
Citation: Skowroński, R.; Brzeziński,

J. UI dApps Meet Decentralized

Operating Systems. Electronics 2022,

11, 3004. https://doi.org/10.3390/

electronics11193004

Academic Editor: Asma Khatoon

Received: 15 July 2022

Accepted: 13 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

UI dApps Meet Decentralized Operating Systems
Rafał Skowroński * and Jerzy Brzeziński

Department of Computer Science, Faculty of Distributed Systems, Poznan University of Technology,
Marii Skłodowskiej-Curie 5, 60-965 Poznan, Poland
* Correspondence: rafal.skowronski@put.poznan.pl

Abstract: The advent of Ethereum opened up a pandora box of decentralized possibilities. While
allowing for the replicated, decentralized computation of Turing-complete instructions, platforms
such as Ethereum do not offer the possibility of direct, interactive, real-time processing of users’
inputs that could later affect the decentralized state machine. They cannot directly observe, replicate
and authenticate users’ actions performed in real-time while presenting the results of these. They lack
mechanics that would incentivize full-nodes to provide low-latency-constrained services to users
in-between epochs of a decentralized state machine, thus pushing dApps’ developers towards hybrid
architectures—ones employing centralized servers while not even considering certain applications,
due to the aforementioned limitations. In this research paper, we explore our results of an attempt
to create a ‘decentralized operating system’ user experience a reality. We propose an architecture
which solves the problems of the responsiveness and finalization of multiple actions performed by
users in real-time—without the need for users to pre-authenticate but after having presented a single,
unitary consent to commit—through the hereby proposed Deferred Authentication mechanism.
To allow for this, we employ an in-house developed #GridScript programming language, used
by our decentralized state machine, along with a computer-vision-enabled and AI-aided mobile
app (available for both iOS and Android). We introduce the concept of Decentralized Processing
Threads (DPTs) and see how these enable fascinating possibilities. In addition, we look into how
Access-Control-Lists (ACLs)-enabled, incentivized storage, incentivized Sybil-proof communication,
embedded firewall apparatus, integrated off-the-chain payments, and crypto-incentivized off-the-
chain storage aid such a system and thus render it as feasible. We highlight various interesting
troubles we have encountered, such as state recovery after disconnects of the UI and the replication
of its state across both nodes maintaining the network and web browsers. We depict ‘off-the-chain’
mechanics, which we use to reward for real-time services provided to users by nodes maintaining
the network. We tackle crypto-incentivized WebRTC swarms not needing centralized servers for
signaling. We look into a user-friendly approach to Non-Fungible Tokens (NFTs). The test-bed is
readily available with multiple functional UI dApps already in place. Indeed, the paper presents UI
and UX design decisions we have undertaken based on conclusions from statistical research results
on a group of 50,341 volunteers over 4 years, which we have used to formulate what we codenamed
as the Venice UI/UX design paradigm. We extend upon the notion of Token Pools to allow for the
Sybil-proof incentivization of multiple-peers from a single data structure stored on the decentralized
state machine.

Keywords: blockchain; decentralized state machines; decentralized applications; dApps

1. Introduction

To the best of our knowledge, we have conceived and implemented something that
both users and dApps’ developers could consider as their personal, multi-purpose decen-
tralized Operating System. Here, users receive the kind of experience they are already
familiar with from centralized operating systems, while dApps’ developers receive a
framework with unprecedented, multi-tasking, communication, storage, presentation, and
user-interaction capabilities. All decentralized. All incentivized.

Electronics 2022, 11, 3004. https://doi.org/10.3390/electronics11193004 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193004
https://doi.org/10.3390/electronics11193004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4068-7022
https://doi.org/10.3390/electronics11193004
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193004?type=check_update&version=2

Electronics 2022, 11, 3004 2 of 32

1.1. Layout of this Research Paper

The layout of this research paper is as follows. First, in this section, we give some
introductory overview, while discussing the 5xA Design Paradigm which we came up with
after years of development of both the decentralized operating system and the UI dApps
running atop of it. Section 2 provides concise definitions used throughout the rest of the
paper. In Section 3, we introduce the reader to the concept of a decentralized operating
system. We explore the overall rationale and explain how the very concept contributes
to and builds upon the current state of decentralized systems. We explore the consensus
algorithm of the available test-bed prototype; we explore the architecture, dependency
relations, and use case scenarios by looking at a detailed UML diagram. In Section 4, we
define our two-tier research problem. In Section 5, we look into some of the previous works.
In Section 6, we highlight our contribution to the current state of the art. In Section 7, we
briefly explore #GridScript, the programming language used within our decentralized state
machine. Section 8 discusses the concept and mechanics of a Decentralized Bootloader.
With Section 9, we proceed to the hereby introduced concepts of Deferred Authentication
and State-Full Sessions. Going further, Section 10 introduces us to the fascinating concept of
Decentralized Processing Threads, which became an indispensable element and paramount
contribution to our test-bed environment. Specifically, we look at how actions performed
by users in real time, the results of which are immediately visible—can then be replicated
across the decentralized state machine at the user’s discretion. Section 11 tackles the
topic of incentivized data exchange and State-Channels facilitated through the unique
hereby-introduced concept of Multi-Dimensional Token Pools, which allow for efficient
remuneration of agents for arbitrary minuscule actions, causing minimal overhead on
the decentralized state machine and requiring a minimal amount of computation when
used. The only data to be remembered by a client using Multi-Dimensional Token Pools
is a single seed-hash, thus yet another fascinating concept. In Section 12, we discuss
our implementation of Decentralized Storage. We provide a detailed Thread Model and
an algorithm depicting our Proof-of-Storage construct, with a discussion included. In
Section 14 we present what we have coined as the Venice UI/UX design paradigm. It is a
fruit of long years of research and development while striving to provide an appropriate
Windows/macOS X-like operating system experience for decentralized applications of any
kind. Further, in Section 15, we go back to discussing how the hereby presented blueprint
extends upon what is available and provides a clear numerical results section to further back
up possibilities provided by the hereby proposed design and development. We look into
the achievable Transaction Per Second (TPS) statistics of our current test-bed environment;
in particular, we analyze the performance of State-Channels facilitated through Multi-
Dimensional Token Pools in the context of incentivized data exchange. Thus, on these
grounds, this constitutes a continuation of our previous research [1] as we provide detailed
statistical analysis of the previously introduced communication protocols and see how
Multi-Dimensional Token Pools allow for what we deem as unprecedented performance in
Sybil-proof incentivization of data exchange; not only within the bounds of a Decentralized
State Machine but of external arbitrary data traffic as well. We explain how this statistical
analysis can be seen as helpful in visualizing the performance of rewarding for arbitrary
services provided in real time to users, as we focus on the case of a single-hop incentivized
communication link. In addition, this research paper comes with Supplementary Material,
including a spreadsheet-based simulator, where the reader can validate all of the results
and probably arrive at some interesting conclusions.

1.2. Prelude to Decentralized Operating Systems

Indeed, there are reasons why non-hackers tend to prefer applications with a user
interface over command-line terminals. Yet still, as of today, even the latter remains wishful
thinking when it comes to current decentralized state machines. Solidity, the language
backing Ethereum [2], was not designed to allow for real-time, ad hoc, on-demand, code
formulation, interpretation, and execution. Still, it was designed to offer significantly

Electronics 2022, 11, 3004 3 of 32

more than Bitcoin [3], which is the execution of arbitrary Turing-complete instruction sets,
comprising what we know today as Decentralized Applications, or dApps for brevity. To
put things into a perspective, when using a typical operating system, as the user sits at
her home computer, she can execute instructions in a terminal, and these may take an
immediate, tangible effect—as far as the use experience is concerned. We want the same for
dApps as well. Furthermore, we demand the very that for UI dApps in particular. It is time
we bridge the gap between users’ needs and what nodes maintaining a decentralized state
machine could directly provide to their users. Under the presumption that everything is to
be incentivized, i.e., that agents participating in the system are assumed as rationale, we
look into how Stateless State-Channels [1]—which we extend upon in this paper—allow for
incentivization of most minuscule tasks when such are requested from nodes maintaining
the decentralized state machine, rendering the latter significantly more functional.

The decentralized community needs software components—software frameworks
that could provide a uniform, easily accessible functionality set for typical features required
by Decentralized Graphical Applications (UI dApps), including otherwise ubiquitous
mechanics such as packages’ deliveries—were it for the realm of centralized environments.
Indeed, these are concepts that have been available to users of centralized operating systems
for over a decade.

The reader might wonder. Why minimize reliance on a hybrid approach—of mixing
centralized and decentralized architectures? First, because we can, and second, because
we put forward an assumption that the more, we push users towards external, centralized
providers, the more we push them away from decentralization. We presume this to lower
the overall security, anonymity, and privacy guarantees, which likely might have attracted
users and/or developers towards decentralized applications (dApps) in the first place.

1.3. The 5xA Design Paradigm

We propose that any centralized service and/or sub-service could be implemented as
decentralized, as long as the following 5xA properties and requirements are satisfied:

Accessibility—The service remains accessible. Otherwise, agents would not be able
to interact with it in the first place. This property implies ease of use and promotes a
pleasurable user experience.

Authentication—In order to allow for authorization, authentication is needed first.
This includes authentication as ‘any’ user, should node(s) choose to provide free services
during a grace period. Methods might range from IP address authentication to explicit
strong signatures and certificates.

Authorization—Agents need to be authorized to perform activities. This includes a
trivial situation in which everyone is allowed in the case of publicly available services.

Accountability—This implies verifiability. Parties of interest should be able to verify
and benefit from a service delivery. Ideally, individual intermittent stages should be
accountable for and verifiable as well, thus securing those who deliver as they can now
be rewarded for fulfillment of smaller, identifiable sub-tasks while benefiting users, as
they, on the other hand, could avoid paying up-front. Further research in the field of
verifiable computations (e.g., using Zero-Knowledge Proofs [4]) could be of immense
contribution here.

Actuation—Everyone needs to be incentivized. That accounts for dApps and ser-
vice providers offering promotional grace periods for their services, which, thanks to
authorization and accountability, could be provided in a limited, controlled way.

Notice [Figure 1] how users’ and service operators’ needs are located at opposite
spectrums. Still, both properties, including those in between, would need to be satisfied for
the system to thrive. Without accessibility, accountability, and verifiability, actuation would
not be possible; thus, the two dipoles need to stay connected through their co-dependants
at all times.

Electronics 2022, 11, 3004 4 of 32

Electronics 2022, 11, x FOR PEER REVIEW 4 of 33

Actuation—Everyone needs to be incentivized. That accounts for dApps and service
providers offering promotional grace periods for their services, which, thanks to authori-
zation and accountability, could be provided in a limited, controlled way.

Notice [Figure 1] how users’ and service operators’ needs are located at opposite
spectrums. Still, both properties, including those in between, would need to be satisfied
for the system to thrive. Without accessibility, accountability, and verifiability, actuation
would not be possible; thus, the two dipoles need to stay connected through their co-de-
pendants at all times.

Figure 1. The concept of 5xA visualized.

2. Definitions
Log On–the moment services of the system become available to the user after being

requested and possibly after the user was authenticated.
Decentralized State Machine (DSM)—as defined in [1], with the most important

property that the environment is open-access, and anyone could aspire to become a leader
of each round/epoch of the machine.

Core Process—a program implemented in a language operated by nodes comprising
the DSM running either at full redundancy or in an IVR at one of the nodes. Notice that it
may process interactive input when running in the Sandbox Mode of an IVR, otherwise
not.

Client Process—a process running not directly on nodes maintaining the Decentral-
ized State Machine. It may be running within a web browser while being delivered from
and communicating with a Core Process.

UI dApp—a client process, owning UI components (e.g., a Window), communicating
with the DSM, i.e., possibly with one of the Core Processes operated by the Decentralized
Operating System.

Liveness—we define liveness as the property of a DSM, allowing it to react to users’
inputs and or instructions provided to it in real time.

State-Full Sessions—the user session has a state that can be modified and then com-
mitted to the DSM asynchronously on demand.

System Trie—the state of a DSM is modeled through State Domains [5] implemented
as nodes of a Merkle-Patricia Trie [6]. Thus, modifications of sub-leaves propagate to the
root node of the Trie.

Decentralized Terminal Interface (DTI)—a virtual terminal interface, spawned by
any node comprising the system, over a communication channel, e.g., SSH or a web
browser. The terminal is said to be decentralized, as actions taking place within may affect
the entire DSM if a user decides to ‘commit’. In the case of a UI, JavaScript code and other
assets may be delivered from multiple nodes even during a single session. A single thread
can be shared by multiple UI dApps. A thread can be read-only, write-only, or both (in
terms of its ability to affect the DSM), and associated flags indicate its functionalities.

Global VM Realm—this represents the state of a DSM, as seen by the majority of
nodes maintaining it. It can be altered only by code running in the Commitment Mode of an
IVR. Thus, code capable of affecting this realm is always executed by the majority of nodes
maintaining the DSM.

Figure 1. The concept of 5xA visualized.

2. Definitions

Log On–the moment services of the system become available to the user after being
requested and possibly after the user was authenticated.

Decentralized State Machine (DSM)—as defined in [1], with the most important
property that the environment is open-access, and anyone could aspire to become a leader
of each round/epoch of the machine.

Core Process—a program implemented in a language operated by nodes comprising
the DSM running either at full redundancy or in an IVR at one of the nodes. Notice that it
may process interactive input when running in the Sandbox Mode of an IVR, otherwise not.

Client Process—a process running not directly on nodes maintaining the Decentral-
ized State Machine. It may be running within a web browser while being delivered from
and communicating with a Core Process.

UI dApp—a client process, owning UI components (e.g., a Window), communicating
with the DSM, i.e., possibly with one of the Core Processes operated by the Decentralized
Operating System.

Liveness—we define liveness as the property of a DSM, allowing it to react to users’
inputs and or instructions provided to it in real time.

State-Full Sessions—the user session has a state that can be modified and then com-
mitted to the DSM asynchronously on demand.

System Trie—the state of a DSM is modeled through State Domains [5] implemented
as nodes of a Merkle-Patricia Trie [6]. Thus, modifications of sub-leaves propagate to the
root node of the Trie.

Decentralized Terminal Interface (DTI)—a virtual terminal interface, spawned by
any node comprising the system, over a communication channel, e.g., SSH or a web browser.
The terminal is said to be decentralized, as actions taking place within may affect the entire
DSM if a user decides to ‘commit’. In the case of a UI, JavaScript code and other assets may
be delivered from multiple nodes even during a single session. A single thread can be shared
by multiple UI dApps. A thread can be read-only, write-only, or both (in terms of its ability
to affect the DSM), and associated flags indicate its functionalities.

Global VM Realm—this represents the state of a DSM, as seen by the majority of
nodes maintaining it. It can be altered only by code running in the Commitment Mode of an
IVR. Thus, code capable of affecting this realm is always executed by the majority of nodes
maintaining the DSM.

Private VM Realm—represents a copy of the System Trie, which was spawned for the
purpose of serving a user’s session, possible through the Sandbox Mode of an IVR.

Local Authentication—authentication performed to a single node. It has no conse-
quences from the viewpoint of the entire DSM, as that would imply putting global trust in
the latter (e.g., for the purpose of serving a user-chosen desktop wallpaper, a user’s current
account balance, to bring a user to their home directory in a File Browser UI dApp as they
decide to launch, etc.).

Isolated VM Realm (IVR)—a software construct providing an interface through
UADL for manipulation and access to either a Global or a Private VM Realm. When
in sandbox mode, its main purpose is to operate on a copy of the System Trie to be made

Electronics 2022, 11, 3004 5 of 32

available to instructions executed in a DPT. IVR running in Commitment Mode can modify
the Global VM Realm and its associated System Trie. An IVR is composed of a DPT together
with a Private VM Realm which can be committed. In addition, it is the responsibility of
an IVR to decide which instructions are to be formed into a source-code package as they
are executed.

Commitment Mode of an IVR—executes instructions from the associated DPT in
commitment mode. Typically, that would imply the execution of byte code from a Commit-
table Bytecode Package.

Deferred Authentication—authentication to the DSM takes place after instructions
were executed. The authentication allows to commit a priori defined, i.e., actually per-
formed (in terms of perceived results, i.e., in Private VM Realm) actions. The mechanism
is facilitated through the compartmentation of the DSM’s sandboxed states (Private VM
Realms) that can be ‘committed’ later on through bytecode packages, on a user’s consent.
That happens due to, in layman’s terms, the ‘smart recording of instructions’ executed in
Sandboxed IVRs, thanks to State-Full Sessions. In GRIDNET OS, the actual authentication
(signature) is provided by the mobile app, which is onion routed to a node serving the
System IVR.

System IVR—the root IVR, running in sandbox mode. There is only one System IVR
for any given user session. The commitment of a System IVR implies the commitment of
all the associated sub-IVRs, which implies the commitment of all the associated sub-DPTs.
In layman’s terms, multiple UI dApps during a single session can affect the DSM, as each
can own an IVR with an associated DPT, or multiple of these.

Commitment of a DPT—when committable code inherent to a DPT makes its way to
a Committable Code Package, it is compiled, propagated across the network, and expected
to be executed at full redundancy, i.e., by the majority of the nodes.

Sandbox Mode of an IVR—the mode of an IVR in which code executes on an indi-
vidual node but does not affect the rest of the system (storage at other nodes).

