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Abstract: Current quantum computers are still error-prone, with measurement errors being one of
the factors limiting the scalability of quantum devices. To reduce their impact, a variety of readout
error mitigation methods, mostly relying on classical post-processing, have been developed. However,
the application of these methods is complicated by their heterogeneity and a lack of information
regarding their functionality, configuration, and integration. To facilitate their use, we provide an
overview of existing methods, and evaluate general and method-specific configuration options.
Quantum applications comprise many classical pre- and post-processing tasks, including readout
error mitigation. Automation can facilitate the execution of these often complex tasks, as their manual
execution is time-consuming and error-prone. Workflow technology is a promising candidate for
the orchestration of heterogeneous tasks, offering advantages such as reliability, robustness, and
monitoring capabilities. In this paper, we present an approach to abstractly model quantum work-
flows comprising configurable readout error mitigation tasks. Based on the method configuration,
these workflows can then be automatically refined into executable workflow models. To validate the
feasibility of our approach, we provide a prototypical implementation and demonstrate it in a case
study from the quantum humanities domain.

Keywords: quantum computing; survey; readout error mitigation; measurement errors; workflows

1. Introduction

Quantum computing promises breakthroughs in many fields, e.g., machine learning,
chemistry, and optimization [1–3]. Taking advantage of quantum mechanical phenomena
such as superposition and entanglement, quantum algorithms may outperform their classi-
cal counterparts regarding speed, accuracy, or energy efficiency [3,4]. Although quantum
devices have improved significantly over the past few years, they are still noisy, error-prone,
and provide a limited number of qubits [5]. The errors caused by different sources, e.g.,
error-prone gate executions or faulty measurements, lead to inaccurate results [6]. How-
ever, contrary to classical bits, the state of a qubit can not be copied [7], making classical
error handling methods infeasible for quantum computing. Thus, new error handling
mechanisms are being introduced for correcting or mitigating quantum errors [8–11].

Error correction enables fault-tolerant quantum computation by performing an in-
flight repair of computational errors [8]. However, correcting quantum errors requires a
large number of qubits and significantly increases circuit depth, making it infeasible for the
current generation of Noisy Intermediate-Scale Quantum (NISQ) devices [3]. In contrast, error
mitigation methods focus on mitigating the impact of errors with little to no modifications
in quantum circuits, i.e., the circuit depth and width remain similar. For example, Gate
Error Mitigation (GEM) methods [12–14] adapt quantum circuits before their execution to
compensate for expected gate errors, and Readout Error Mitigation (REM) methods [15–17]
often rely on classical post-processing to reduce the impact of measurement errors [8].

Due to the high measurement error rates of many NISQ devices [18], REM becomes
a necessity for executing quantum circuits [15]. While a variety of methods for mitigating
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measurement errors have been proposed in the literature [19–21], their configuration dif-
fers significantly, e.g., the specification of method-specific attributes, and requires specific
expertise in different domains, in addition to having a knowledge of quantum computers
and error mitigation methods, which can hinder their application in practice. For example,
some REMs rely on training neural networks [22], whereas others employ arithmetic matrix
operations [15]. Hence, they impose different configuration and integration requirements
on quantum application developers. Furthermore, acquiring a list of existing methods
and their categorization to facilitate selecting “the best tool for the job” is difficult and
time-consuming, as most methods are introduced in highly detailed papers. Therefore,
quantum application developers must often choose from a wide range of methods with
different advantages, disadvantages, and requirements. This requires an understanding
of (i) what makes existing methods different and (ii) how to configure them correctly prior
to integrating them into quantum applications. This leads us to Challenge 1: “The lack of
centralized documentation for REM methods makes it non-trivial for quantum software engineers
to explore, adopt, and exchange the method implementations. Furthermore, existing works do not
use a uniform terminology and structure, making it difficult to compare different methods. This
particularly applies to heterogeneous configuration options of existing methods, further complicating
the integration of REM into quantum applications”.

