacks outlined above, the WRA-DBR structure with a combina-
tion of DBR IV and another two sub-DBRs is designed. The thicknesses of Ti3O5/SiO2 of
the two sub-DBRs are 46.34 nm/75.39 nm and 78.98 nm/128.51 nm, respectively. Mean-
while, the central wavelengths of sub-DBRs and number of periods of Ti3O5/SiO2 in the
WRA-DBR are 440 nm/4 periods, 465 nm/4 periods, 520 nm/4 periods, 630 nm/5 periods,
730 nm/3 periods, and 750 nm/4 periods, respectively. Figure 5a shows the schematic
of the WRA-DBR structure. Figure 5b shows the reflectance spectra of the WRA-DBR at
different incident angles of light. Among all the mentioned DBRs, the WRA-DBR possesses
the widest reflective bandwidth. It should be mentioned that the average reflectivity of
the WRA-DBR at a normal incident angle of light is 99.73% within the wavelength region
from 400 nm to 700 nm. The reflectivity of the WRA-DBR can reach up to 97.93% within the
wavelength region from 400 nm to 700 nm when the incident angle of light is 60◦, indicating
that the WRA-DBR has alleviated the angular dependence.

We investigate the influence of the double-stack DBR and the WRA-DBR on the
performance of RGB flip-chip micro-LEDs using the finite-difference time-domain (FDTD)
method. Figure 6 shows the simulation models of the RGB flip-chip micro-LEDs with the
double-stack DBR and the WRA-DBR. The optical parameters and the thicknesses of each
layer of the RGB flip-chip micro-LEDs are shown in Table 1. The AlGaInP-based red micro-
LED consists of ITO, p-GaP, p-AlInP, MQWs, n-AlGaInP, and n-GaAs. The GaN-based green
and blue micro-LEDs are composed of ITO, p-GaN, MQWs, and n-GaN. The sidewalls
of the RGB micro-LEDs are inclined and the inclination angle is 70◦ [38]. For simplicity,
the metal electrode layer of the micro-LEDs is neglected. Considering the memory of
the computer and computing time, the size of micro-LEDs is set to be 8 µm × 8 µm. The
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perfect matched layer (PML) is used to avoid the reflected electromagnetic wave at the
boundary of the micro-LEDs. A 9 × 9 dipole source array is placed in the MQWs as a
light source, and the space between dipoles is set to 0.8 µm. The emission wavelengths of
the dipole sources in the RGB micro-LEDs are 630 nm, 520 nm, and 465 nm, respectively.
A cross-sectional discrete Fourier transform (DFT) monitor is used to obtain the electric
field distribution and a transmission box monitor is used to calculate the LEEs. Figure 7a–f
show the electric field distributions of RGB flip-chip micro-LEDs with the double-stack
DBR and WRA-DBR. In Figure 7a–f, region I is the bottom external space of micro-LEDs
and region II is the top external space of the micro-LEDs. According to the electric field
distributions shown in Figure 7a–f, it can be observed that there exists a weaker electric field
intensity in the WRA-DBR in comparison with the electric field intensity in the double-stack
DBR, indicating that the WRA-DBR has a higher reflectivity than the double-stack DBR.
Therefore, more photons will be reflected upward to region II. Furthermore, compared to
RGB flip-chip micro-LEDs with a double-stack DBR, stronger electric field intensity exists
in the air of region II outside the RGB flip-chip micro-LEDs with the WRA-DBR, implying
that the photons are more likely to be extracted from RGB flip-chip micro-LEDs with the
WRA-DBR. Moreover, the LEEs of each face of the RGB micro-LEDs with the double-stack
DBR and WRA-DBR are shown in Figure 7g–i. In Figure 7g, the LEEs of blue micro-LEDs
with the double-stack DBR and blue micro-LEDs with the WRA-DBR are almost same.
The reason for the similar LEEs in the blue micro-LEDs with the double-stack DBR and
WRA-DBR is that the double-stack DBR and WRA-DBR both perform well in the blue
light region. From the results of Figures 7h and 7i, it can be observed that green and red
micro-LEDs with the WRA-DBR exhibit higher LEEs than green and red micro-LEDs with
the double-stack DBR.
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Figure 5. (a) Schematic illustration of the WRA-DBR structure. (b) Reflectance spectra of the WRA-
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Table 1. Optical parameters for each layer of AlGaInP-based red micro-LED and GaN-based blue
and green micro-LEDs used in the FDTD simulations.

Red
Micro-LED

Thickness
(µm)

n k Green/Blue
Micro-LED

Thickness
(µm)

n k

Green (Blue) Green (Blue)

p-GaP 2 3.322 0 p-GaN 0.5 2.38 (2.43) 5 × 10−3

(6 × 10−3)

p-AlInP 0.42 3.014 4 × 10−3 n-GaN 2.5 2.38 (2.43) 5 × 10−3

(6 × 10−3)

n-AlGaInP 1.3 3.223 9 × 10−3 ITO 0.28 1.89 (1.95) 4 × 10−3

(6 × 10−3)
n-GaAs 0.08 3.856 0.196 - - - -

ITO 0.28 1.79 0 - - - -
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4. Conclusions

In summary, we have designed a WRA-DBR consisting of six sub-DBRs with high
reflectivity and less angular dependence within the visible light wavelength region. The
average reflectivity of the WRA-DBR at a normal incident angle of light can reach up to
99.73% in the wavelength range of 400 nm to 700 nm. Moreover, the average reflectivity of
the WRA-DBR is up to 97.93% when the incident angle of light is 60◦, revealing that the
WRA-DBR has less angular dependence. Furthermore, we investigate the influence of the
double-stack DBR and WRA-DBR on the performance of RGB flip-chip micro-LEDs using
the FDTD method. Compared to RGB flip-chip micro-LEDs with the double-stack DBR,
stronger electric field intensity is found in the air outside the substrates of RGB flip-chip
micro-LEDs with the WRA-DBR, indicating that the WRA-DBR can significantly improve
the performance of RGB flip-chip micro-LEDs. Our work demonstrates the promising
potential of the WRA-DBR for realization of high-efficiency RGB flip-chip micro-LEDs.
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