Committable Code—instructions from a DPT which are to affect the state of a DSM,
implying instructions that are to execute at full redundancy on the DSM should a user
choose to commit a DPT.

(Committable) Source Code Package ((C)SCP)—source code from possibly multiple
DPTs associated with a single user session.

Committable Bytecode Package (CBCP)—the above, with code from each thread
successfully compiled. It is authenticated, i.e., signed in the name of the user, ready to be
executed by a DSM.

Execution of a CBCP—it is assumed that any CBCP that ever affected the DSM must
have been executed by the majority of nodes comprising the DSM at the time the CBCP
affected its persistent storage.

Global Authentication—this implies authenticating to the entire DSM. This can be
accomplished only through an authenticated CBCP, executed at full redundancy. An entity
that the authenticated globally may perform actions on the System Trie in accordance with
the associated Access Control Lists/Entries of elements that are to be affected.

QR Intent—a QR code representing a description of a processing task to be carried
out by the mobile app. It may contain information required for the proper encryption and
routing of the response, possibly across multiple hops.

JavaScript VM Context—part of the system running directly in the user’s web browser.
It makes all the user-mode APIs available to UI dApps through its objects and subroutines.

Selective Non-Malleability—while the sequence of data blocks building upon the
current state of a DSM is required to be immutable as time approaches infinity, it does not
hold true for higher-level representations of states inferred from data within these. I.e., we
may implement a mutable file system on top of an immutable yet extendable sequence of
data blocks.

Access Control List (ACL)—an ordered sequence of Access Control Entries associated
with an object (file, directories, etc.) stored within a State Domain.

Electronics 2022, 11, 3004 6 of 32

Access Control Entry (ACE)—a data entry associating an agent with a set of privileges
(e.g., Read, Write, Execute, Ownership).

User Session—period of communication between a user and one of the nodes main-
taining the DSM, during which an IVR is made available to the user, possibly with a Shell
and/or a UI, with the user being capable of affecting the DSM.

State domain—as defined in [1].
Client Code—code that has been deployed by a user of the system and does not

comprise part of the operating system’s code-base and thus is covered by authorization
checks.

Kernel Code—code executing at the highest trust level, possibly not constrained by
authorization checks, typically implying part of the operating system.

User-Mode values functions—values and API functions that can be freely accessed
and modified by client code comprising the Core Processes or Client Processes.

Kernel Mode Values and Functions—entities that cannot be (directly) accessed and
modified by code running in user mode. Typically, Kernel Mode functions are accessed
through user-mode functions that do all the authorization checks.

Execution Context of a DPT—the set of modifiable kernel-mode and user-mode
properties associated with an IVR, which client processes may rely on (e.g., active State
domain or directory).

Shell—an instruction interpreter. Running in the context of an IVR, it is made available
to the user locally (node’s operator) or through a network connection. All instructions are
processed through the associated DPT.

Source code—an ordered sequence of instructions that can be executed by the instruc-
tion’s interpreter.

State-Full Session—we say a session is state-full if it can enable the interactive process-
ing of a user’s requests, while preserving the results of previous computations performed
during that session, with the ability of having all the results committed to the DSM on the
user’s consent.

User Actions’ Description Language—language suitable for the representation of
user actions/requests performed both in the Shell and the UI. It needs to be compiled
to an efficient representation (bytecode) and executed. In our sample implementation,
#GridScript is such a language.

Code Linker—fetches source code from multiple DPTs, ones marked as committable,
and produces a single Committable Source Code Package (CSCP). Assuming the input source
code provided to each committable DPT was correct, it is its responsibility to assure the
proper formulation of the resulting Code Package’s source code.

Code Compiler—an abstract software component that transforms a Source Code
Package into a single Committable Bytecode Package that is to be executed by an IVR in
commitment mode by the DSM.

Decentralized Processing Thread (DPT)—an entity responsible for code execution.
Characterized by a tuple of: (1) a sequence of instructions to be executed in the context of an
IVR (both committable and non-committable) formulated in the language nodes operation,
and (2) the associated IVR. DPT can execute in the sandbox mode at particular node(s) or
in the commitment mode. This concept is explained in more detail in [Section 10].

Commitment Mode of a DPT—code executed by the System Realm. A DPT may
have sub-threads, which usually is the case for the System-Thread and child-threads. When
a DPT is marked as committable, the Linker may fetch code from it at any moment.

System DPT—thread associated with the System IVR.
State of a DSM—described as an aggregate state of all of its associated sub-states,

implemented through a Merkle Patricia Trie. In #GridScipt, the current state is identi-
fied by a single 32-byte byte vector called the PERSPECTIVE. In the case of GRIDNET
OS, that means the hash-value of the root node of the Merkle Patricia Trie contains all
the sub-states (leaf nodes). It can be checked from the command line by invoking the
‘PERSPECTIVE’ command.

Electronics 2022, 11, 3004 7 of 32

Non-committable Code—code that a DPT executes but which does not make its way
into a committable source code package. Thus, such a code may only run in the Sandbox
Mode of IVR/DPT.

Ephemeral Services—possibly paid-for services, provided by nodes, that do not
directly affect the DSM.ex. WebRTC data exchange swarms, data-proxy services, etc.

3. The Concept of a Decentralized Operating System

The nomenclature of a Decentralized Operating System is not new. It stems back to
1987 and the work of F. Bairadi et al. [4], who defined Decentralized Operating Systems as:
“consisting of several instances of the same set of processes: each instance is allocated to a
distinct node, and every decision about the system behavior is taken through cooperation
among several (or even all) instances since none of them has authority over the others.”
Now, that definition perfectly fits our conceptions indeed. Recently, the term began to
re-flourish within the scientific community, due to the need to better structure, visualize,
and accommodate the concept of decentralized applications and the relationships between
them and their surrounding environments.

3.1. Rationale

Today, decentralization and blockchain technology are the new Big Thing, right next
to Artificial Intelligence (AI). In order to improve the proliferation of what is available
from the scientific and engineering perspectives, we need to make the technology available
to users in the way that they need and enjoy. A rational approach might be to take a
look at what users of ‘centralized services’ already keep using and then decentralize it
all. Our team managed to implement what could be considered a decentralized operating
system from scratch, since current technologies, while being very usable, having in mind
Ethereum [2] in particular, did not provide the liveness, Deferred Authentication, and
State-Full Session [Section 9] properties required and already provided by almost each
and every modern operating system. Indeed, we lay out an assumption that users’ needs
could be visualized by looking at centralized operating systems and the applications and
services that these provide. Centralized solutions have evolved for decades, often backed
by monumental development teams. Service providers no more need to rely on ‘selling’
users’ privacy-related data to keep their business afloat. The advent of decentralized state
machines changed it all.

Decentralization is not just a fancy hype word. Users can benefit from multiple
inherent concepts such as the concept of a ‘cryptocurrency’ together with fascinating
properties enabled through the system-intrinsic properties of open, decentralized state
machines, of those with the property of non-malleability as time approaches infinity. Many
would rather remain anonymous than share their personal data, or even metadata, with
third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and
have it stored. They want to employ all the benefits of immutability and accountability
decentralized state machines are said to offer. They want to modify the file, to delete it, or
to be able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation of
the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just as
they would on Windows or macOS X. They want it all, just decentralized; both malleability
and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-

Electronics 2022, 11, 3004 8 of 32

control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with files
together with ownership privileges affect particular objects’ malleability properties. In our
DSM, the property of non-malleability is disabled by default for user-created data files and
can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus

Our implementation employs a modified version of the Bitcoin-NG [8] consensus
protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-of-
work, and data blocks containing the actual, authenticated code packages, possibly affecting
the DSM once executed. Block rewards are shared between the leaders of consecutive
rounds. A simplified consensus algorithm using the definitions, semantics, and protocols
described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader Li can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)sequence(s)
of blocks. The computational power needed to compute PoW is assumed to entail cost.

Epoch1: –leader ellection
Preconditions: Λ1 willing to become a round leader prepares a key pair

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 SK

1 /

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 PK

1 , BK
i —block

containing PoW (Ω), BD
i —block containing CBCPs, BK

L , BD
L —the number of key and data blocks,

respectively, that ever affected the DSM. BD
x —data block at position x.

1. Λ1 prepares BK
i containing Proof-of-Work (Ω).

2. Data Block is propagated using incentive-compatible data exchange protocol depicted in
Section 6.6.1 of [1].

3. Each Ni decides if ∑
BK

L
i=0 Ω ∼ BK

i is max. for any known linked sequence of key blocks. If not,
but with BK

i otherwise valid, (3a) it is stored on Ni but it does not extend the current chain. If
valid and found to produce (3b) the heaviest chain, BK

i is appended and Λ1 becomes the current
leader Li If, there are any BD

x where x ≥ i ∼ BK
i all these data blocks are discarded. Notice that

it is in the intention of Li to honor and extend upon data blocks by Li−1 as they receive shares
from fees associated with these. Li gains the right to produce data blocks, authenticated
through

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 SK

1 .
Epoch2–production of data-blocks

4. Li produces BD
i+1 bound to

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 PK

1 , containing CBCPs it managed to collect. Li prefers CBCPs
yielding highest rewards.

5. BD
i+1 gets propagated through protocol depicted in Section 6.6.1 of [1].

6. Each node verifies BD
i+1 (sees if Λ1 is the current leader, it does so if the most recent key block

was bound to his

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 PK etc.) if it is, the block is appended, otherwise it is discarded. If the block

was found to be produced by Λ1, but is otherwise invalid, a proof-of-fraud is issued and
broadcast throughout the network for processing and Λ1 is penalized.
Incentivization: Rewards from each data block and key block are shared between Li and Li+1.

3.3. The Architecture

Below we outline some of the design relationships between the system’s inertias and
external agents interacting with the system through a simplified hybrid UML use-case
diagram [Figure 2] below.

Electronics 2022, 11, 3004 9 of 32

Figure 2. Simplified version of a hybrid UML use-case diagram.

UI dApps always interact with the System through a user-mode function of JavaScript
VM Context, which provides client-side APIs and associates the invocation of each instruc-
tion with a particular process. dApps (core processes) without a UI comprise #GridScript
instructions only. The execution of each instruction entails costs.

3.4. Relationship between the Decentralized Web-UI, UI dApps, IVRs and DPTs

In our implementation, the situation is similar to how Windows 3.11 and Windows 95
used to interact with the underlying DOS operating system. Everything the user does that
involves a DSM (data reads/writes), under the hood, is translated into their User Actions’

Electronics 2022, 11, 3004 10 of 32

Description Language (#GridScript) representation. Thus, UADL is the main work-horse of
the entire system when it comes to executing the user’s actions that involve the DSM. UADL
allows to replicate these throughout the network. Here, the replication of actions means the
replication of their actual result. UADL does not store mouse movements, say, within a File
Manager UI dApp; instead, it contains instructions carrying out write operations along with
the path and contents of a file that the user created. Logic implemented within a particular
UI dApp, also within the associated IVR, aided by Linker, decide which instructions are to
make their way to the resulting Source Code Package [Figure 3]

Electronics 2022, 11, x FOR PEER REVIEW 10 of 33

instruction with a particular process. dApps (core processes) without a UI comprise
#GridScript instructions only. The execution of each instruction entails costs.

3.4. Relationship between the Decentralized Web-UI, UI dApps, IVRs and DPTs
In our implementation, the situation is similar to how Windows 3.11 and Windows

95 used to interact with the underlying DOS operating system. Everything the user does
that involves a DSM (data reads/writes), under the hood, is translated into their User Ac-
tions’ Description Language (#GridScript) representation. Thus, UADL is the main work-
horse of the entire system when it comes to executing the user’s actions that involve the
DSM. UADL allows to replicate these throughout the network. Here, the replication of
actions means the replication of their actual result. UADL does not store mouse move-
ments, say, within a File Manager UI dApp; instead, it contains instructions carrying out
write operations along with the path and contents of a file that the user created. Logic
implemented within a particular UI dApp, also within the associated IVR, aided by
Linker, decide which instructions are to make their way to the resulting Source Code Pack-
age [Figure 3]

Figure 3. From user actions to byte code that can be executed by the DSM.

As seemingly we have already well begun discussing solutions, let us first put for-
ward a formal definition of the problem at hand, shall we?

4. Problem Formulation
Note: For the comprehensiveness of presentation, we allow ourselves to tackle both

architectural/algorithmic problematics as well as incentivization dilemmas, as the herein
provided solution to the latter is used not only for the incentivization of data exchange
but aids multiple parts of the system whenever nodes are to be incentivized for minuscule
actions during user sessions. Still, we introduce these in the context of communication for
on-sight compatibility with protocols and Proof of Sybil-Proofness found in [1].

Architecture/Functionality [Problem 1]
We strive for a decentralized software and algorithmic architecture which would al-

low for the execution of user-specified computational tasks. It should be possible to for-
mulate such tasks remotely, i.e., either through an emulated terminal interface made avail-
able by nodes operating the DSM (i.e., over SSH) or through a user interface. The software
and algorithmic apparatus should allow for the existence of decentralized applications
equipped with a user interface. No assets of either the system itself (including code,
graphics, etc.) or of the dApps should need to be delivered from outside of the (decentral-
ized) system. While initializing the UI, the solution should enable for data deliveries from
multiple places, if available. The computational tasks, carried out by dApps, may require
affecting the storage of the decentralized state machine, which implies processing by the
decentralized state machine at full redundancy. For other tasks, processing by select nodes
may be sufficient. The system shall exhibit not a single point of trust. The system shall
support the ad hoc, on-demand formulation of tasks/instructions and the execution of
these by the decentralized state machine on the user’s consent with a minimal number of
authentications. For tasks affecting the decentralized state machine, the results should be
computed and presented to the user in real-time before the user decides to commit the
results onto the DSM and thus making them persistent. The system shall support interac-
tive, real-time processing by nodes comprising the system, with the possibility to commit
everything to the DSM on the user’s consent. Every aspect of the system shall remain de-
centralized and incentivized. That holds true for data storage and data exchange. We

Figure 3. From user actions to byte code that can be executed by the DSM.

As seemingly we have already well begun discussing solutions, let us first put forward
a formal definition of the problem at hand, shall we?

4. Problem Formulation

Note: For the comprehensiveness of presentation, we allow ourselves to tackle both
architectural/algorithmic problematics as well as incentivization dilemmas, as the herein
provided solution to the latter is used not only for the incentivization of data exchange
but aids multiple parts of the system whenever nodes are to be incentivized for minuscule
actions during user sessions. Still, we introduce these in the context of communication for
on-sight compatibility with protocols and Proof of Sybil-Proofness found in [1].

Architecture/Functionality [Problem 1]
We strive for a decentralized software and algorithmic architecture which would allow

for the execution of user-specified computational tasks. It should be possible to formulate
such tasks remotely, i.e., either through an emulated terminal interface made available by
nodes operating the DSM (i.e., over SSH) or through a user interface. The software and
algorithmic apparatus should allow for the existence of decentralized applications equipped
with a user interface. No assets of either the system itself (including code, graphics, etc.) or
of the dApps should need to be delivered from outside of the (decentralized) system. While
initializing the UI, the solution should enable for data deliveries from multiple places, if
available. The computational tasks, carried out by dApps, may require affecting the storage
of the decentralized state machine, which implies processing by the decentralized state
machine at full redundancy. For other tasks, processing by select nodes may be sufficient.
The system shall exhibit not a single point of trust. The system shall support the ad hoc, on-
demand formulation of tasks/instructions and the execution of these by the decentralized
state machine on the user’s consent with a minimal number of authentications. For tasks
affecting the decentralized state machine, the results should be computed and presented
to the user in real-time before the user decides to commit the results onto the DSM and
thus making them persistent. The system shall support interactive, real-time processing
by nodes comprising the system, with the possibility to commit everything to the DSM on
the user’s consent. Every aspect of the system shall remain decentralized and incentivized.
That holds true for data storage and data exchange. We strive for the solution to allow
for user-perceived multi-tasking and multi-threading, with code execution spread across
multiple nodes, when possible and desirable. Despite imminent parallelism, the system
shall thwart concurrency issues, especially when multiple UI dApps are involved within
the same user session. Still, once the user decides to commit computational results, the
number of required confirmations and/or authorizations should be minimal and tend to 1.
Web browsers are not trusted.

Communication [Problem 2]

Electronics 2022, 11, 3004 11 of 32

The problem is, how does one allow a single peer to establish multiple, efficiently
incentivized, in a Sybil-proof manner, simultaneous data streams with multiple peers, while
assuring ease-of-use, for networks of arbitrary topology?

Definition of efficiency: utilization of decentralized storage is minimal, both in terms
of used storage space and necessary write operations.

Definition of ease-of-use: the number of interactions required from the user should be
minimal (registering data on the chain, granting authorizations, etc.).

5. Previous Works

So far, there have been a couple of attempts to market blockchain-based concepts as
operating systems. ‘Over ledger Operating System’ [9]—as of now, the project does not
provide any publicly accessible environment for UI dApps or an operating system-like man-
agement interface, let alone Linux-like decentralized terminal services. The authors claim
to allow for bridging permission and permissionless DLTs, multichain and an interoperable
meta identity, and zero-knowledge proofs. They can also support multi-DLT applications.
One quickly gets to understand that their platform is much closer to an Ethereum-like
system, possibly integrating multiple such systems under the hood, but it does not bridge
the decentralized state machine↔ services↔ user gap we envision a modern Web 3.0
Operating System to fulfill.