Moreover, quantum circuits are typically not executed independently, but rather as
part of a complex process that comprises many tasks [23,24]. Many of these tasks are
performed on classical hardware, e.g., database access, user interaction, or data preparation
for the quantum circuit, while others are executed on quantum hardware. Hence, their
heterogeneity leads to several prerequisites, e.g., different programming languages, operat-
ing systems, or hardware. Therefore, the execution of quantum applications is a hybrid
process consisting of various quantum and classical tasks [23]. The manual integration
and execution of these tasks is time-consuming and error-prone as it requires knowledge
from different domains, e.g., quantum software engineering, integration, and deployment
automation. One proven way to enable such an integration is to use workflow technology,
which enables the robust and scalable orchestration of complex compositions of hetero-
geneous tasks [25,26]. As a step towards workflow-based modeling and the execution of
quantum applications, Weder et al. [27] introduced a quantum-specific modeling extension
for workflow languages. For example, it can be used to graphically model and execute
typical quantum tasks, such as circuit execution or REM, in Business Process Model and Nota-
tion (BPMN) [28]. However, to the best of our knowledge, there exist no works focusing
on the issue of automating the configuration of REM methods, as well as in the context of
workflow-based modeling and the execution of quantum applications, which leads us to
Challenge 2: “The manual integration of a hybrid quantum application into existing software
systems is complex, time-consuming, inefficient, and error-prone. Particularly reoccurring tasks
with changing configurations such as REM can benefit from automation. While there are concepts
that enable modeling quantum applications using workflows, there exist no concepts and techniques
for automating the configuration and execution of REM”.

In this work, we address these challenges by (i) conducting a survey of existing REM
methods to categorize them and to identify the underlying method-specific and method-
agnostic configuration options. This analysis supports quantum application developers in
deciding on suitable methods, and facilitates the configuration of the chosen method when
specifying the workflow model. Therefore, to automate the configuration of REM methods,
we (ii) present a model-driven configuration approach that enables the automation of the
execution of REM in quantum workflows. To validate the feasibility of our approach, we
(iii) implement our concepts prototypically by extending an existing open-source frame-
work for modeling, transforming, and deploying quantum workflows [29]. Finally, we
(iv) conduct a case study from the quantum humanities domain showcasing the automated
configuration of the REM process using our prototypical implementation.

The remainder of this paper is organized as follows: Section 2 discusses the funda-
mental concepts and Section 3 presents the survey of REM methods. Section 4 introduces
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our approach for the automated configuration of REM in quantum workflows. Section 5
elaborates on the case study from the quantum humanities domain. Finally, Sections 6
and 7 discuss our findings and related work, and Section 8 concludes the paper.

2. Background

In this section, we discuss the relevant background on quantum error handling and
on the workflow-based execution of hybrid quantum applications.

2.1. Quantum Errors and Their Handling in the NISQ Era

Current NISQ devices are error-prone, reducing the result quality and limiting the
scalability of quantum computations [3]. The reason for the high number of errors is the
fragility and complexity of quantum systems which leads to unintended quantum state
changes. Moreover, quantum errors originate from various sources, e.g., qubits themselves
are unstable and decay over short periods of time; so-called decoherence. Furthermore,
unintentional state changes happen due to erroneous gate executions [12,30–32], or the
unavoidable coupling between qubits and their physical environment [33].

Although error-prone qubits and gate errors play a significant role, measurement errors
often play a crucial role too [15]. Measurement errors, also called readout errors, are caused
by erroneous measurement operations and the significant measurement times, which can
lead to the decoherence of quantum states during the measurement [34]. As a consequence,
the measurement result deviates from the prepared quantum state [5]. To reduce the impact
of measurement errors, several REM methods have been developed [15,16,19]. Figure 1
shows a typical process when applying REM. During quantum circuit execution, the solu-
tion state is prepared and finally measured to obtain its information. However, measuring
a qubit’s state collapses the state into the classically processable 0 or 1 state. Therefore, it is
necessary to measure qubits multiple times to retrieve a probability distribution describing
the qubit’s state. The number of repeated circuit executions is called shots, and a higher
number of shots leads to a more precise probability distribution. As quantum circuits
generally comprise multiple qubits, the measurement is described using a bit string, with
each bit representing one qubit’s measured state. The measured bit strings for each shot
are counted and commonly referred to as counts or a measurement result. Inaccurate mea-
surements of quantum states lead to a result that does not properly represent the prepared
state. Hence, REM is performed to reduce the impact of measurement errors and to shift
the result closer to the prepared state.