Another contestant is ‘EOS.IO’ [10], and as the authors state: “Ethereum positions
itself as a supercomputer while EOS positions itself as its operating system.” That was back
in 2017. One may judge the results by visiting their website. Unfortunately, it all boils down
to deploying smart contracts and going through difficult steps of assuring integration, say,
with UI interface, supposedly deployed outside of their environment. There also was a
project called ‘Liberty OS ‘; sadly, it may have been described as a Linux distribution with
an ‘altcoin’ attached and unfortunately ended up being a scam, as the authors of the project
ceased releasing new information after their fundraising ended.

In terms of incentivized communication, recently in [1], the authors proposed the
first communication protocol provably Sybil-proof in computer networks of arbitrary
topology. We now extend upon the concept of Token Pools as described in [1] to support
multiple simultaneous data streams. Previous research did not tackle the case of multiple
simultaneous streams being handled and incentivized by a single peer. In fact, it would be
problematic for the previously proposed off-the-chain reward mechanics, as Transmission
Tokens [1] from a single Token could not be produced for multiple peers until cashed out
on the chain.

6. Contribution

We provide a working solution to the previously formulated multi-stage problem. In
order to allow for ad hoc, interactive tasks’ formulation, at the very foundation of every-
thing we introduce the concept of Decentralized Processing Threads (DPTs) [Section 10].
DPTs allow for both multi-tasking and multi-threading in a decentralized operating sys-
tem. When needed, the results of their computations can be committed across the entire
DSM. DPTs can perform computations in real time and have state and storage attached
through Isolated Virtual Machine Realms (IVRs). We look into the concept of Deferred
Authentication [Section 9] and see how our implementation employs both of these for use
in Decentralized Terminal Services—here, supporting both UI—accessible through a web
browser from every node and Terminal—available both from UI and directly over SSH.
We see how the state of an IVR/DPT can be copied across nodes when and as needed.
For incentivized data exchange, but also whenever the off-the-chain rewarding of nodes
is needed, we build upon [1], where the authors provided the very first Sybil-proof and
incentive-compatible data exchange protocol suitable for networks of any topology, by
enabling rewarding more than one agent simultaneously through a single state channel.
For this, we extend upon the concept of Token Pools introduced in [1] to support multiple
simultaneous beneficiaries and introduce Multi-Dimensional Token Pools.

Electronics 2022, 11, 3004 12 of 32

7. #GridScript

#GridScript is a programming language derived from Forth [11]. It remains backwards
compatible with it for the most of it. It was extended to better accommodate its usage
as a Shell from within an Emulated Terminal Interface. for instance, with the support
of in-line parameters for code words. The most notable additions include the built-in
support of decentralized state machine operations, cryptographic constructs, the support
of decentralized storage and Decentralized Processing Threads, and also the support of
Kernel-Mode and user-mode instructions and metadata automatically associated with stack-
entries for easy debugging. There are many tutorials available at https://mag.gridnet.org
(accessed on 12 September 2022). For the purposes of this article, we would be delighted to
highlight a couple of useful instructions:

BT (Begin Thread)—transitions an IVR into package-compilation mode. In over-
simplified layman’s terms, instructions are recorded and then make their way into a Code
Package on ‘commit’.

Commit (CT)—by default, causes Linker and Compiler to formulate a Committable
Code Package from the thread the command is invoked from. If executed from the System
Thread, it causes the compilation of all of the sub-threads. When invoked, the Commu-
nication, Linkage, Compilation, Authentication (including mobile app), and Networking
sub-systems would be used to sign the resulting Byte Code Package and propagate it
throughout the network, to be executed by the DSM.

VT (View Thread)—shows currently formulated committable source code associated
with the thread the command is invoked from. A terminal-only command.

Send [Source Destination]—sample command accepting inline parameters, issuing a
cryptocurrency transfer.

LogMeIn—sample command which can execute only in sandbox mode. It employs
QR codes and onion routing to perform Local Authentication.

Perspective—prints the perspective of the System IVR associated with the user’s session.
Chown, Setfacl, Getfacl—Linux-compatible access right and ownership look-up and

management utilities.
The language allows for dynamic memory allocation, with dynamic boundaries’

checking, which on these grounds is similar to Java. The allocation of each memory unit is
charged with the system-intrinsic cryptocurrency. In sandbox mode, the client is allocated
a grace amount of resources. Execution in commit mode (full redundancy) always entails a
cost. #GridScript boards the in-terminal code compilation, formulation, and debugging
constructs. On these grounds, it is interesting to note that as instructions are executed, the
code-execution engine associates metadata with data put onto the stack, depicting its origin
and making an attempt to include additional descriptions. One may always type ‘S’ to see
the data stack along with the associated metadata.

As a side note, to the best of our knowledge, #GridScript is the only language operated
by a decentralized state machine allowing for arbitrary precision mathematical double-
floating point operations. Type conversions are performed on-the-fly; thus, on these
grounds, it may be considered as a loosely typed language even though it is data-type
aware. Mathematical operations employ a post-fix notation; feel free to take it for a spin at
any time by accessing the Terminal Services of any node.

8. Decentralized Web Boot-Loader

Operating Systems usually come with a bootloader. The purpose of a bootloader in
a Decentralized Operating System shall be to prepare any kind of resources needed to
establish a user session. Thus, in the case of an SSH-based session, that would mean the
preparation of a Shell. In the case of a UI session, that would involve (1) the preparation
of resources on the accessed node(s)’ side—the spawning of the command’s processing
engine, etc. (2) the delivery of a JavaScript bootstrap payload code package (the JavaScript
VM Context) to a web browser, which in turn would attempt to fetch additional resources,
possibly from multiple nodes, and take care of further initializations. The main rationale

https://mag.gridnet.org

Electronics 2022, 11, 3004 13 of 32

here is to allow for an uninterrupted user experience once the control over the UI is handed
over to the user since all the major components are to be pre-fetched. Below in [Figure 4]
are actions performed by the decentralized Bootloader, while bootstrapping is what we call
a decentralized user interface. Here, it is worthwhile to notice that assets contributing to a
single user session indeed might be coming from multiple peers simultaneously.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

8. Decentralized Web Boot-Loader
Operating Systems usually come with a bootloader. The purpose of a bootloader in

a Decentralized Operating System shall be to prepare any kind of resources needed to
establish a user session. Thus, in the case of an SSH-based session, that would mean the
preparation of a Shell. In the case of a UI session, that would involve (1) the preparation
of resources on the accessed node(s)’ side—the spawning of the command’s processing
engine, etc. (2) the delivery of a JavaScript bootstrap payload code package (the JavaScript
VM Context) to a web browser, which in turn would attempt to fetch additional resources,
possibly from multiple nodes, and take care of further initializations. The main rationale
here is to allow for an uninterrupted user experience once the control over the UI is
handed over to the user since all the major components are to be pre-fetched. Below in
[Figure 4] are actions performed by the decentralized Bootloader, while bootstrapping is
what we call a decentralized user interface. Here, it is worthwhile to notice that assets
contributing to a single user session indeed might be coming from multiple peers simul-
taneously.

Figure 4. Steps to be taken by the decentralized bootloader (UI).

The bootloader shall support the loading of assets from multiple nodes simultane-
ously, the validation of assets’ integrity, and the resumption of downloads, should a need
arise. In the case of our system, one may see all the events flying by as it boots by going to
the Chromium developer pane. Here, the process of peers’ discovery happens at full
nodes through a modified version of Kademlia [12]. As peers are discovered, these are
made available to JavaScript components [Figure 5] to be then served through the embed-
ded web server, once the user connects. As assets are delivered, both their integrity and
semantics are verified. Should there be any unrecoverable error within any of the fetched
ECMA6 modules, the system would refuse to boot. The bootloader supports assets being
divided into multiple groups, each of which is to be processed in a separate stage [Figure
6].

Figure 5. Discovered peers injected into JavaScript files.

Figure 4. Steps to be taken by the decentralized bootloader (UI).

The bootloader shall support the loading of assets from multiple nodes simultaneously,
the validation of assets’ integrity, and the resumption of downloads, should a need arise.
In the case of our system, one may see all the events flying by as it boots by going to the
Chromium developer pane. Here, the process of peers’ discovery happens at full nodes
through a modified version of Kademlia [12]. As peers are discovered, these are made
available to JavaScript components [Figure 5] to be then served through the embedded web
server, once the user connects. As assets are delivered, both their integrity and semantics
are verified. Should there be any unrecoverable error within any of the fetched ECMA6
modules, the system would refuse to boot. The bootloader supports assets being divided
into multiple groups, each of which is to be processed in a separate stage [Figure 6].

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

8. Decentralized Web Boot-Loader
Operating Systems usually come with a bootloader. The purpose of a bootloader in

a Decentralized Operating System shall be to prepare any kind of resources needed to
establish a user session. Thus, in the case of an SSH-based session, that would mean the
preparation of a Shell. In the case of a UI session, that would involve (1) the preparation
of resources on the accessed node(s)’ side—the spawning of the command’s processing
engine, etc. (2) the delivery of a JavaScript bootstrap payload code package (the JavaScript
VM Context) to a web browser, which in turn would attempt to fetch additional resources,
possibly from multiple nodes, and take care of further initializations. The main rationale
here is to allow for an uninterrupted user experience once the control over the UI is
handed over to the user since all the major components are to be pre-fetched. Below in
[Figure 4] are actions performed by the decentralized Bootloader, while bootstrapping is
what we call a decentralized user interface. Here, it is worthwhile to notice that assets
contributing to a single user session indeed might be coming from multiple peers simul-
taneously.

Figure 4. Steps to be taken by the decentralized bootloader (UI).

The bootloader shall support the loading of assets from multiple nodes simultane-
ously, the validation of assets’ integrity, and the resumption of downloads, should a need
arise. In the case of our system, one may see all the events flying by as it boots by going to
the Chromium developer pane. Here, the process of peers’ discovery happens at full
nodes through a modified version of Kademlia [12]. As peers are discovered, these are
made available to JavaScript components [Figure 5] to be then served through the embed-
ded web server, once the user connects. As assets are delivered, both their integrity and
semantics are verified. Should there be any unrecoverable error within any of the fetched
ECMA6 modules, the system would refuse to boot. The bootloader supports assets being
divided into multiple groups, each of which is to be processed in a separate stage [Figure
6].

Figure 5. Discovered peers injected into JavaScript files. Figure 5. Discovered peers injected into JavaScript files.

Electronics 2022, 11, 3004 14 of 32Electronics 2022, 11, x FOR PEER REVIEW 14 of 33

Figure 6. Assets are processed in separate stages.

That is to allow maintainers of the system to ensure that dynamically loaded ECMA6
modules are processed and loaded in the expected order, preventing issues with depend-
ency relationships, had the assets been loaded all at once, or as dictated by the web
browser and uncertainties caused by the state of the network.

9. Deferred Authentication State-Full Sessions
Thanks to State-Full Sessions, made available both through the SSH and the UI, the

user has a perception of interacting with the DSM in real time. Ephemeral services are
being offered to the user throughout the optional grace period while being fully account-
able [Figure 7].

Figure 7. Higher level overview of the deferred authentication functionality.

Figure 6. Assets are processed in separate stages.

That is to allow maintainers of the system to ensure that dynamically loaded ECMA6
modules are processed and loaded in the expected order, preventing issues with depen-
dency relationships, had the assets been loaded all at once, or as dictated by the web
browser and uncertainties caused by the state of the network.

9. Deferred Authentication State-Full Sessions

Thanks to State-Full Sessions, made available both through the SSH and the UI, the
user has a perception of interacting with the DSM in real time. Ephemeral services are being
offered to the user throughout the optional grace period while being fully accountable
[Figure 7].

Electronics 2022, 11, x FOR PEER REVIEW 14 of 33

Figure 6. Assets are processed in separate stages.

That is to allow maintainers of the system to ensure that dynamically loaded ECMA6
modules are processed and loaded in the expected order, preventing issues with depend-
ency relationships, had the assets been loaded all at once, or as dictated by the web
browser and uncertainties caused by the state of the network.

9. Deferred Authentication State-Full Sessions
Thanks to State-Full Sessions, made available both through the SSH and the UI, the

user has a perception of interacting with the DSM in real time. Ephemeral services are
being offered to the user throughout the optional grace period while being fully account-
able [Figure 7].

Figure 7. Higher level overview of the deferred authentication functionality. Figure 7. Higher level overview of the deferred authentication functionality.

Electronics 2022, 11, 3004 15 of 32

In fact, what is happening under the hood, as far as the state of the DSM goes, is that the
user is implicitly (through UI dApps, terminal commands, etc.) reading from and altering a
sandboxed copy of the System Trie, made available to their session through an IVR. In order
to allow for parallelism and multi-threading, we came up with the concept of Decentralized
Processing Threads. Obviously, the code affecting the DSM needs to be authenticated.
Deferred Authentication allows for (1) the tracking of instructions executed by the user
once a DPT is caused to enter the ‘Compilation State’ through the BT command (2) the
cumulative collection of the resulting sequences of instructions from possibly multiple
DPTs (3) the linkage and optimization of the resulting code bundle, producing a byte code
(4) the final authentication of the resulting bytecode package through the user’s private key
(5) after being propagated throughout the network, the bytecode is then processed at full
redundancy, possibly affecting the DSM. The UML diagram below [Figure 8] showcases
how the mechanics of Deferred Authentication are implemented through the interactions
of a variety of components. Do notice that the mechanics of authentication to the entire
DSM—needed once code packages execute at full redundancy—is decoupled from the
incentivization of particular nodes, serving the user ephemeral services, possibly leading
to the process of the commitment of actions performed within the UI. Nonetheless, the
user may be fine with primarily services alone throughout the grace period and may pre-
authenticate to particular nodes when out of free ephemeral resources (e.g., while playing
games or using web-proxy anonymization services). It is then the task of the operating
system to ask the user for either authentication or pre-authentication when and as needed,
calculating the amount of needed assets autonomously all the same. Further, we lay out
some of the details related to DPTs, which have already been incorporated within the
diagram above.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 33

In fact, what is happening under the hood, as far as the state of the DSM goes, is that
the user is implicitly (through UI dApps, terminal commands, etc.) reading from and al-
tering a sandboxed copy of the System Trie, made available to their session through an
IVR. In order to allow for parallelism and multi-threading, we came up with the concept
of Decentralized Processing Threads. Obviously, the code affecting the DSM needs to be
authenticated. Deferred Authentication allows for (1) the tracking of instructions executed
by the user once a DPT is caused to enter the ‘Compilation State’ through the BT command
(2) the cumulative collection of the resulting sequences of instructions from possibly mul-
tiple DPTs (3) the linkage and optimization of the resulting code bundle, producing a byte
code (4) the final authentication of the resulting bytecode package through the user’s pri-
vate key (5) after being propagated throughout the network, the bytecode is then pro-
cessed at full redundancy, possibly affecting the DSM. The UML diagram below [Figure
8] showcases how the mechanics of Deferred Authentication are implemented through
the interactions of a variety of components. Do notice that the mechanics of authentication
to the entire DSM—needed once code packages execute at full redundancy—is decoupled
from the incentivization of particular nodes, serving the user ephemeral services, possibly
leading to the process of the commitment of actions performed within the UI. Nonethe-
less, the user may be fine with primarily services alone throughout the grace period and
may pre-authenticate to particular nodes when out of free ephemeral resources (e.g., while
playing games or using web-proxy anonymization services). It is then the task of the op-
erating system to ask the user for either authentication or pre-authentication when and as
needed, calculating the amount of needed assets autonomously all the same. Further, we
lay out some of the details related to DPTs, which have already been incorporated within
the diagram above.

Figure 8. UML diagram showcasing Deferred Authentication.

Figure 8. UML diagram showcasing Deferred Authentication.

Electronics 2022, 11, 3004 16 of 32

10. Decentralized Processing Threads

At some point, our development team had a good-looking user interface and a couple
of dApps, but something was utterly not right. Lots of synchronization was needed
between applications running in the UI. It was difficult to allow for multiple UI dApps
to interact with a single code-formulation construct—at least, without them getting in
a way of each other. Some applications needed only to perform ad hoc code execution
and computation in sandbox mode, say, to read data from the DSM or to see if a file
existed, while others wanted to have their associated IVRs enter compilation mode and
formulate instructions that resulted in a file on the decentralized storage being deployed or
a cryptocurrency transaction being issued. As users kept interacting with an early version
of the system, some UI dApps had their code ready to be committed while others were in
the midst of achieving such a state. Some wanted to be checking up on data from the DSM
at high frequency, while others wanted to do single but persistent data writes once in a blue
moon. Then, as soon as the data write instruction was compiled, it quickly turned out that
another app would inject data access instructions that (1) needlessly progressed into the
committable bytecode and (2) could even have messed up code formulated by the former
UI dApp. It quickly became imminent that for some scenarios, we had to allow DPTs to be
shared among UI dApps (e.g., the user creates a file in a File Manager and wants to edit
it before it is committed to the DSM, but for now, the file exists only in a Private Realm
associated with the File Manager UI dApp).

Indeed, as our UI dApps became more and more sophisticated, and as we set out to
test more and more of them in parallel, it quickly turned out that better and better isolation
among processes was needed (think of ‘processes’ and/or UI dApps running within a
single tab of a web browser). We had to improve the multi-threading and multi-tasking
in terms of the code executed in sandbox mode. In particular, we had to support some
form of multi-threading, especially in terms of instructions executed on Sandboxed IVR, in
parallel. Indeed, it was no longer sufficient for a node to host a single IVR. We had to allow
for the better parallelization and isolation of UI dApps and to allow for the uninterrupted
formulation of code which would then affect the DSM by each of these. To address these
dilemmas, we conceived Decentralized Processing Threads. From the current perspective,
the result turned out to be an extremely powerful apparatus of unprecedented possibilities
and agility. Had we picked a single concept that enabled a multi-threaded, decentralized
operating system pleasurable user experience, it definitely would be for the DPTs, alongside
Deferred Authentication.

Threads are one of the most ubiquitous concepts in modern computer science. They
allow for the perceived parallelization of instructions’ execution and isolation through
separate code-execution stacks.

Decentralized Processing Threads serve similar purposes. Each DPT has stacks of its
own. In

Electronics 2022, 11, x FOR PEER REVIEW 16 of 33

10. Decentralized Processing Threads
At some point, our development team had a good-looking user interface and a couple

of dApps, but something was utterly not right. Lots of synchronization was needed be-
tween applications running in the UI. It was difficult to allow for multiple UI dApps to
interact with a single code-formulation construct—at least, without them getting in a way
of each other. Some applications needed only to perform ad hoc code execution and com-
putation in sandbox mode, say, to read data from the DSM or to see if a file existed, while
others wanted to have their associated IVRs enter compilation mode and formulate in-
structions that resulted in a file on the decentralized storage being deployed or a crypto-
currency transaction being issued. As users kept interacting with an early version of the
system, some UI dApps had their code ready to be committed while others were in the
midst of achieving such a state. Some wanted to be checking up on data from the DSM at
high frequency, while others wanted to do single but persistent data writes once in a blue
moon. Then, as soon as the data write instruction was compiled, it quickly turned out that
another app would inject data access instructions that (1) needlessly progressed into the
committable bytecode and (2) could even have messed up code formulated by the former
UI dApp. It quickly became imminent that for some scenarios, we had to allow DPTs to
be shared among UI dApps (e.g., the user creates a file in a File Manager and wants to edit
it before it is committed to the DSM, but for now, the file exists only in a Private Realm
associated with the File Manager UI dApp).

Indeed, as our UI dApps became more and more sophisticated, and as we set out to
test more and more of them in parallel, it quickly turned out that better and better isolation
among processes was needed (think of ‘processes’ and/or UI dApps running within a sin-
gle tab of a web browser). We had to improve the multi-threading and multi-tasking in
terms of the code executed in sandbox mode. In particular, we had to support some form
of multi-threading, especially in terms of instructions executed on Sandboxed IVR, in par-
allel. Indeed, it was no longer sufficient for a node to host a single IVR. We had to allow
for the better parallelization and isolation of UI dApps and to allow for the uninterrupted
formulation of code which would then affect the DSM by each of these. To address these
dilemmas, we conceived Decentralized Processing Threads. From the current perspective,
the result turned out to be an extremely powerful apparatus of unprecedented possibili-
ties and agility. Had we picked a single concept that enabled a multi-threaded, decentral-
ized operating system pleasurable user experience, it definitely would be for the DPTs,
alongside Deferred Authentication.

Threads are one of the most ubiquitous concepts in modern computer science. They
allow for the perceived parallelization of instructions’ execution and isolation through
separate code-execution stacks.

Decentralized Processing Threads serve similar purposes. Each DPT has stacks of its
own. In ⋮⋮⋮Gridnet Os, DPTs execute code written in #GridScript. Thus, the running code
has access to all the DSM’s opcodes, codewords, and APIs while being underlying native-
architecture agnostic. It may define and compile new codewords and opcodes as needed,
thus being on these grounds compatible with Forth. Each DPT is associated with an IVR.
The latter provides resources to the former, such as a copy of the current System Trie—
the instructions are executed by a DPT effect. DPTs can execute in ‘compilation mode’,
which can only be enabled on an IVR running in Sandbox mode. Enabling compilation
mode (BT) kicks off the background code-formulation process. From now on, all opera-
tions the user performs, which affect the System Trie, facilitated through the very DPT
either explicitly from the Terminal or through UI dApps, would be described through
UADL and included in the resulting CBCP once the user decides to commit. It is only
when DSM runs code at full redundancy, affecting its state that the corresponding (sys-
tem) IVR is not Sandboxed. A DPT can be marked as committable (#GridScript ‘RT’ com-
mand) at any moment either by user or the associated UI dApp, which is when code from
within it may be fetched by Linker (and provided to Compiler) at any moment. In our
implementation, VM Context running in the web browser automates the process. If there

Electronics 2022, 11, x FOR PEER REVIEW 16 of 33

10. Decentralized Processing Threads
At some point, our development team had a good-looking user interface and a couple

of dApps, but something was utterly not right. Lots of synchronization was needed be-
tween applications running in the UI. It was difficult to allow for multiple UI dApps to
interact with a single code-formulation construct—at least, without them getting in a way
of each other. Some applications needed only to perform ad hoc code execution and com-
putation in sandbox mode, say, to read data from the DSM or to see if a file existed, while
others wanted to have their associated IVRs enter compilation mode and formulate in-
structions that resulted in a file on the decentralized storage being deployed or a crypto-
currency transaction being issued. As users kept interacting with an early version of the
system, some UI dApps had their code ready to be committed while others were in the
midst of achieving such a state. Some wanted to be checking up on data from the DSM at
high frequency, while others wanted to do single but persistent data writes once in a blue
moon. Then, as soon as the data write instruction was compiled, it quickly turned out that
another app would inject data access instructions that (1) needlessly progressed into the
committable bytecode and (2) could even have messed up code formulated by the former
UI dApp. It quickly became imminent that for some scenarios, we had to allow DPTs to
be shared among UI dApps (e.g., the user creates a file in a File Manager and wants to edit
it before it is committed to the DSM, but for now, the file exists only in a Private Realm
associated with the File Manager UI dApp).

Indeed, as our UI dApps became more and more sophisticated, and as we set out to
test more and more of them in parallel, it quickly turned out that better and better isolation
among processes was needed (think of ‘processes’ and/or UI dApps running within a sin-
gle tab of a web browser). We had to improve the multi-threading and multi-tasking in
terms of the code executed in sandbox mode. In particular, we had to support some form
of multi-threading, especially in terms of instructions executed on Sandboxed IVR, in par-
allel. Indeed, it was no longer sufficient for a node to host a single IVR. We had to allow
for the better parallelization and isolation of UI dApps and to allow for the uninterrupted
formulation of code which would then affect the DSM by each of these. To address these
dilemmas, we conceived Decentralized Processing Threads. From the current perspective,
the result turned out to be an extremely powerful apparatus of unprecedented possibili-
ties and agility. Had we picked a single concept that enabled a multi-threaded, decentral-
ized operating system pleasurable user experience, it definitely would be for the DPTs,
alongside Deferred Authentication.

Threads are one of the most ubiquitous concepts in modern computer science. They
allow for the perceived parallelization of instructions’ execution and isolation through
separate code-execution stacks.

Decentralized Processing Threads serve similar purposes. Each DPT has stacks of its
own. In ⋮⋮⋮Gridnet Os, DPTs execute code written in #GridScript. Thus, the running code
has access to all the DSM’s opcodes, codewords, and APIs while being underlying native-
architecture agnostic. It may define and compile new codewords and opcodes as needed,
thus being on these grounds compatible with Forth. Each DPT is associated with an IVR.
The latter provides resources to the former, such as a copy of the current System Trie—
the instructions are executed by a DPT effect. DPTs can execute in ‘compilation mode’,
which can only be enabled on an IVR running in Sandbox mode. Enabling compilation
mode (BT) kicks off the background code-formulation process. From now on, all opera-
tions the user performs, which affect the System Trie, facilitated through the very DPT
either explicitly from the Terminal or through UI dApps, would be described through
UADL and included in the resulting CBCP once the user decides to commit. It is only
when DSM runs code at full redundancy, affecting its state that the corresponding (sys-
tem) IVR is not Sandboxed. A DPT can be marked as committable (#GridScript ‘RT’ com-
mand) at any moment either by user or the associated UI dApp, which is when code from
within it may be fetched by Linker (and provided to Compiler) at any moment. In our
implementation, VM Context running in the web browser automates the process. If there

Electronics 2022, 11, x FOR PEER REVIEW 16 of 33

10. Decentralized Processing Threads
At some point, our development team had a good-looking user interface and a couple

of dApps, but something was utterly not right. Lots of synchronization was needed be-
tween applications running in the UI. It was difficult to allow for multiple UI dApps to
interact with a single code-formulation construct—at least, without them getting in a way
of each other. Some applications needed only to perform ad hoc code execution and com-
putation in sandbox mode, say, to read data from the DSM or to see if a file existed, while
others wanted to have their associated IVRs enter compilation mode and formulate in-
structions that resulted in a file on the decentralized storage being deployed or a crypto-
currency transaction being issued. As users kept interacting with an early version of the
system, some UI dApps had their code ready to be committed while others were in the
midst of achieving such a state. Some wanted to be checking up on data from the DSM at
high frequency, while others wanted to do single but persistent data writes once in a blue
moon. Then, as soon as the data write instruction was compiled, it quickly turned out that
another app would inject data access instructions that (1) needlessly progressed into the
committable bytecode and (2) could even have messed up code formulated by the former
UI dApp. It quickly became imminent that for some scenarios, we had to allow DPTs to
be shared among UI dApps (e.g., the user creates a file in a File Manager and wants to edit
it before it is committed to the DSM, but for now, the file exists only in a Private Realm
associated with the File Manager UI dApp).

Indeed, as our UI dApps became more and more sophisticated, and as we set out to
test more and more of them in parallel, it quickly turned out that better and better isolation
among processes was needed (think of ‘processes’ and/or UI dApps running within a sin-
gle tab of a web browser). We had to improve the multi-threading and multi-tasking in
terms of the code executed in sandbox mode. In particular, we had to support some form
of multi-threading, especially in terms of instructions executed on Sandboxed IVR, in par-
allel. Indeed, it was no longer sufficient for a node to host a single IVR. We had to allow
for the better parallelization and isolation of UI dApps and to allow for the uninterrupted
formulation of code which would then affect the DSM by each of these. To address these
dilemmas, we conceived Decentralized Processing Threads. From the current perspective,
the result turned out to be an extremely powerful apparatus of unprecedented possibili-
ties and agility. Had we picked a single concept that enabled a multi-threaded, decentral-
ized operating system pleasurable user experience, it definitely would be for the DPTs,
alongside Deferred Authentication.

Threads are one of the most ubiquitous concepts in modern computer science. They
allow for the perceived parallelization of instructions’ execution and isolation through
separate code-execution stacks.

Decentralized Processing Threads serve similar purposes. Each DPT has stacks of its
own. In ⋮⋮⋮Gridnet Os, DPTs execute code written in #GridScript. Thus, the running code
has access to all the DSM’s opcodes, codewords, and APIs while being underlying native-
architecture agnostic. It may define and compile new codewords and opcodes as needed,
thus being on these grounds compatible with Forth. Each DPT is associated with an IVR.
The latter provides resources to the former, such as a copy of the current System Trie—
the instructions are executed by a DPT effect. DPTs can execute in ‘compilation mode’,
which can only be enabled on an IVR running in Sandbox mode. Enabling compilation
mode (BT) kicks off the background code-formulation process. From now on, all opera-
tions the user performs, which affect the System Trie, facilitated through the very DPT
either explicitly from the Terminal or through UI dApps, would be described through
UADL and included in the resulting CBCP once the user decides to commit. It is only
when DSM runs code at full redundancy, affecting its state that the corresponding (sys-
tem) IVR is not Sandboxed. A DPT can be marked as committable (#GridScript ‘RT’ com-
mand) at any moment either by user or the associated UI dApp, which is when code from
within it may be fetched by Linker (and provided to Compiler) at any moment. In our
implementation, VM Context running in the web browser automates the process. If there

Gridnet Os, DPTs execute code written in #GridScript. Thus, the running code
has access to all the DSM’s opcodes, codewords, and APIs while being underlying native-
architecture agnostic. It may define and compile new codewords and opcodes as needed,
thus being on these grounds compatible with Forth. Each DPT is associated with an IVR.
The latter provides resources to the former, such as a copy of the current System Trie—the
instructions are executed by a DPT effect. DPTs can execute in ‘compilation mode’, which
can only be enabled on an IVR running in Sandbox mode. Enabling compilation mode (BT)
kicks off the background code-formulation process. From now on, all operations the user
performs, which affect the System Trie, facilitated through the very DPT either explicitly
from the Terminal or through UI dApps, would be described through UADL and included
in the resulting CBCP once the user decides to commit. It is only when DSM runs code at
full redundancy, affecting its state that the corresponding (system) IVR is not Sandboxed. A
DPT can be marked as committable (#GridScript ‘RT’ command) at any moment either by
user or the associated UI dApp, which is when code from within it may be fetched by Linker
(and provided to Compiler) at any moment. In our implementation, VM Context running
in the web browser automates the process. If there are processes or threads awaiting a

Electronics 2022, 11, 3004 17 of 32

data-commit, the fact is indicated through the Magic Button, with details shown on mouse
hover. The user can then see pending actions and decide whether they want to commit or
abort. The system takes care of translating actions from UADL to their human-readable
representations. One may thus visualize a DPT running in compilation mode as recording
all the instructions executed. These transitions are depicted in a simplified UML Use-Case
diagram below [Figure 9]:

Electronics 2022, 11, x FOR PEER REVIEW 17 of 33

are processes or threads awaiting a data-commit, the fact is indicated through the Magic
Button, with details shown on mouse hover. The user can then see pending actions and
decide whether they want to commit or abort. The system takes care of translating actions
from UADL to their human-readable representations. One may thus visualize a DPT run-
ning in compilation mode as recording all the instructions executed. These transitions are
depicted in a simplified UML Use-Case diagram below [Figure 9]:

Figure 9. From ‘log-on’ to a broadcasted bytecode package.

Thus, the product of a DPT is usually two-fold. First, when in sandbox mode, the
code running within its scope reacts to the user’s and/or UI dApp’s input in real time.
Second, the instruction-sequences formulated in compilation mode can later affect the
Global VM Realm. For this to happen, the thread needs to be marked as ready/committa-
ble (#GridScript ‘RT’ command). Then, the CT command needs to be invoked from the
System Thread for the latter to initialize Linker, which aggregates code packages from all
the sub-threads (those that were marked as ready—i.e., executed RT). At the end, the Sys-
tem IVR, after having everything compiled and authenticated, broadcasts the signed
bytecode throughout the network.

System IVR boarding a single initial System Thread is spawned for each new user-
session. The relationship between the DPTs and IVRs is depicted in the infographics be-
low [Figure 10]:

Figure 9. From ‘log-on’ to a broadcasted bytecode package.

Thus, the product of a DPT is usually two-fold. First, when in sandbox mode, the
code running within its scope reacts to the user’s and/or UI dApp’s input in real time.
Second, the instruction-sequences formulated in compilation mode can later affect the
Global VM Realm. For this to happen, the thread needs to be marked as ready/committable
(#GridScript ‘RT’ command). Then, the CT command needs to be invoked from the System
Thread for the latter to initialize Linker, which aggregates code packages from all the
sub-threads (those that were marked as ready—i.e., executed RT). At the end, the System
IVR, after having everything compiled and authenticated, broadcasts the signed bytecode
throughout the network.

System IVR boarding a single initial System Thread is spawned for each new user-
session. The relationship between the DPTs and IVRs is depicted in the infographics below
[Figure 10]:

Electronics 2022, 11, 3004 18 of 32Electronics 2022, 11, x FOR PEER REVIEW 18 of 33

Figure 10. Relationship between User Session, Decentralized Processing Threads, and Isolated VM
Realms.

10.1. Interactive Code
A DPT can process #GridScript instructions interactively. The user may keep provid-

ing new instructions, and these would be executed right away in a Sandboxed IVR. Over-
simplifying a little bit, as the code in between invocations of BT (Begin Thread) and CT
(Commit Thread) is executed, the result of those instructions would be replicated across
the entire DSM. Some #GridScript instructions allow for multi-stage data inputs also from
over the network or mobile app.

10.2. In Terminal (SSH)
Whenever a session for a user is prepared, the node the user is connected to prepares

an IVR with a single DPT to begin with, ready to start processing instructions. New
threads may be spawned anytime with ST (Start Thread).

10.3. In Browser (Decentralized UI Interface)
Whenever a session for a user is prepared, the node the user is connected to prepares

an IVR with a single DPT to begin with, ready to start processing instructions. New
threads may be spawned anytime with ST (Start Thread).