Measure Mitigate

Prepared State Measurement Result Mitigated Result
00 01 10 1100 01 10 11 00 01 10 11

Figure 1. A high-level overview of the readout error mitigation process.

Typically, REM methods try to estimate measurement error rates and use these esti-
mates to reduce the impact of errors on the measurement result. Since these error rates
change over time, they are only valid for a limited time span [35–37]. To retrieve these so-
called calibration data, a number of additional, method-specific circuits are executed. These
mitigation circuits can either be independent of the target circuit that shall be mitigated, or
they can be modified versions of that circuit. The former are reusable for different target
circuits and are known as calibration circuits [34]. Commonly, their measurement results can
be transformed into a reusable mitigator that is directly applied to a measurement result to
mitigate it. Furthermore, the error rates differ for each qubit, making it important that the
correct qubit mapping is used for error mitigation [15,17]. As all quantum circuits need
to be transpiled for the quantum device’s gate set and qubit connectivity map to execute
them, it is of particular importance to use the qubit mapping of the transpiled circuit for
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error mitigation. Otherwise, the mitigation methods might determine error rates for qubits
that are not even measured when executing the quantum circuit.

2.2. Workflow-Based Modeling and Execution of Quantum Applications

Workflow technologies enable complex orchestrations of heterogeneous tasks, and
have been proven to be applicable in different application domains, such as business pro-
cess management or e-science [25,26]. As quantum applications typically comprise different
classical and quantum tasks, workflows are also suitable for their orchestration [23,24,27].
These tasks can be quantum algorithm-independent, such as database access, or quantum
algorithm-specific pre- and post-processing tasks, e.g., analyzing continued fractions for
Shor’s algorithm [38] or REM. Using workflows, the required tasks, their execution order,
and the data flow between them are defined in so-called workflow models, which are auto-
matically enacted using compatible workflow engines [26,39]. Both classical and quantum
tasks, as well as the behavior in the case of certain events, e.g., timeouts or errors, can be
modeled and automatically executed using workflows. Thus, quantum applications can
benefit from their advantages, such as robustness, reliability, and scalability [23].

To facilitate modeling quantum tasks in workflows, Weder et al. [27] introduce the
Quantum Modeling Extension (QuantME), which can be applied to various imperative work-
flow languages, such as BPMN [28] or BPEL [40]. Thereby, new so-called QuantME tasks
are introduced alongside typical configuration options for commonly occurring tasks in the
quantum computing domain, such as quantum circuit loading, quantum circuit execution,
and REM. Figure 2 shows a typical workflow model for executing a Variational Quantum
Algorithm (VQA) [41]. VQAs alternate between executing a parameterized quantum circuit
on a quantum device and optimizing the circuit parameters classically on the basis of the
measurement results. The workflow model uses native BPMN modeling constructs, as
well as the QuantME tasks. It comprises several tasks that must be executed to obtain the
algorithm result. First, the parameterized quantum circuit solving the given problem is
loaded by the Load Circuit task. The QuantME quantum circuit loading task is configured
by either providing a URL to a file containing a circuit, or by directly inserting the code
of a quantum circuit into the workflow model. Next, the Execute Circuit task executes the
quantum circuit on the quantum device for the first time. It requires the specification of
a provider and QPU name, and the number of shots used for execution. Once the circuit
execution is completed, the Perform REM task is executed to apply REM to the retrieved
measurement result. The definition of a REM method and a QPU are required by the
QuantME REM task. Optionally, the maximum age for calibration data can be set. How-
ever, additional configuration properties, e.g., method-specific properties, are currently not
supported. Afterwards, the Evaluate Result tas processes the mitigated measurement result
by evaluating an objective function, which rates the quality of the retrieved measurement
result [42]. If the evaluation shows that the quality of the result is not yet converging and
the maximum number of optimization steps is not reached yet, the Optimize Parameters
task is executed, which computes new parameters for the quantum circuit and invokes the
Execute Circuit task once again. Otherwise, the quantum algorithm execution is completed,
and the user can evaluate the result in the Analyze Result task.