10.4. Mobile App and QR Codes
The mobile app provides authentication to particular full nodes and to the entire

DSM once CBCPs signed through it are executed. In accordance with the Venice Design
Paradigm, it was designed to be simplistic on the surface with all the technicalities hidden
away. The app boards the #GridScript code (de)compiler and task scheduler. It is capable
of maintaining communication with nodes maintaining the network through a custom
UDT-based protocol. Whenever a CBCP is to be authenticated, i.e., signed through the
user’s private key, a QR code is presented on the user’s screen. It is rendered through
Unicode 1.1 half-blocks in the Terminal for increased density of data and through WebGL
when viewed from the graphical UI. The QR code embeds all the information needed to
process the current task, which may be about providing a signature and routing it through
multiple hops, end-to-end encrypted over an onion-routed connection to the node which
is currently serving the user’s session (System IVR). Once received, the node embeds the
signature into a CBCP and broadcasts it throughout the network for processing.

10.5. Commitment

Figure 10. Relationship between User Session, Decentralized Processing Threads, and Isolated
VM Realms.

10.1. Interactive Code

A DPT can process #GridScript instructions interactively. The user may keep pro-
viding new instructions, and these would be executed right away in a Sandboxed IVR.
Oversimplifying a little bit, as the code in between invocations of BT (Begin Thread) and
CT (Commit Thread) is executed, the result of those instructions would be replicated across
the entire DSM. Some #GridScript instructions allow for multi-stage data inputs also from
over the network or mobile app.

10.2. In Terminal (SSH)

Whenever a session for a user is prepared, the node the user is connected to prepares
an IVR with a single DPT to begin with, ready to start processing instructions. New threads
may be spawned anytime with ST (Start Thread).

10.3. In Browser (Decentralized UI Interface)

Whenever a session for a user is prepared, the node the user is connected to prepares
an IVR with a single DPT to begin with, ready to start processing instructions. New threads
may be spawned anytime with ST (Start Thread).

10.4. Mobile App and QR Codes

The mobile app provides authentication to particular full nodes and to the entire
DSM once CBCPs signed through it are executed. In accordance with the Venice Design
Paradigm, it was designed to be simplistic on the surface with all the technicalities hidden
away. The app boards the #GridScript code (de)compiler and task scheduler. It is capable
of maintaining communication with nodes maintaining the network through a custom
UDT-based protocol. Whenever a CBCP is to be authenticated, i.e., signed through the
user’s private key, a QR code is presented on the user’s screen. It is rendered through
Unicode 1.1 half-blocks in the Terminal for increased density of data and through WebGL
when viewed from the graphical UI. The QR code embeds all the information needed to
process the current task, which may be about providing a signature and routing it through
multiple hops, end-to-end encrypted over an onion-routed connection to the node which
is currently serving the user’s session (System IVR). Once received, the node embeds the
signature into a CBCP and broadcasts it throughout the network for processing.

Electronics 2022, 11, 3004 19 of 32

10.5. Commitment

Armed with Decentralized Processing threads, it soon became imminent that we
needed proper synchronization within web browsers. While dApp1 had to commit execut-
ing on the System Thread, we did not want dApp2 to be getting in the way of the former.
Thus, we have introduced mechanics similar to those known from database systems, at the
heart of which are the tryLockCommit() and Commit() user-mode API functions. When-
ever a UI dApp wants to initialize a Commit Procedure, it invokes tryLockCommit() of
VM Context, passing the identifier of its process. Any other UI dApp that has signed
up for an appropriate event would be notified. Additionally, any other invocation of
tryLockCommit() would have failed until the previous commit failed, succeeded, or timed
out. The process would be protected and guarded at both the client’s and node’s sides.
Appropriate signaling between these is facilitated at all times through appropriate binary
encoded (BER) sub-protocols.

10.6. Cross Node-Browser State Replication

When the user has a UI dApp running, it may happen that the node which is host-
ing DPT(s) for this very application becomes unavailable. The user might have already
performed some work and desires an undisturbed experience. The VM Context would
detect such a situation, reconnect to another node, attempt to spawn DPT(s) over there, and
replicate the state by executing all the committable instructions all over again, resulting in
the very same state.

11. Communication
11.1. Previous Construct of Token Pools

Notice that once the Hash N is known, all the consecutive values up to the Final
Hash can be generated from it. This is the main limitation in a multi-peer environment
[Figure 11]. In [1], while rewarding peers, the incentivizing node dispatched rewards based
on consecutive entries in a hash chain. Each newly released value uncovered additional
rewards. The final value could be used to redeem the value of all the previously uncovered
entries, once cashed out on the chain. Thus, there was no way to employ a single hash
chain for multiple data streams simultaneously. Thus, we could say that the token pool
was ‘one-dimensional’. In a previous proposal, a peer had either to use a single Token Pool
or register multiple Token Pools. That is not ‘storage efficiency’ ~[Problem 2]. Had they
wanted to reward multiple peers simultaneously (during the off-the-chain stage), then they
could manage multiple pools and remember about the state of each. That is not ‘ease-of-use’
~[Problem 2].

Electronics 2022, 11, x FOR PEER REVIEW 19 of 33

Armed with Decentralized Processing threads, it soon became imminent that we
needed proper synchronization within web browsers. While 𝑑𝐴𝑝𝑝 had to commit exe-
cuting on the System Thread, we did not want 𝑑𝐴𝑝𝑝 to be getting in the way of the for-
mer. Thus, we have introduced mechanics similar to those known from database systems,
at the heart of which are the tryLockCommit() and Commit() user-mode API functions.
Whenever a UI dApp wants to initialize a Commit Procedure, it invokes tryLockCommit()
of VM Context, passing the identifier of its process. Any other UI dApp that has signed
up for an appropriate event would be notified. Additionally, any other invocation of try-
LockCommit() would have failed until the previous commit failed, succeeded, or timed
out. The process would be protected and guarded at both the client’s and node’s sides.
Appropriate signaling between these is facilitated at all times through appropriate binary
encoded (BER) sub-protocols.

10.6. Cross Node-Browser State Replication
When the user has a UI dApp running, it may happen that the node which is hosting

DPT(s) for this very application becomes unavailable. The user might have already per-
formed some work and desires an undisturbed experience. The VM Context would detect
such a situation, reconnect to another node, attempt to spawn DPT(s) over there, and rep-
licate the state by executing all the committable instructions all over again, resulting in the
very same state.

11. Communication
11.1. Previous Construct of Token Pools

Notice that once the Hash N is known, all the consecutive values up to the Final Hash
can be generated from it. This is the main limitation in a multi-peer environment [Figure
11]. In [1], while rewarding peers, the incentivizing node dispatched rewards based on
consecutive entries in a hash chain. Each newly released value uncovered additional re-
wards. The final value could be used to redeem the value of all the previously uncovered
entries, once cashed out on the chain. Thus, there was no way to employ a single hash
chain for multiple data streams simultaneously. Thus, we could say that the token pool
was ‘one-dimensional’. In a previous proposal, a peer had either to use a single Token
Pool or register multiple Token Pools. That is not ‘storage efficiency’ ~[Problem 2]. Had
they wanted to reward multiple peers simultaneously (during the off-the-chain stage),
then they could manage multiple pools and remember about the state of each. That is not
‘ease-of-use’ ~[Problem 2].

Figure 11. Releasing tokens from a Token Pool.

Rewarding multiple peers with Stateless blockchain channels through the employ-
ment of (one-dimensional) Token Pools is troublesome in the presence of asynchronicity
caused by parallel peers willing to be rewarded. That is because revealing a single token
from the Token Pool required us to wait for the peer to cash it out (on-the-chain) before

Figure 11. Releasing tokens from a Token Pool.

Rewarding multiple peers with Stateless blockchain channels through the employment
of (one-dimensional) Token Pools is troublesome in the presence of asynchronicity caused
by parallel peers willing to be rewarded. That is because revealing a single token from
the Token Pool required us to wait for the peer to cash it out (on-the-chain) before another

Electronics 2022, 11, 3004 20 of 32

peer could be rewarded through the same Token Pool. Had we not waited and provided a
second peer with a further token, the recipient could have cashed out both sub-chains.

11.2. Solution-Multi-Dimensional Token Pool

The Multi-Dimensional Token Pool contains multiple dimensions (banks) [Figures 12 and 13]
represented by multiple hash chains. These are generated from the MasterSeedHash,
which is enough to generate all hashes (tokens) within these. No matter how many
dimensions, it suffices for its owner to store the secret MasterSeedHash only [Storage
Efficiency~Problem 1]. In DSM, we only store dimension-boundary points, i.e., ceiling
HashNDi for each dimension, HashND1 ..HashNDk−1 ..HashNDk . The values of tokens in
each are the same and the dimensions are equally sized. When issuing rewards, in our
implementation, the mobile app in possession of MasterSeedHash [Figure 13] releases
hashes in a reverse order [Figure 14], with each hash representing part of previously
frozen/sacrificed assets used to generate the Pool in the first place when requested through
QR Intent [Ease Of Use ~Problem 1].

Electronics 2022, 11, x FOR PEER REVIEW 20 of 33

another peer could be rewarded through the same Token Pool. Had we not waited and
provided a second peer with a further token, the recipient could have cashed out both
sub-chains.

11.2. Solution-Multi-Dimensional Token Pool
The Multi-Dimensional Token Pool contains multiple dimensions (banks) [Figures 12

and 13] represented by multiple hash chains. These are generated from the 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎ, which is enough to generate all hashes (tokens) within these. No matter
how many dimensions, it suffices for its owner to store the secret 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎonly
[Storage Efficiency~Problem 1]. In DSM, we only store dimension-boundary points, i.e., ceil-
ing 𝐻𝑎𝑠ℎ for each dimension, 𝐻𝑎𝑠ℎ . . 𝐻𝑎𝑠ℎ . . 𝐻𝑎𝑠ℎ . The values of tokens
in each are the same and the dimensions are equally sized. When issuing rewards, in our
implementation, the mobile app in possession of 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎ [Figure 13] releases
hashes in a reverse order [Figure 14], with each hash representing part of previously fro-
zen/sacrificed assets used to generate the Pool in the first place when requested through
QR Intent [Ease Of Use ~Problem 1].

Figure 12. Multi-Dimensional Token Pools.

Figure 13. Each dimensions comprises a hash-chain of its own.

Figure 14. Particular dimensions are independent from each other.

11.3. A-Synchronicity Supported

Figure 12. Multi-Dimensional Token Pools.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 33

another peer could be rewarded through the same Token Pool. Had we not waited and
provided a second peer with a further token, the recipient could have cashed out both
sub-chains.

11.2. Solution-Multi-Dimensional Token Pool
The Multi-Dimensional Token Pool contains multiple dimensions (banks) [Figures 12

and 13] represented by multiple hash chains. These are generated from the 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎ, which is enough to generate all hashes (tokens) within these. No matter
how many dimensions, it suffices for its owner to store the secret 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎonly
[Storage Efficiency~Problem 1]. In DSM, we only store dimension-boundary points, i.e., ceil-
ing 𝐻𝑎𝑠ℎ for each dimension, 𝐻𝑎𝑠ℎ . . 𝐻𝑎𝑠ℎ . . 𝐻𝑎𝑠ℎ . The values of tokens
in each are the same and the dimensions are equally sized. When issuing rewards, in our
implementation, the mobile app in possession of 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎ [Figure 13] releases
hashes in a reverse order [Figure 14], with each hash representing part of previously fro-
zen/sacrificed assets used to generate the Pool in the first place when requested through
QR Intent [Ease Of Use ~Problem 1].

Figure 12. Multi-Dimensional Token Pools.

Figure 13. Each dimensions comprises a hash-chain of its own.

Figure 14. Particular dimensions are independent from each other.

11.3. A-Synchronicity Supported

Figure 13. Each dimensions comprises a hash-chain of its own.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 33

another peer could be rewarded through the same Token Pool. Had we not waited and
provided a second peer with a further token, the recipient could have cashed out both
sub-chains.

11.2. Solution-Multi-Dimensional Token Pool
The Multi-Dimensional Token Pool contains multiple dimensions (banks) [Figures 12

and 13] represented by multiple hash chains. These are generated from the 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎ, which is enough to generate all hashes (tokens) within these. No matter
how many dimensions, it suffices for its owner to store the secret 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎonly
[Storage Efficiency~Problem 1]. In DSM, we only store dimension-boundary points, i.e., ceil-
ing 𝐻𝑎𝑠ℎ for each dimension, 𝐻𝑎𝑠ℎ . . 𝐻𝑎𝑠ℎ . . 𝐻𝑎𝑠ℎ . The values of tokens
in each are the same and the dimensions are equally sized. When issuing rewards, in our
implementation, the mobile app in possession of 𝑀𝑎𝑠𝑡𝑒𝑟𝑆𝑒𝑒𝑑𝐻𝑎𝑠ℎ [Figure 13] releases
hashes in a reverse order [Figure 14], with each hash representing part of previously fro-
zen/sacrificed assets used to generate the Pool in the first place when requested through
QR Intent [Ease Of Use ~Problem 1].

Figure 12. Multi-Dimensional Token Pools.

Figure 13. Each dimensions comprises a hash-chain of its own.

Figure 14. Particular dimensions are independent from each other.

11.3. A-Synchronicity Supported

Figure 14. Particular dimensions are independent from each other.

Electronics 2022, 11, 3004 21 of 32

11.3. A-Synchronicity Supported

Hashi—iTh hash (token) in a dimension; NDi—number of hashes(tokens) in the iTh
dimension. Indeed, tokens from dimensions can be released independently without affecting
each other. To handle N simultaneous content providers, it is enough for the Token Pool to
contain N dimensions. The value of a single dimension is thus VDi = ∑N

i=1 Value(Hashi) with
a total Multi-Dimensional Token Pool’s value equal to ∑k

i=1 VDi.

11.4. A Compatible Transmission Token

So as to make incentivization protocols introduced in [1] compatible with Multi-
Dimensional Token Pools, we need to make Transmissions Tokens compatible as well
[Figure 15]:

Electronics 2022, 11, x FOR PEER REVIEW 21 of 33

𝐻𝑎𝑠ℎ —iTh hash (token) in a dimension; 𝑁𝐷 —number of hashes(tokens) in the iTh
dimension. Indeed, tokens from dimensions can be released independently without af-
fecting each other. To handle N simultaneous content providers, it is enough for the Token
Pool to contain N dimensions. The value of a single dimension is thus 𝑉𝐷 =∑ 𝑉𝑎𝑙𝑢𝑒(𝐻𝑎𝑠ℎ) with a total Multi-Dimensional Token Pool’s value equal to ∑ 𝑉𝐷 .

11.4. A Compatible Transmission Token
So as to make incentivization protocols introduced in [1] compatible with Multi-Di-

mensional Token Pools, we need to make Transmissions Tokens compatible as well [Fig-
ure 15]:

Figure 15. Very low overhead compared to original Transmission Token.

Each Transmission Token now contains an identifier of a dimension from which as-
sets are being released. All the Sybil-proofness guarantees defined in [1] thus remain in-
tact.

11.5. Inter-Process Communication-Signaling and Event-Driven architecture
In our implementation, UI dApps may invoke the user-mode functions of the JavaS-

cript VM Context at will. It is assumed that it is on the shoulders of the operating system
(the VM Context is part of) to assure the proper synchronization of the actions performed
through these. Each user-mode API call takes the identifier of its caller. UI dApps may
sign up for a multitude of events grouped into various categories. These include the global
DSM’s state, the state of particular DPTs, the state of the connection with the nodes serv-
ing the particular user session, etc.

11.6. Integrated Web-Server and WebSockets
When designing the system, we had two options—(1) to rely on the loose coupling

between its elements. That road could have theoretically drastically lowered the overall
development time and costs. For instance, it would have involved third-party components
such as nginx or Apache for serving the ‘decentralized UI’; the native operating system’s
firewall for coping with abuse (e.g., iptables); WebKit’s authentication API for authenti-
cating users over the UI; or we would have used TOR for onion routing, or we would have
employed ready-made cryptographic constructs for encryption and authentication, or
used IPFS for low-redundancy storage, etc. To enable for a Shell or Access Control List,
we could have forked one of the Linux distributions and proceeded from there. Had we
gone down this road, we probably would have needed to distribute the ‘OS’ as a Virtual
Machine or a Docker container for at least some ease of deployment. The (2) option was
to introduce extremely tight coupling and to implement everything from scratch. We set
out on the second journey. Looking back, we regret nothing. We now know it was the
only way to go.

Figure 15. Very low overhead compared to original Transmission Token.

Each Transmission Token now contains an identifier of a dimension from which assets
are being released. All the Sybil-proofness guarantees defined in [1] thus remain intact.

11.5. Inter-Process Communication-Signaling and Event-Driven architecture

In our implementation, UI dApps may invoke the user-mode functions of the JavaScript
VM Context at will. It is assumed that it is on the shoulders of the operating system (the VM
Context is part of) to assure the proper synchronization of the actions performed through
these. Each user-mode API call takes the identifier of its caller. UI dApps may sign up for
a multitude of events grouped into various categories. These include the global DSM’s
state, the state of particular DPTs, the state of the connection with the nodes serving the
particular user session, etc.

11.6. Integrated Web-Server and WebSockets

When designing the system, we had two options—(1) to rely on the loose coupling
between its elements. That road could have theoretically drastically lowered the overall
development time and costs. For instance, it would have involved third-party components
such as nginx or Apache for serving the ‘decentralized UI’; the native operating system’s
firewall for coping with abuse (e.g., iptables); WebKit’s authentication API for authenticat-
ing users over the UI; or we would have used TOR for onion routing, or we would have
employed ready-made cryptographic constructs for encryption and authentication, or used
IPFS for low-redundancy storage, etc. To enable for a Shell or Access Control List, we could
have forked one of the Linux distributions and proceeded from there. Had we gone down
this road, we probably would have needed to distribute the ‘OS’ as a Virtual Machine or a
Docker container for at least some ease of deployment. The (2) option was to introduce
extremely tight coupling and to implement everything from scratch. We set out on the
second journey. Looking back, we regret nothing. We now know it was the only way to go.

Electronics 2022, 11, 3004 22 of 32

11.7. Protocol Invariant Routing and Path Discovery (Including Onion Routing)

Each node maintains a protocol invariant routing table. When accessing the Terminal
of a node, one may switch to the Events’ View [Ctrl+W] to see such routing table entries
being constructed.

11.8. Web-RTC Swarms

Each node maintains a protocol invariant routing table. When accessing the Terminal
of a node, one may switch to the Events’ View [Ctrl+W] to see such routing table entries
being constructed.

12. Storage

Without the ability to execute instructions, a state machine would remain in a single
initial state. For the machine’s state to survive power surges, it demands persistent storage.
For full redundancy of storage, we employ Merkle Patricia Tries (used also by Ethereum [2]).
Instances of State domains are serialized to nodes within a System Trie. These nodes, in
turn, have sub-tries representing folders, files, sub-folders, etc. Whenever anything changes
in any of these elements, the hash of its elements changes, and the change propagates to the
root of the Trie. In contrast to Ethereum, we allow for the modification and data-pruning of
the data stored within the Trie. All the user-mode data is malleable by default by the user
who owns the owning State Domain.

12.1. On-the-Chain

On-the-chain storage (Eternal Storage—ES) implies storage within the System Trie.
The user pays for each and every byte and, of course, the storage cost may be high.

12.2. Off-the-Chain (Including Rewards for Content Deliveries)

Off the chain storage employs a modified incentivized version of Torrent/WebTorrent
peer-to-peer data exchange protocols. In layman’s terms, there is a ‘link’ on the ES to a file
hosted off the chain, with ACLs on the ES. In a State Domain, we put a reference R to a
possibly large, user-provided file F maintained by the former. As soon as the user attempts
to access F through R, F is attempted to be fetched. The entity fetching might be the full-node
(if the file is accessed over SSH) or the web browser. The mobile app constantly accounts for
and releases assets through a Stateless Channel on the node’s request, facilitated through
QR Intents as nodes use their bandwidth, acting as a proxy. For the incentivization of
storage, the mobile app steadily releases remuneration to those hosting the file by means of
off-the-chain transactions facilitated through Stateless Channels [1] implemented through
the just-introduced Multi-Dimensional Token Pools. The algorithm follows:

Threat Model: Client Λ1 wants to have his file stored by a set of identities

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R; β is

the storage redundancy threshold; Rmin is an aggregated reward in the system-intrinsic
cryptocurrency which Λ1 undertakes to pay to members of

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R during a number of epochs

of the decentralized state machine ST , defined as the number of consecutive key blocks
appended to the DSM. Assume Rmin ≥

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R 6= 0. For each storage epoch,

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 i ∈

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R expects to

receive remuneration of at least
[

Rmin

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R

]
. Λ1 is not necessarily expected to verify storage

or issue rewards after each epoch. It is up to

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R to decide whether they want to keep

maintaining F. The array of verification vectors VV allowing for the verification of storage
during the entire, possibly undefined storage period is known only to Λ1. ST thus defines
the maximum storage time defined in the number of epochs should Λ1 choose to verify
and issue rewards each and every epoch. Λ1 issues rewards only to those who manage
to deliver a valid Proof-of-Storage PS. Attackers attempt to trick Λ1 into believing they
store the file, while Λ1 attempts to trick

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R into thinking that a reward was issued, when it

was not.
Proof-of-Storage: There is a file F which we model as an ordered sequence of

bytes, issued by Λ1 to be stored by

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R . FVE

VS
is a sub-vector of F, where VS and VE

are the starting and ending offsets, in bytes, from the beginning of F, respectively.

Electronics 2022, 11, 3004 23 of 32

For members of

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R to prove storage of F to Λ1, the latter first generates an ordered

sequence of vectors VV = ∑ST
0

[
Sha256

(
FVE

VS

)
, VE, VS

]
with random values of VS and

VE, such that VE > VS∀Vi ∈ VV . Thus, |VV |=ST ; V I —the index of the recently used
verification vector Vi ∈ VV . To verify the storage of F, Λ1 broadcasts a verification re-
quest VR = [RequestID, FID, VS, VE] ∼ Vi ∈ VV where FID is a unique identifier of F and
increments V I so to never use it again. As VR is read by

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 i ∈

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R, the latter responds

with PS = Sig

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 SK

i

[
Sha256

(
FVE

VS

)
, RequestID

]
, where

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 SK

i ∈

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 i ∈

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R. Once Λ1 receives

V
′
i ∼ Vi ∼ PS, it checks if V

′
i = Vi. If true, Λ1 issues rewards through a Stateless State

Channel [1] ∀

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 i ∈

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R. Should any

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 i ∈

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R not be rewarded as expected,

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 i stops storing

the data and responding to verification requests. Notice that members of

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R may freely

change at any time. Those who choose to store download the file. If more than β nodes
respond to VR, Λ1 may choose any heuristics it desires to pick members of

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R (download

speeds, etc.)
Discussion: In our implementation, VV is stored on a mobile security app, which acts

in the name of Λ1, steadily realizing rewards to

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R. The benefit of this approach is that Λ1

does not need to store F at all after they generate VV . The algorithm covers the case when
the integrity of file was needed to be verified (e.g., private large, encrypted files) without
any other agents besides Λ1 having an incentive to have access to the F. Should incentives
be structured differently, though (i.e., in case of ‘public-goods’ say movie clips, whose
integrity needs not be verified), other parties may continue issuing rewards to

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R as they

are having FVE
VS

delivered. Thus, the protocol may effectively constitute a content-delivery

incentivization mechanism, with

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R expecting to be rewarded after each and every FVE

VS
they deliver to those to whom they stream F. In our implementation, all the user needs to
do, from time to time, is to scan a QR code displayed on their computer (on which they are
accessing decentralized videos/files/streams). That causes parts of a Multi-Dimensional
Token Pool being uncovered to the web browser, which is assumed to be semi-trusted. It
would receive portions of multiple Token Pools’ dimensions but not the entire thing. Notice
that uncovering just a single, previously unknown hash suffices to release many tokens
to the web browser. These are then used (by the web browser) to unveil single tokens
to peers delivering data. Should Λ1 wish to have F stored for more epochs than defined
by ST , he could download the file and regenerate a new verification set VV . In order to
improve protection against colluding attackers in

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R, Λ1 could use |VV |= |

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R| ∗

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R and

issue a separate Vi∀

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 SK

i ∈

Electronics 2022, 11, x FOR PEER REVIEW 8 of 33

third parties, while still having a securely authenticated, authorized, and customized user
experience from the moment they ‘log on’ assured.

Now, to put things into perspective, let us say the user needs to create a file and have
it stored. They want to employ all the benefits of immutability and accountability decen-
tralized state machines are said to offer. They want to modify the file, to delete it, or to be
able to assign ownership privileges and any other access-control permissions that they
would associate with ease on a ‘centralized’ laptop of theirs through a single invocation
of the ‘setfacl’ command on Linux, or by clicking or tapping their way through the UI just
as they would on Windows or macOS X. They want it all, just decentralized; both mallea-
bility and non-malleability. Someone has to deliver.

Have you ever looked into how many steps it takes to deploy an NFT [7] onto the
Ethereum [2] state machine? The question is, does that level of complication stem from
necessity or rather from an inappropriate system design? Or maybe the system at hand
simply was not conceived for such things to begin with? Our results indicate that the latter
just might be the case, which is not surprising, as Ethereum was conceived long before
NFTs. Now, we look at NFTs as files on decentralized storage, with ownership, access-
control lists, and possibly other metadata attached. We employ the property of selective
non-malleability. Consensus-driven metadata representing legal rights associated with
files together with ownership privileges affect particular objects’ malleability properties.
In our DSM, the property of non-malleability is disabled by default for user-created data
files and can be acquired by invoking ‘setfacl’ by the file owner.

Now, how about developers willing to create dApps allowing for over-the-network
collaboration or social interactions? That requires data exchange. Since we assume agents
are rational, they need to be incentivized. In [1], the authors proposed the very first data
exchange protocol provably Sybil-proof in any kind of computer network (i.e., modeled
as a random graph) by employing the concept of a crypto-currency. We will be extending
upon these conceptions.

3.2. Consensus
Our implementation employs a modified version of the Bitcoin-NG [8] consensus

protocol. The algorithm involves two types of blocks: key blocks, ones containing proof-
of-work, and data blocks containing the actual, authenticated code packages, possibly af-
fecting the DSM once executed. Block rewards are shared between the leaders of consec-
utive rounds. A simplified consensus algorithm using the definitions, semantics, and pro-
tocols described in [1] follows:

Threat Model: The heaviest in terms of cumulative proof-of-work, sequence of data,
and key blocks is preferred. It should be unfeasible to replace blocks in an otherwise valid
sequence. Only the current round leader ℒ can propose data blocks. The agent producing
the key block resulting in the heaviest in terms of the cumulative PoW chain becomes the
new leader. Attackers try to disrupt the thus defined as legitimate linked (sub-)se-
quence(s) of blocks. The computational power needed to compute PoW is assumed to en-
tail cost. 𝑬𝒑𝒐𝒄𝒉𝟏 : − 𝒍𝒆𝒂𝒅𝒆𝒓 𝒆𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏

Preconditions: Λ willing to become a round leader prepares a key pair Ѧ /Ѧ , 𝐵 —block containing PoW
(Ω), 𝐵 —block containing CBCPs, 𝐵 , 𝐵 —the number of key and data blocks, respectively, that ever af-
fected the DSM. 𝐵 —data block at position x.
1. Λ prepares 𝐵 containing Proof-of-Work (Ω).
2. Data Block is propagated using incentive-compatible data exchange protocol depicted in Section 6.6.1 of

[1].
3. Each N decides if ∑ Ω~𝐵 is max. for any known linked sequence of key blocks. If not, but with 𝐵

otherwise valid, (3a) it is stored on N but it does not extend the current chain. If valid and found to
produce (3b) the heaviest chain, 𝐵 is appended and Λ becomes the current leader ℒ If, there are any 𝐵 where 𝑥 ≥ 𝑖~ 𝐵 all these data blocks are discarded. Notice that it is in the intention of ℒ to honor
and extend upon data blocks by ℒ as they receive shares from fees associated with these. ℒ gains
the right to produce data blocks, authenticated through Ѧ . 𝑬𝒑𝒐𝒄𝒉𝟐 − 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝒅𝒂𝒕𝒂 − 𝒃𝒍𝒐𝒄𝒌𝒔 R.

12.3. Access Control Lists and Ownership

Access Control Lists (ACLs) are widely employed mechanics on UNIX/Linux and
recently the Windows family’s operating systems. When enabled, each object on the file-
system may have an associated list specifying privileges to agents through Access Control
Entries. Our implementation fully supports access control lists. It is possible to define read
and write the execution and ownership of any object within any State Domain. That opens
a pandora box of entirely new possibilities, not seen before in any other decentralized
state machine.

12.4. Non-Fungible Tokens Reinvented

Had there been a version of Linux running on some sort of a decentralized state
machine, would there be anything special about NFTs [7]? Would the term ever be coined?
Probably not. GRIDNET OS in a way comprises such a decentralized Linux. It allows to
assign ownership to files and folders. In fact, it allows to alter these properties through the
Linux-compatible setfacl, getfacl, and chown commands, thanks to the aforementioned
ACLs associated with each object in the System Trie. Each bytecode package is authenticated
to a single identity. Once the code is executed, the security sub-system at each node
compares the identity with security descriptors associated with the accessed object. As for
NFTs, one may execute the setmeta and getmeta commands to see their documentations.

Electronics 2022, 11, 3004 24 of 32

13. Abuse Mitigation

Our implementation boards autonomous embedded anti Denial-of-Service measures.
These account for all communication sub-systems (embedded web-server, web-sockets,
web-RTC swarms, UDT communication and SSH sessions). Should the system detect
suspicious activity, the suspect is banned autonomously for a random period of time. One
may access firewall utility from over the Terminal, though. Its functionality is limited from
remote sessions.

14. Venice UI/UX Design Paradigm

Venice is a beautiful city ‘It is a city of mirrors, the city of mirages, at once solid and
liquid, at once air and stone. ‘—Erica Jong once said. It is pretty much the same with
decentralized systems. Blocks come and go, and with them, the current state. Nodes one
may be connected with at time slot Ti might be no longer Ti+1 Still, the user is after a
pleasurable user experience. We depict the following essential elements of the Venice UI
Design Paradigm for UI dApps:

Remain Responsive—it is so much more difficult to look good and behave well with
all the uncertainties around but do your best. The user interface should remain responsive
at all times and user should be notified whenever she needs to wait. This may be achieved
through techniques such as pre-fetching and notifying the user about the current state.

Offset The Uncertainties—the uncertainties may stem directly from the nature of a
decentralized state machine or from the technology used to render the user interface. The
solution here is the hiding away of the uncertainties through automation, aggregation, and
hiding away.

Be scarce—on resources, especially with full-redundancy storage. It is expensive.
Each full-node operator pays for it (literally). Use lower redundancy storage when possible.

Isolate—assure boundaries between processes. That goes for both code and UI ele-
ments. Since as of now, web browsers do not provide isolation mechanics for Web Elements
of the same quality as those available in native operating system systems, it is in a large
portion the responsibility of each and every UI dApp not to misbehave. This would change
in the future, as web browser frameworks provide better isolation constructs to decentral-
ized operating systems, and isolation boundaries would rest firmly on the components of
the latter.

Want to be Incentivized—there is nothing wrong with being willing to be paid for
your work. It holds true for your services.

Incentivize Others—if other services or agents do work for you, remunerate these
as well. Even if your UI dApp doesn’t take advantage of third-party services, it still
employs core nodes to load itself. Do not be reluctant to reward the Core nodes implicitly
(system-wide taxes) or explicitly.

React—both to user inquiries and notifications made available to you by the Decen-
tralized Operating System.

Client Side (Shadow DOM, windows)
In order to improve the isolation of CSS definitions defining the looks of the UI

dApp’s elements, we have employed a Shadow DOM. Each window in the user interface
thus wields a separate Shadow DOM’s root, thus not affecting other windows. MAGIC
BUTTON—is at the heart of GRIDNET OS’ UI. When hovered over, it shows all the pending
actions to be committed to the DSM. All the ready DPTs would be committed on a single
tap/click. If there are no pending actions, it would synchronize the state of all IVRs
attached to all UI dApps with the current Global VM State. THE CURTAIN—one of the
more interesting aspects of the user interface. It employs Webkit’s Monitor with Animation
APIs to hide away contents of a window as these are loaded and/or rearranged. GRIDNET
OS makes Curtain APIs available to the user, should the user need to customize its default
barely transparent looks. Start-Menu—the elements are rearrangeable and grouped into
categories. Taskbar—the elements are rearrangeable, with the support of drag and drop
with changes persistent across sessions. Elements on hovering present current windows’

Electronics 2022, 11, 3004 25 of 32

previews, just like on Windows or macOS—we have borrowed from both Windows and
Mac OS X when it goes for these. Once you move a window close to any edge of the screen,
it would resize itself accordingly. Maximizing, resizing, and minimizing to the taskbar—it
is all there. We employ the concept of dApp Packages. A package is comprised of both
code and other assets (images, sound files, etc.). We have borrowed from Android with the
concept of namespaces, so here, each UI dApp wields a namespace of its Integrated UI and
code elements within one package, deployed at full nodes with possibly external assets.

15. Overcoming Limitations of Previous Architectures and Evaluation of Results
15.1. The Architecture

Bitcoin [1]—the very first decentralized state machine, executing instructions in a
programming language—Script. Ethereum [2]—with the major improvements of allowing
for more developer-accessible storage constructs, having introduced signaling between
code entities—‘smart-contracts’, and above all, having allowed for authenticated Turing
complete instruction sets. Many other projects were brought to life, such as EOS.IO [13]—
improving both upon the scalability and aiming to aid developers through Web Assembly
smart contracts.

One inherent dilemma remained. Our work has focused not so much on improving
the scalability of the underlying state machine, but on researching and paving the ground
for unprecedented, integrated possibilities. With that said, as it is to be seen, we’ve arrived
at some very sound performance results. Previous architectures, such as [2,13], were
concerned with the intrinsic language and the dilemma of scalability. Everything else was
to be deemed as ‘client code’. One could thus imagine previous architectures as relatively
simple robots, concerned with how to communicate and how come to an agreement upon
matters discussed in the language they spoke. Now, dApps’ developers were to be writing
code letters in that language for processing, possibly relating to (calling a smart contract)
what had been previously agreed upon.