However, the newly introduced QuantME tasks would reduce the portability of the
workflow models, as the workflow engines must be extended to support their process-
ing [29]. Therefore, all QuantME tasks are replaced by reusable workflow fragments [43], so-
called QuantME replacement fragments [27], before executing the workflow. These QuantME
replacement fragments implement the functionality of the respective QuantME tasks. Fur-
ther, they only utilize native modeling constructs of the workflow language, and hence
the portability of the workflow model is retained. Once modeled and transformed, the
workflow model can be automatically executed by compatible workflow engines [26].
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Figure 2. Overview of a typical QuantME BPMN model for a VQA.

3. Analysis of Configuration Options in Readout Error Mitigation Methods

In this section, we survey existing REM methods and analyze their configuration op-
tions to address Challenge 1 formulated in Section 1. We first present the survey design and
then proceed with the analysis of existing REM methods and their configuration options.

3.1. Survey Design

This survey aims to collect existing state-of-the-art research literature that focuses
on methods for mitigating the effects of measurement errors in quantum computations
and that were published in 2021 or earlier. The main goal is to analyze and categorize the
configuration options specific to each of the identified methods, such that the resulting
options can be used for the automatic configuration of employed REM methods in quantum
workflows. We design this survey following the existing guidelines for analyzing the
academic literature [44–46]. Figure 3 shows an overview of the applied multiphase search
and selection process. In the following, we elaborate on each phase, beginning with the
initial search description.

ACM Digital Library

arXiv.org

IEEE Xplore

Science Direct

Springer Link

Initial Search
(640)

2

494

88

24

56

2

274

24

0

18

Title & Abstract
(318)

+

Merge & 
Deduplication

302

Selection 
Criteria 
Applied

22

TOTAL

21 3 4

Wiley Online Library
0 0

Figure 3. Overview of the search and filtering process (based on [47]).

1. Data sources and initial search. To identify existing REM methods, we scan the data
sources recommended in well-established guidelines for a literature search [44–46]:
We queried the following scientific electronic databases: (i) ACM Digital Library,
(ii) arXiv.org, (iii) IEEE Xplore, (iv) Science Direct, (v) Springer Link, and (vi) Wiley
Online Library. We decided to include arXiv.org, as many related publications focusing
on the quantum domain are published as preprints. For the query, we defined a
generic search string to cover a wide range of error mitigation methods used in the
quantum domain, as shown in Listing 1.
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Listing 1: Query string used for the initial search

quantum AND (error OR noise) AND (mitigation OR unfolding)

Unfolding is used to describe the mitigation of noise in high energy physics, and
is also applicable in the quantum computing context [34]. To further reduce the
number of false positives in the Springer Link search results, the NEAR operator was
employed instead of the second AND operator: The NEAR operator ensures that the
term on its left side is within ten words of the term on its right side, which helps to
reduce irrelevant results when searching for combinations such as “error mitigation”
or “noise mitigation”. The initial search resulted in a total of 640 entries.

2. Screening based on Titles and Abstracts. In the second phase, we pruned the re-
trieved literature by scanning the title and abstract on their relevance to the topic of
quantum error mitigation. In unclear cases, we also analyzed the paper’s content in
order to reduce the number of false negatives, using the adaptive reading depth [45].
After screening the initial search results, we identified 318 entries relevant to quantum
error mitigation.

3. Merge and De-duplication. After identifying the initial set of relevant publications,
we merged all entries from the different scientific electronic databases into a single
data set. Then, we removed all duplicates based on the combination of title, authors,
and venue. Thereby, we prioritized peer-reviewed papers published in journals or
at conferences over pre-prints. In total, 302 entries remained after the merge and
de-duplication process.

4. Applying the Selection Criteria In the final phase, we filtered the entries based on
a set of selection criteria. For the analysis, we used the adaptive reading depth
strategy [45], as it was sufficient to categorize the majority of the entries. In unclear
cases, the relevance was discussed by all co-authors until a consensus was reached. We
applied the following inclusion (3) and exclusion (7) criteria to the set of remaining
publications:

3 Publications that introduce new REM methods for gate-based quantum de-
vices.

3 Publications that are written in English.
7 Publications that introduce methods that are based on hardware modifications.
7 Publications that introduce methods focusing on error correction, mitigating

gate errors, or on reducing the overall error, instead of specifically focusing on
measurement errors.

7 Publications that present use-case-specific methods, e.g., REM approaches in
the context of quantum chemistry that are not generally applicable.

7 Publications that use, benchmark, evaluate, review, or compare existing meth-
ods.

7 Publications that are not available in the form of a full research paper, e.g.,
presentation, tutorial, abstract, or book.

The resulting set of entries contains 22 publications. The REM methods introduced in
these papers are briefly discussed in the following sections.

3.2. Calibration Matrix-Based Mitigation Methods

A large number of identified REM methods are related to the concept of Calibration
Matrices (CMs). A CM contains information about the measurement error rates for each of
the basis states. As there are 2n basis states for n qubits, the size of the matrix is 2n × 2n,
with each cell containing the probability for a prepared basis state in column a, to be
measured as the basis state in row b. Consequently, all values of a column sum up to 1, as
each state is guaranteed to be measured as one of the basis states. Low measurement error
rates are indicated by values close to 1 at the diagonal of the CM, while values significantly
lower than 1 indicate high error rates. As the measurement result is a vector of counts, the
composition of the noisy measurement can be described as follows: CM ∗MTrue = MNoisy,
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where MTrue is the theoretical error-free measurement and MNoisy is the noisy measurement
result obtained from executing the circuit on a noisy quantum device. Since we are looking
for a way to transform the noisy measurement into the true measurement, we need to
transpose the equation as follows: MTrue = CM−1 ∗MNoisy. Therefore, in principle, it is
possible to retrieve the true probability distribution by accurately identifying the CM and
inverting it [34,48]. The inverse of a CM is a typical example of a reusable mitigator. Since
the number of matrix entries scales exponentially with the number of qubits, CM-based
methods that are not specifically focusing to improve the scalability are not feasible for
executions with a large number of qubits. In the following, we showcase different CM-
based REM methods, whereas methods that exclusively focus on generating new CMs are
presented in Section 3.3.

3.2.1. Calibration Matrix Subspace Methods

These methods focus on providing a good mitigation quality while using only the
sub-matrix of the CM. The advantages over CM-based methods requiring a full CM are
significantly lower classical resource requirements and improved scalability.

1. Perturbative REM for Near-Term Quantum Computers [49]: This method offers
resource-efficient REM via post-processing, by only employing a part of the full CM.
Under the assumption that the probability of many simultaneous bit-flips during one
measurement operation is low, it is sufficient to only use a small sub-matrix of the
CM to reduce the device’s error rate. Therefore, this method reduces the overhead for
error mitigation; however, its application is limited to scenarios where measurement
errors are not the main error source. No reference to an implementation is provided.

2. MThree [17]: The Matrix-free Measurement Mitigation (MThree) routine works on
a reduced subspace of the CM. For large devices, the number of unique measured
bit-strings is generally significantly smaller than the number of all possible bit-strings.
Therefore, it makes sense to define the subspace used for mitigation by the measured
noisy bit-strings, leading to a reduced dimensionality. The resulting equation system
can then be solved much more efficiently than one for inverting the full CM. MThree
uses its own custom calibration data generation procedure that for n qubits requires
2n circuits. The method’s implementation is publicly available on GitHub [50].

3.2.2. Optimization-Based Mitigation Methods

Many computational problems can be formulated as optimization problems, e.g., find-
ing the maximum of a mathematical function. To solve such problems, several optimization
procedures, e.g., COBYLA, have been developed that optimize the variables influencing
the solution [51]. These optimization procedures minimize or maximize the value of an ob-
jective function describing the optimization problem, by systematically evaluating different
parameter values. An example of choosing parameters are gradient descent algorithms [52].
For REM, optimization-based mitigation methods can be used to optimize an objective
function that describes the reconstruction of the true, error-free measurement result.

1. Genetic-Based REM [20,53]: Genetic-based REM methods build upon optimization-
based evolutionary algorithms. These methods determine mitigator candidates by
manipulating the set of potential solutions, the so-called chromosomes. Initially, a set
of chromosomes is randomly created, and its fitness is evaluated, e.g., by means of the
mean squared error. With every evolution of the algorithm, the fittest chromosome,
i.e., the best solution, is carried over and mutated to generate similar and even fitter
solutions. This process is repeated until a sufficiently good chromosome is found. No
reference to an implementation is provided.