The blueprint of the hereby proposed decentralized operating system is concerned
with more. We plug into the robot of ours lots and lots of additional sensors and actuators
to be used for the construction of decentralized applications of any kind and we make these
available at the fingertips of developers. Attaching prior architecture to an external web
server would never be enough once one paid attention to the meticulous details and fathoms
that full nodes need to be aware of particular windows’ dimensions and account for these
in real-time. Ethereum or EOS.IO, in their current form, would not be able to accommodate
these ‘peripherals’ due to the aforementioned lack of deferred authentication mechanics
and thus of the ability to react to users’ inputs in real time. We make sure all the elements
integrate with each other, not only through APIs but through algorithmically model-ed
threat models and proofs (Sybil-proof crypto incentivized data exchange, the construct
of Multi-Dimensional Pools) and that the usage of these remains incentive compatible,
all with the aim of fulfilling all the end-users’ and developers’ needs, in-house, through
a unified environment. We propose that such a system should take it from consensus,
through the storage of data through arbitrary redundancy guarantees, through the hosting
of model/view logic, incentivized threat-model-validated data exchange and storage, up
to making sure that all components are properly delivered to the user. The test-bed of the
hereby proposed operating system is readily available for testing from the main access
node at https://test.gridnet.org (accessed on 19 September 2022).

One of the interesting aspects of decentralized operating systems, and the implemen-
tation of ours, is its ability to take care of incentivizing data exchange. Undeniably, the
majority of developers’ concepts boil down to data. Everything is data. Thus, it shall be of
a paramount importance to ensure that data can move freely. Below, we present evaluation
results of the incentivized data exchange sub-system, as per its current implementation. The
evaluations to follow include references to algorithms and protocols previously introduced
in [1]. The following system parameters were assumed: the interval between data blocks:
3 s; maximum data block size: 11 MB. For the below calculations, we assume an average

https://test.gridnet.org

Electronics 2022, 11, 3004 26 of 32

bandwidth utilization of 11 MB (block size) at an average speed of 4 MB/s. To make our
scenario more challenging, we assume the user forms a new path every 15 min.

From the algorithmic perspective, our analysis covers three cases: the modeling of
the performance of the protocol for the incentivization of the established data paths, the
protocol for data deliveries where the sender sends out data packages, knowing only their
destination and not knowing whomever the intermediaries might come to be. Finally, we
evaluate the third—which takes the use of the prior for the full incentivization of data
transmissions. More details are found in [1]. It is worthwhile to note that while we evaluate
performance in the context of data exchange, the performance of a data path of 1 hop in
length can be seen as the overall achievable transaction per second throughout when there
is a single recipient. Further, the numerosity of possible ‘connections’ can be treated as the
possible number of open State Channels, with intermittent on-the-chain payouts happening
as per the simulation properties.

The article comes with a simulator in Excel, where one can manipulate all the variables,
inspect the parameters, and probably notice a lot of fascinating properties as the simulator
allows for specifying how likely data paths are to change, the portions of data blocks that are
to be used for the incentivization of data exchange, etc., and see how all these parameters
affect the achievable maximum amount of possible connections and/or State Channels.

Below, we are to evaluate performance both at the systems’ current max throughput
parameters under the most demanding scenarios and in a more relaxed scenario, which
we call a ‘realistic one’. The most demanding case assumes that intermediaries of a data
exchange are to be rewarded as soon as either the data path changes or a connection ends,
thus dealing with a scenario which is supposed to yield the most overheads on both the
DSM and generate the most network overheads as well. We also tackle a more relaxed,
‘realistic’ case, which takes into account the current layout of the Internet and the users’
behavior, which we describe as follows. According to the empirical study of Wang et al. [14],
the average path length between autonomous systems on the Internet is about 3.9 and
the longest path is about 20. Now, we are to simulate real-life usage, with users accessing
remote endpoints at random distributions over access providers, which we assume are less
likely to change than the target endpoints. We thus stem for the assumption that the ending
20% of any given data path is 90% more likely to change than the prefixing portion of it, as
we assume that should visualize the typical user browsing the Web. The average TCP/IP
packet size was calculated as an average of all of the months of Internet traffic in Chicago
as of 2016, reported by CAIDA [15] and resulted in an average packet size of 907 bytes.

Intermediaries are rewarded through Stateless Channels [1] with assets allocated
from Multi-Dimensional Token Pools [1]. Yet again, while we simulate incentivized data
exchange, it is worthwhile to note that the case of a single hop can be considered as a case
in which the recipient receives direct payments for any kind of a work, performed at the
discretion of the payer. We believe data exchange with billions of data packets is one of the
best showcase scenarios.

Let us consider a test network under default performance cap settings (data block-size
set to 11 MB, a new data block occurring every 3 s and analyze the achievable throughput
and the point at which a bottleneck occurs based on the link properties (path variance,
number of hops). Additional simulation parameters are in [Table 1].

Table 1. Some of the significant simulation parameters.

Payout Confirmation
Data-Structure Size

(Bytes)

Transmission Token Data
Constant Overhead PA2

(Bytes)
Average Payload Size per

Datagram(Bytes)
Single TP Dimension

Overhead (hash+ depth)
(Bytes)

Number of Packets to be
Exchanged during

Transmission

132 73 907 36 12128

Electronics 2022, 11, 3004 27 of 32

Table 1. Cont.

Average Payload Size
Requested by User

Token Pool Data
Structure

Overhead(bytes) (no
Dimensions)

Single-Packet Network
Overhead (bytes)

without AES

Single-packet Network
Overhead (bytes) with

AES
Smart Onion Co-Efficient

11 MB 60 179 195 0.1

Blockchain Block
Interval (Minutes)

Sender’s Lock-Release
(PA1) Size(Bytes)

ChaCha20 AEAD
Overhead Bytes

Pub. Key. Field Size
(Accounts for Sign on
Elliptic Curve) (Bytes)

PA2 Additional Per TT
Overhead (Bytes)

3 sec 96 32 33 106

First, is evaluation of results for a scenario in which data exchange happens solely by
means of algorithm PA1 [1], which is when nodes to be encountered during path traversal
are unknown; thus, it is used during path discoveries. Protocol PA2 [1] is used for the
incentivization of data-transmissions during already established data paths. Both PA1 and
PA2 are employed by PA3 [1] which we use to simulate a typical, real-life scenario. During
‘strict’ analysis, we assume that transmission tokens traverse alongside each and every
datagram. In the more realistic ‘relaxed’ scenario, nodes fall back to a certain threshold,
which in our case, sent a transmission token in 1% of datagrams. As seen in the attached
simulator, even that yields 121 ‘checkpoints’ during the transmission of a payload, which
is 11 MB large. During these checkpoints, the intermediaries of a data exchange receive
payments, thus at any point in this example, risking the retransmission of upmost 100 KB
without being paid. This amount, surely any router would be willing to risk.

For the data field, AES encryption overhead has been taken into account, characterized
by the following equation: cipherLength = (clearTextLength/(16 + 1)) × 16;

As for the ‘onion’ data structure within the data-packets used, it is encrypted using the
Salsa20 stream cypher. The symmetric key is derived by performing Diffie–Hellman with
the recipient’s public key. The secret persists for the duration of a connection link, i.e., for as
long as a Transit Pool lasts. When the path changes, the new session secret key is generated.
The size of a Transmission Token as of writing is 73 bytes. For transmitting public keys, we
use a ‘compressed’ form, i.e., we transmit only one coordinate on the elliptic curve.

15.2. Influence of Path Instability on the Amount of Data Stored inside of the DSM

Path instability has a direct effect on the amounts of data needed to be stored by
the DSM and thus on the number of simultaneous data streams that can be incentivized
[Figure 16]. That stems from the assumption that intermediaries want to be rewarded,
on-the-chain, by the end of each data transmission, they happen to be participating in.

Electronics 2022, 11, x FOR PEER REVIEW 28 of 33

Figure 16. Effect of path instability on the number of simultaneous connections (active State Chan-
nels).

As seen in [Figure 17], we can offset the diverse effects of path instability by either
(1) increasing the number of dimensions within Multi-Dimensional Token Pools, so that
clients do not need to close Stateless Channels after each data transmission. With Token
Pools of multiple dimensions, we are able to proceed with another dimension, even
though the State Channel, facilitated through the previous dimension, was not closed yet.
(2) Or, by falling back to a lower frequency of rewards issuance. Both these procedures
contribute to the maximization of the numerosity of achievable simultaneous and incen-
tivized data streams by the DSM.

Figure 17. The effect of token pools’ dimensionality on the supported number of achievable simul-
taneous connections and/or state-channels.

In the case of a single payout clearance and just a single hop, the size of a data struc-
ture needed to be stored within the DSM is equal to 408 bytes. That is the size needed to
confirm payouts to one intermediary and one recipient, with an arbitrary [2] amount of
data flowing in between. In the case of no interruptions, i.e., no path changes during data
transmission, that would be the only data stored on the DSM. The AES encryption of the
data part accounts for less than 2% of bandwidth overhead. In our DSM, it is used mostly
during path discoveries, after which the connection falls back to a state which is more
bandwidth-efficient, as in 𝑃𝐴 we are exchanging hashes from Multi-Dimensional Token

 -

 10,000,000,000

 20,000,000,000

 30,000,000,000

 40,000,000,000

 50,000,000,000

 60,000,000,000

1 2 3 4 5 6 7 8 9 10

Si
m

ul
ta

ne
ou

s c
on

ne
ct

io
ns

su

pp
or

te
d

Path changes per hour

1 hop
2 hops
3 hops
4 hops
5 hops

 -

 20,000,000,000

 40,000,000,000

 60,000,000,000

 80,000,000,000

 100,000,000,000

 120,000,000,000

 140,000,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Su
pp

or
te

d
nu

m
be

r o
f

co
nn

ec
tio

ns

Dimensions In Multi-Dimensional Token Pools

1 hop
2 hops
3 hops
4 hops

Figure 16. Effect of path instability on the number of simultaneous connections (active State Channels).

Electronics 2022, 11, 3004 28 of 32

As seen in [Figure 17], we can offset the diverse effects of path instability by either
(1) increasing the number of dimensions within Multi-Dimensional Token Pools, so that
clients do not need to close Stateless Channels after each data transmission. With Token
Pools of multiple dimensions, we are able to proceed with another dimension, even though
the State Channel, facilitated through the previous dimension, was not closed yet. (2) Or,
by falling back to a lower frequency of rewards issuance. Both these procedures contribute
to the maximization of the numerosity of achievable simultaneous and incentivized data
streams by the DSM.

Electronics 2022, 11, x FOR PEER REVIEW 28 of 33

Figure 16. Effect of path instability on the number of simultaneous connections (active State Chan-
nels).

As seen in [Figure 17], we can offset the diverse effects of path instability by either
(1) increasing the number of dimensions within Multi-Dimensional Token Pools, so that
clients do not need to close Stateless Channels after each data transmission. With Token
Pools of multiple dimensions, we are able to proceed with another dimension, even
though the State Channel, facilitated through the previous dimension, was not closed yet.
(2) Or, by falling back to a lower frequency of rewards issuance. Both these procedures
contribute to the maximization of the numerosity of achievable simultaneous and incen-
tivized data streams by the DSM.

Figure 17. The effect of token pools’ dimensionality on the supported number of achievable simul-
taneous connections and/or state-channels.

In the case of a single payout clearance and just a single hop, the size of a data struc-
ture needed to be stored within the DSM is equal to 408 bytes. That is the size needed to
confirm payouts to one intermediary and one recipient, with an arbitrary [2] amount of
data flowing in between. In the case of no interruptions, i.e., no path changes during data
transmission, that would be the only data stored on the DSM. The AES encryption of the
data part accounts for less than 2% of bandwidth overhead. In our DSM, it is used mostly
during path discoveries, after which the connection falls back to a state which is more
bandwidth-efficient, as in 𝑃𝐴 we are exchanging hashes from Multi-Dimensional Token

 -

 10,000,000,000

 20,000,000,000

 30,000,000,000

 40,000,000,000

 50,000,000,000

 60,000,000,000

1 2 3 4 5 6 7 8 9 10

Si
m

ul
ta

ne
ou

s c
on

ne
ct

io
ns

su

pp
or

te
d

Path changes per hour

1 hop
2 hops
3 hops
4 hops
5 hops

 -

 20,000,000,000

 40,000,000,000

 60,000,000,000

 80,000,000,000

 100,000,000,000

 120,000,000,000

 140,000,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Su
pp

or
te

d
nu

m
be

r o
f

co
nn

ec
tio

ns

Dimensions In Multi-Dimensional Token Pools

1 hop
2 hops
3 hops
4 hops

Figure 17. The effect of token pools’ dimensionality on the supported number of achievable simulta-
neous connections and/or state-channels.

In the case of a single payout clearance and just a single hop, the size of a data
structure needed to be stored within the DSM is equal to 408 bytes. That is the size needed
to confirm payouts to one intermediary and one recipient, with an arbitrary [2] amount
of data flowing in between. In the case of no interruptions, i.e., no path changes during
data transmission, that would be the only data stored on the DSM. The AES encryption
of the data part accounts for less than 2% of bandwidth overhead. In our DSM, it is used
mostly during path discoveries, after which the connection falls back to a state which is
more bandwidth-efficient, as in PA2 we are exchanging hashes from Multi-Dimensional
Token pools for most of it, which comprise payments, of course. That, broadly speaking
comprises how it operates. Looking closer, the size of a single ‘on-the-chain’ Transit Pool
payout clearance is calculated as below:

payoutClearanceOverhead = PayoutRequest + PayoutCon f irmation;

PayoutRequest = ε + (ρ ∗ 33) + ε + τ

where ε stands for a secret from inside an onion, ρ for the number of intermediaries, τ size
of the Transmission Token and ε represents the ECC public session key used to encrypt a
symmetric key.

The number of intermediaries has a direct impact on the size of metadata attached
to a data packet, as the data structures depicting payouts (Transmission Tokens) need to
account for more agents involved. Payout clearance might be initiated at any time by any
agent involved [1]. The relationship between path length and achievable TPS, for both PA1
and PA2 is visualized in [Figure 18].

Electronics 2022, 11, 3004 29 of 32

Electronics 2022, 11, x FOR PEER REVIEW 29 of 33

pools for most of it, which comprise payments, of course. That, broadly speaking com-
prises how it operates. Looking closer, the size of a single ‘on-the-chain’ Transit Pool pay-
out clearance is calculated as below: 𝑝𝑎𝑦𝑜𝑢𝑡𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑃𝑎𝑦𝑜𝑢𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑃𝑎𝑦𝑜𝑢𝑡𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛;

𝑃𝑎𝑦𝑜𝑢𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 = 𝜀 (𝜌 ∗ 33) 𝜖 𝜏

where ε stands for a secret from inside an onion, ρ for the number of intermediaries, τ size
of the Transmission Token and ϵ represents the ECC public session key used to encrypt a
symmetric key.

The number of intermediaries has a direct impact on the size of metadata attached to
a data packet, as the data structures depicting payouts (Transmission Tokens) need to
account for more agents involved. Payout clearance might be initiated at any time by any
agent involved [1]. The relationship between path length and achievable TPS, for both 𝑃𝐴 and 𝑃𝐴 is visualized in [Figure 18].

Figure 18. The effect of path length on the achievable TPS in a ‘strict’ case.

Each compartment on the x-axis represents the achievable Transactions Per Second
(TPS) statistic achievable at a particular path length. If the user is in possession of a Token
Pool with multiple dimensions (Multi-Dimensional Token Pools), they wouldn’t need to
initiate payout clearance each time a new data path was to be formed, as they would
simply pick a new dimension from the Token Pool to incentivize the newly formed data-
path and continue from a previous one once and if the previous data path turns out viable
again.

The number of simultaneous connections supported by 𝑃𝐴 (taking use of both 𝑃𝐴
for path establishments and 𝑃𝐴 for actual data exchange) in the ‘realistic’ case is visible
below [Figure 19].

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 O
n-

th
e-

ch
ai

n
TP

S

Data Path Length

PA2 Maximum
TPS

PA1 Maximum
TPS

Figure 18. The effect of path length on the achievable TPS in a ‘strict’ case.

Each compartment on the x-axis represents the achievable Transactions Per Second
(TPS) statistic achievable at a particular path length. If the user is in possession of a Token
Pool with multiple dimensions (Multi-Dimensional Token Pools), they wouldn’t need to
initiate payout clearance each time a new data path was to be formed, as they would simply
pick a new dimension from the Token Pool to incentivize the newly formed data-path and
continue from a previous one once and if the previous data path turns out viable again.

The number of simultaneous connections supported by PA3 (taking use of both PA1
for path establishments and PA2 for actual data exchange) in the ‘realistic’ case is visible
below [Figure 19].

Electronics 2022, 11, x FOR PEER REVIEW 30 of 33

Figure 19. Achievable simultaneous connections based on hop-count. Realistic scenario in which
nodes perform a fallback to having transmission tokens attached alongside 1% of data packets.

Achievable theoretical number of simultaneous connections τ can be calculated as
follows:

𝜏 = ⎝⎜⎜
⎛ 𝑏𝑠𝑝𝑐𝑠𝜇𝜎 ⎠⎟⎟

⎞

where, bs stands for the blockchain blocks size, pcs for the size of a single payout clearance,
μ is the blockchain block interval, and σ represents the path variance.

15.3. Evaluation of Multi-Dimensional Token Pools for Rewarding for Arbitrary Services
As has been discussed, the number of dimensions within Multi-Dimensional Token

Pools contributes directly to achievable performance in terms of simultaneous, active State
Channels. The below [Figure 20] visualizes the relationship between the number of di-
mensions of a single Token Pool and the amount of DMS storage needed to accommodate
it.