3.3. Calibration Matrix Generation Methods

In this section, we describe methods that can be used to generate a CM. In addition
to using different calibration circuits, the discussed methods also differ in the number of
circuits they execute and the number of error rates they use to build the CM. Generally, a
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higher number of calibration circuits and retrieved error rates increases the accuracy of
the CM. However, a high number of calibration circuits leads to a more time-consuming
and expensive quantum circuit execution process, whereas a higher number of error rates
increases the required storage size for the CM. The mitigation process itself is performed
by applying one of the CM-based REM methods introduced in Section 3.2.

1. Full Calibration Matrix Generation [15,34]: This method generates a CM in the
most basic way and is commonly used as a benchmark for more advanced methods.
First, 2n shallow calibration circuits are generated, each of them preparing one of the
basis states, immediately followed by a measurement operation on all qubits. Next,
all circuits are executed, and the obtained probabilities for measuring each of the
basis states are used as values for each field of the column representing the circuit’s
prepared basis state. Therefore, the CM has a size of 2n × 2n. The high number of
calibration circuits makes this method infeasible for quantum devices with more than
a few qubits. An exemplary implementation can be found in Qiskit Ignis [54].

2. Tensor Product Noise Model (TPNM) [15]: The TPNM method focuses on mitigating
single-qubit measurement errors, and assumes that the measurement errors of all
qubits are independent. Therefore, it is sufficient to generate two calibration circuits
to determine each qubit’s error rate, εi and ηi, characterizing the measurement errors
|0〉 → |1〉 and |1〉 → |0〉, respectively. With these error rates, the following tensor
product-based CM of size n · 2× 2 can be formed:

TPNM CM =

[
1− ε1 η1

ε1 1− η1

]⊗
...
⊗[

1− εn ηn
εn 1− ηn

]
Thus, it is possible to generate a mitigation model on the basis of 2n error rates,
instead of the 2n error rates that are required by the full CM generation procedure.
This method is, e.g., implemented as a part of the Qiskit Ignis package [54].

3. Continuous Time Markov Processes (CTMP) [15]: The CTMP method extends the
TPNM method by including crosstalk into the error model. This is achieved by not
only looking at each qubit’s measurement error independently, but also including
their respective 2-qubit measurement errors. Thus, the number of required calibration
circuits increases from 2 to less than 2n, which, however, is still exponentially less
than the 2n circuits required by the full CM generation procedure. The CM M is in
the form of a matrix exponential M = eG, with G being the sum of the 2n2 error rates.
This method is, e.g., implemented as a part of the Qiskit Ignis package [54].

4. Diagonal Detector Overlapping Tomography (DDOT) [55]: The DDOT method is
used to generate a CM based on a generalization of the quantum overlapping to-
mography introduced by Cotler and Wilczek [56]. This procedure clusters strongly
correlated qubits and then generates a noise matrix for each of these clusters. Further,
clusters can have dependencies on other clusters, making them dependent on their
pre-measurement state. Since these clusters can be examined in parallel and not
all possible qubit correlations need to be examined, the number of circuits can be
drastically reduced in comparison to the full CM generation procedure. In order to
construct a k-local CM for N qubits, O(k2klog(N)) circuits are required [55]. Thereby,
k-local means that for every subset of qubits of size k, each of the basis states on that
subset is prepared at least once [55]. An implementation of this method is provided
by the authors on GitHub [57].

5. Conditionally Rigorous Mitigation of Measurement Errors [58]: This method fo-
cuses on creating a CM that is free of any state-preparation errors. By applying
single-qubit gate set tomography [59,60], an uncontaminated error analysis can be
performed. However, this more precise mitigation scheme comes at the cost of 4n

measurements [58]. No reference to an implementation is provided.
6. QREM through Fuzzy C-Means Clustering [19]: This method aims to generate a

CM that is highly tolerant to the effect of stochasticity. First, a calibration circuit



Electronics 2022, 11, 2983 9 of 26

for each basis state is executed t times in order to create 2n data sets, containing
the probability distributions for each basis state, similar to the full CM generation
method. In the second phase, the Fuzzy C-Means (FCM) algorithm [61] is applied
for each of the 2n data sets. The algorithm takes the data sets and a variable defining
the number of clusters as inputs. A suitable value for the number of clusters can be
determined, e.g., by applying the method introduced by Ross [62]. With these inputs,
the REM method generates a fuzzy partition matrix by iteratively minimizing an
objective function that optimizes the clustering for each data set. Finally, the CM is
constructed by concatenating the most opportune probability vectors generated by
the FCM algorithm. No reference to an implementation is provided.