Figure 20. Dependency of the resulting Token Pool’s data structure size on the numerosity of di-
mensions.

Broadly speaking, each dimension involves the storage of a yet another seed hash.
The number of tokens available from a single dimension does not affect the size of a Token
Pool, though.

 -

 10,000,000,000

 20,000,000,000

 30,000,000,000

 40,000,000,000

 50,000,000,000

 60,000,000,000

0 5 10 15 20

AC
HI

EV
AB

LE
 N

R
OF

SI

M
UL

TA
NE

OU
S C

ON
NE

CT
IO

NS

HOP COUNT

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18

M
UT

LI
-D

IM
EN

SI
ON

AL
 T

OK
EN

PO

OL
 S

IZ
E

(O
N-

TH
E-

CH
AI

N
BY

TE
S)

NUMBER OF DIMENSIONS

Figure 19. Achievable simultaneous connections based on hop-count. Realistic scenario in which
nodes perform a fallback to having transmission tokens attached alongside 1% of data packets.

Achievable theoretical number of simultaneous connections τ can be calculated
as follows:

τ =

(

bs
pcs

)
µ

σ

Electronics 2022, 11, 3004 30 of 32

where, bs stands for the blockchain blocks size, pcs for the size of a single payout clearance,
µ is the blockchain block interval, and σ represents the path variance.

15.3. Evaluation of Multi-Dimensional Token Pools for Rewarding for Arbitrary Services

As has been discussed, the number of dimensions within Multi-Dimensional Token Pools
contributes directly to achievable performance in terms of simultaneous, active State Channels.
The below [Figure 20] visualizes the relationship between the number of dimensions of a
single Token Pool and the amount of DMS storage needed to accommodate it.

Electronics 2022, 11, x FOR PEER REVIEW 30 of 33

Figure 19. Achievable simultaneous connections based on hop-count. Realistic scenario in which
nodes perform a fallback to having transmission tokens attached alongside 1% of data packets.

Achievable theoretical number of simultaneous connections τ can be calculated as
follows:

𝜏 = ⎝⎜⎜
⎛ 𝑏𝑠𝑝𝑐𝑠𝜇𝜎 ⎠⎟⎟

⎞

where, bs stands for the blockchain blocks size, pcs for the size of a single payout clearance,
μ is the blockchain block interval, and σ represents the path variance.

15.3. Evaluation of Multi-Dimensional Token Pools for Rewarding for Arbitrary Services
As has been discussed, the number of dimensions within Multi-Dimensional Token

Pools contributes directly to achievable performance in terms of simultaneous, active State
Channels. The below [Figure 20] visualizes the relationship between the number of di-
mensions of a single Token Pool and the amount of DMS storage needed to accommodate
it.

Figure 20. Dependency of the resulting Token Pool’s data structure size on the numerosity of di-
mensions.

Broadly speaking, each dimension involves the storage of a yet another seed hash.
The number of tokens available from a single dimension does not affect the size of a Token
Pool, though.

 -

 10,000,000,000

 20,000,000,000

 30,000,000,000

 40,000,000,000

 50,000,000,000

 60,000,000,000

0 5 10 15 20

AC
HI

EV
AB

LE
 N

R
OF

SI

M
UL

TA
NE

OU
S C

ON
NE

CT
IO

NS

HOP COUNT

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18

M
UT

LI
-D

IM
EN

SI
ON

AL
 T

OK
EN

PO

OL
 S

IZ
E

(O
N-

TH
E-

CH
AI

N
BY

TE
S)

NUMBER OF DIMENSIONS

Figure 20. Dependency of the resulting Token Pool’s data structure size on the numerosity of
dimensions.

Broadly speaking, each dimension involves the storage of a yet another seed hash.
The number of tokens available from a single dimension does not affect the size of a Token
Pool, though.

While a dedicated research paper up taking various analysis of the data exchange
incentivization sub-system is pending, we invite the reader to already play around with the
attached simulator, where details with regard to the formulas and constants describing the
overheads of particular low-level data structures can be found seen in [Figure 21] below.

Electronics 2022, 11, x FOR PEER REVIEW 31 of 33

While a dedicated research paper up taking various analysis of the data exchange
incentivization sub-system is pending, we invite the reader to already play around with
the attached simulator, where details with regard to the formulas and constants describ-
ing the overheads of particular low-level data structures can be found seen in [Figure 21]
below.

Figure 21. Fragment of a dedicated, Excel-based simulator of State-Channels and data incentiviza-
tion performance under various parameters and conditions.

These are some fascinating results that could benefit not only the rigidness of data
exchange within decentralized state machines but also extrinsic applications such as IoT
protocols and services [16–18].

16. Future Work
We are to continue opening up our implementation to the outside world. As the

reader is reading this, both the UI and Terminal Services have been long made available
and are accessible through a public DNS-based gateway at test.gridnet.org. Should one
choose to omit the public DNS system entirely, the list of IP nodes comprising the system
is available over the Torrent protocol through a Magnet URL [19] (accessed 21 September
2022). In order for the described conceives to flourish even further, we demand better
isolation constructs from web browsers’ developers. The Shadow-DOM and the current
implementation of web workers are great, but we shall continue extending upon and em-
ploying similar security and compartmentation constructs so as to aid the security of de-
centralized UI dApps. Web browsers are web browsers no more. The integration of veri-
fiable off-the-chain computations on the side of web browsers could surely further im-
prove upon the overall system’s capabilities. It is worth noting that sound research results
in the field of verifiable computation could enormously benefit the eco-system, further
improving incentivization for computational tasks happening off the chain. We have been
paying special attention to the problematics of incentivizing anonymous web browsing
through crypto-incentivized reverse CORS proxies. Respected readers may already test
these mechanics by launching the Browser UI dApp available on our test-bed, or by point-
ing their web browsers to https://test.gridnet.org:444/https://wikipedia.org or
https://test.gridnet.org:444/https://google.com (accessed 12 September 2022). The result is,
not a single cookie from a target web-server ends up on the client computer, all the pri-
vacy-related HTTP headers are stripped, and every kind of current CORS policy imple-
mented in the current web browsers is effectively mitigated. Yet again, we strive to make
these mechanics available at the fingertips of UI dApps’ developers, all in the name of the
freedom of information [20,21].

Figure 21. Fragment of a dedicated, Excel-based simulator of State-Channels and data incentivization
performance under various parameters and conditions.

Electronics 2022, 11, 3004 31 of 32

These are some fascinating results that could benefit not only the rigidness of data
exchange within decentralized state machines but also extrinsic applications such as IoT
protocols and services [16–18].

16. Future Work

We are to continue opening up our implementation to the outside world. As the
reader is reading this, both the UI and Terminal Services have been long made available
and are accessible through a public DNS-based gateway at test.gridnet.org. Should one
choose to omit the public DNS system entirely, the list of IP nodes comprising the system
is available over the Torrent protocol through a Magnet URL [19] (accessed 12 September
2022). In order for the described conceives to flourish even further, we demand better
isolation constructs from web browsers’ developers. The Shadow-DOM and the current
implementation of web workers are great, but we shall continue extending upon and
employing similar security and compartmentation constructs so as to aid the security of
decentralized UI dApps. Web browsers are web browsers no more. The integration of
verifiable off-the-chain computations on the side of web browsers could surely further
improve upon the overall system’s capabilities. It is worth noting that sound research
results in the field of verifiable computation could enormously benefit the eco-system,
further improving incentivization for computational tasks happening off the chain. We
have been paying special attention to the problematics of incentivizing anonymous web
browsing through crypto-incentivized reverse CORS proxies. Respected readers may
already test these mechanics by launching the Browser UI dApp available on our test-bed,
or by pointing their web browsers to https://test.gridnet.org:444/https://wikipedia.org
or https://test.gridnet.org:444/https://google.com (accessed 12 September 2022). The
result is, not a single cookie from a target web-server ends up on the client computer, all
the privacy-related HTTP headers are stripped, and every kind of current CORS policy
implemented in the current web browsers is effectively mitigated. Yet again, we strive to
make these mechanics available at the fingertips of UI dApps’ developers, all in the name
of the freedom of information [20,21].

17. Summary

In this research paper, we have tackled the concept of a decentralized operating system,
which stems back to the year 1987. The results we have arrived at with our implementation
are very encouraging indeed. We have tackled lots of specificalities and demonstrated how
we have approached various dilemmas as we went along. Notable contributions include
the quantification of Decentralized Processing Threads, Multi-Dimensional Token Pools,
and our implementation’s specific Proof-of-Storge. The test-bed environment is available
at test.gridnet.org, many tutorials are available at mag.gridnet.org, and we invite you to
have a conversation at talk.gridnet.org. Above everything, we consider that it shall be
our responsibility to allow for the information to be free. We believe that the concept of
decentralized operating systems builds upon the paramount contributions of the research
community and countless hours spent by developers, which are, as we believe, driven by
passion, for the most of it.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/electronics11193004/s1, Excel S1: A Spreadsheet-based Simulator.

Author Contributions: Conceptualization, R.S.; methodology, R.S.; software, R.S.; validation, R.S.,
J.B.; formal analysis, R.S.; investigation, R.S.; resources, R.S.; data curation, R.S.; writing—original
draft preparation, R.S.; writing—review and editing, R.S.; visualization, R.S.; supervision, J.B.; project
administration, R.S.; funding acquisition, R.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available within the attached spreadsheet-based simulator, other
external data as per the references.

https://test.gridnet.org:444/https://wikipedia.org
https://test.gridnet.org:444/https://google.com
https://www.mdpi.com/article/10.3390/electronics11193004/s1
https://www.mdpi.com/article/10.3390/electronics11193004/s1

Electronics 2022, 11, 3004 32 of 32

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Skowroński, R.; Brzeziński, J. SPIDE: Sybil-proof, incentivized data exchange. Clust. Comput. 2022, 25, 2241–2270. [CrossRef]
2. Dannen, C. Introducing Ethereum and Solidity; Apress: Berkeley, CA, USA, 2017; Volume 1.
3. Nakamoto, S. Bitcoin Whitepaper. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 17 July 2019).
4. Goldreich, O.; Yair, O. Definitions and properties of zero-knowledge proof systems. J. Cryptol. 1994, 7, 1–32. [CrossRef]
5. Skowroński, R. The open blockchain-aided multi-agent symbiotic cyber–physical systems. Future Gener. Comput. Syst. 2019, 94,

430–443. [CrossRef]
6. de Ocáriz Borde, H.S. An Overview of Trees in Blockchain Technology: Merkle Trees and Merkle Patricia Tries. 2022. Available

online: https://www.researchgate.net/publication/358740207_An_Overview_of_Trees_in_Blockchain_Technology_Merkle_
Trees_and_Merkle_Patricia_Tries (accessed on 12 September 2022).

7. Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv 2021,
arXiv:2105.07447.

8. Eyal, I.; Gencer, A.E.; Sirer, E.G.; Van Renesse, R. {Bitcoin-NG}: A Scalable Blockchain Protocol. In Proceedings of the 13th USENIX
symposium on networked systems design and implementation (NSDI 16), Santa Clara, CA, USA, 16–18 March 2016.

9. Verdian, G.; Tasca, P.; Paterson, C.; Mondelli, G. Quant overledger whitepaper. Release V0. 1 (Alpha), 31 January 2018.
10. Lee, S.; Kim, D.; Kim, D.; Son, S.; Kim, Y. Who Spent My {EOS}? On the ({In) Security} of Resource Management of {EOS. IO}. In

Proceedings of the 13th USENIX Workshop on Offensive Technologies (WOOT 19), Santa Clara, CA, USA, 12–13 August 2019.
11. Moore, C.H.; Leach, G.C. Forth–A Language for Interactive Computing; Mohasco Industries Inc.: Amsterdam, The Netherlands, 1970.
12. Maymounkov, P.; Mazieres, D. Kademlia: A peer-to-peer information system based on the xor metric. In International Workshop on

Peer-to-Peer Systems; Springer: Berlin/Heidelberg, Germany, 2002.
13. Huang, Y.; Wang, H.; Wu, L.; Tyson, G.; Luo, X.; Zhang, R.; Liu, X.; Huang, G.; Jiang, X. Characterizing eosio blockchain. arXiv

2020, arXiv:2002.05369.
14. Wang, C.; Li, Z.; Huang, X.; Zhang, P. Inferring the average as path length of the internet. In Proceedings of the 2016 IEEE

International Conference on Network Infrastructure and Digital Content (IC-NIDC), Beijing, China, 23–25 September 2016.
15. Center for Applied Internet Data Analysis. Trace Statistics for CAIDA Passive OC48 and OC192 Traces; CAIDA: La Jolla, CA, USA, 2018.
16. Buttyan, L.; Hubaux, J. Enforcing service availability in mobile ad-hoc WANs. In Proceedings of the IEEE/ACM Workshop on

Mobile Ad Hoc Networking and Computing (MobiHoc), Boston, MA, USA, 11 August 2000.
17. He, Q.; Wu, D.; Khosla, P. SORI: A Secure and Objective Reputation-based Incentive Scheme for Ad-hoc Networks. In Proceedings

of the 2004 IEEE Wireless Communications and Networking Conference, Atlanta, GA, USA, 21–25 March 2004.
18. Buchegger, S.; Le Boudec, J.Y. Self-Policing Mobile Ad-Hoc Networks by Reputation Systems. IEEE Commun. Mag. 2005, 43,

101–107. [CrossRef]
19. Torrent Protocol Manget. Available online: https://www.magnet:?xt=urn:btih:62665C5C61976A3D7C30ED5B6B8486CFE285

F9DB&dn=GRIDNET%20Endpoints.txt&tr=udp%3a%2f%2ftracker.openbittorrent.com%3a80%2fannounce&tr=udp%3a%2f%
2ftracker.opentrackr.org%3a1337%2fannounce (accessed on 12 September 2022).

20. Braun, S.; Flaherty, A.; Gillum, J.; Apuzzo, M. Secret to PRISM Program: Even Bigger Data Seizures; Associated Press: New York, NY,
USA, 2013; Retrieved June 18.

21. Gellman, B.; Poitras, L. US Intelligence Mining Data from Nine U.S. Internet Companies in Broad Secret Program. The Washington
Post, 6 June 2013; Retrieved 15 June 2013.

http://doi.org/10.1007/s10586-021-03411-3
https://bitcoin.org/bitcoin.pdf
http://doi.org/10.1007/BF00195207
http://doi.org/10.1016/j.future.2018.11.044
https://www.researchgate.net/publication/358740207_An_Overview_of_Trees_in_Blockchain_Technology_Merkle_Trees_and_Merkle_Patricia_Tries
https://www.researchgate.net/publication/358740207_An_Overview_of_Trees_in_Blockchain_Technology_Merkle_Trees_and_Merkle_Patricia_Tries
http://doi.org/10.1109/MCOM.2005.1470831
https://www.magnet:?xt=urn:btih:62665C5C61976A3D7C30ED5B6B8486CFE285F9DB&dn=GRIDNET%20Endpoints.txt&tr=udp%3a%2f%2ftracker.openbittorrent.com%3a80%2fannounce&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337%2fannounce
https://www.magnet:?xt=urn:btih:62665C5C61976A3D7C30ED5B6B8486CFE285F9DB&dn=GRIDNET%20Endpoints.txt&tr=udp%3a%2f%2ftracker.openbittorrent.com%3a80%2fannounce&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337%2fannounce
https://www.magnet:?xt=urn:btih:62665C5C61976A3D7C30ED5B6B8486CFE285F9DB&dn=GRIDNET%20Endpoints.txt&tr=udp%3a%2f%2ftracker.openbittorrent.com%3a80%2fannounce&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337%2fannounce

	Introduction
	Layout of this Research Paper
	Prelude to Decentralized Operating Systems
	The 5xA Design Paradigm

	Definitions
	The Concept of a Decentralized Operating System
	Rationale
	Consensus
	The Architecture
	Relationship between the Decentralized Web-UI, UI dApps, IVRs and DPTs

	Problem Formulation
	Previous Works
	Contribution
	#GridScript
	Decentralized Web Boot-Loader
	Deferred Authentication State-Full Sessions
	Decentralized Processing Threads
	Interactive Code
	In Terminal (SSH)
	In Browser (Decentralized UI Interface)
	Mobile App and QR Codes
	Commitment
	Cross Node-Browser State Replication

	Communication
	Previous Construct of Token Pools
	Solution-Multi-Dimensional Token Pool
	A-Synchronicity Supported
	A Compatible Transmission Token
	Inter-Process Communication-Signaling and Event-Driven architecture
	Integrated Web-Server and WebSockets
	Protocol Invariant Routing and Path Discovery (Including Onion Routing)
	Web-RTC Swarms

	Storage
	On-the-Chain
	Off-the-Chain (Including Rewards for Content Deliveries)
	Access Control Lists and Ownership
	Non-Fungible Tokens Reinvented

	Abuse Mitigation
	Venice UI/UX Design Paradigm
	Overcoming Limitations of Previous Architectures and Evaluation of Results
	The Architecture
	Influence of Path Instability on the Amount of Data Stored inside of the DSM
	Evaluation of Multi-Dimensional Token Pools for Rewarding for Arbitrary Services

	Future Work
	Summary
	References