7. Cumulant Calibration Matrix Construction [63]: This method is based on a tensor
product-based CM that can be generated using a linear number of circuits, similar
to TPNM. However, this type of CM does not consider the correlations between the
qubits. To detect and incorporate these correlations into the CM, the multi-qubit
cumulant of the qubits is computed. For example, the 2-qubit cumulant is able to
characterize the 2-qubit correlations, and can be generated on the basis of 1-and
2-qubit conditional probabilities, e.g., λa,b(01|00) = pa,b(01|00)− pa(0|0) ∗ pb(1|0),
where λa,b is the 2-qubit cumulant for qubits a and b for the state transition |01〉 to
|00〉, with p denoting the corresponding conditional probabilities. Further, clusters
of correlated qubits can be defined to reduce the number of qubit comparisons.
Therefore, only the qubit correlations within a cluster are examined and applied
to the CM. No reference to an implementation is provided.

8. Scalable T Matrix Estimation [64]: To reduce the number of measurements circuits
required for the full CM, this method estimates the CM on the basis of a tensor prod-
uct and a neighborhood model. A qubit i’s neighborhood depends on the QPU’s
topology and includes the k qubits with the shortest distance. To estimate the CM,
each qubit and its neighbors are measured in the |0〉 and |1〉 state, resulting in < 2n2k

measurements. Additionally, the pairs are measured, leading to a total of < 2n24k

measurements. With this data, the CM can be estimated by combining the single-qubit
and pair measurement results. No reference to an implementation is provided.

3.4. Circuit Modification-Based Mitigation Methods

This group of REM methods focuses on reducing measurement errors by modifying
the target circuit. Typically, a set of slightly modified versions of the target circuit is
generated to retrieve information about the errors that occurred during its execution.

1. Active REM [65]: This method mitigates measurement errors on a shot-by-shot basis,
making it suitable for tasks not relying on the expectation value, such as Shor’s
algorithm [66]. Active REM is based on the concepts of error correction, but it only
focuses on bit-flips in the computational basis occurring during measurement. Each
qubit’s state is encoded into multi-qubit states by entangling it with one or multiple
ancilla qubits right before the measurement. Thus, it is possible to detect measurement
errors and to correct them with a majority vote if two or more ancilla qubits are used.
Further codes are introduced that perform a similar procedure for multiple qubits
with fewer ancilla qubits [65,67]. No reference to an implementation is provided.

2. Hybrid Quantum-Classical Approach to REM [68]: This method comprises two
main steps. Firstly, the quantum circuit is adjusted by adding single-qubit gates
performing a collective channel-twirl, before the circuit’s measurement operations.
When performing a channel-twirl, with every circuit execution, a randomly chosen
gate is selected from a set of twirling unitaries, resulting in a conjugation of the noise
(for more details, see [68,69]). Therefore, the channel-twirl depolarizes the qubits,
making the measurement in the computational basis optimal. In the second step,
classical post-processing is used to mitigate the target circuit’s measurements based
on the observed error characteristics and estimated device errors. No reference to an
implementation is provided.
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3. Crosstalk-Focused REM Protocol [70]: This method mitigates individual measure-
ment errors and crosstalk errors occurring during the measurement using a com-
bination of circuit modification and classical post-processing. First, parameterized
quantum gates are inserted into the quantum circuit right before the measurement
operation. The parameters for these gates are determined by evaluating the measure-
ment characteristics obtained via quantum detector tomography [71]. Moreover, these
measurement characteristics are used for classical post-processing to further reduce
the measurement errors. No reference to an implementation is provided.

Some of the identified REM methods rely on pre-measurement bit-flips to mitigate
the impact of measurement errors. These methods exploit the phenomenon of lower
measurement error rates for qubits in the |0〉 state, compared to the |1〉 state.

4. Static Invert-and-Measure (SIM) [21]: The SIM REM method mitigates the impact
of measurement errors by executing one or multiple versions of the target circuit,
including bit-flips right before the measurement operation, in addition to the execution
of the target circuit. Suggested bit-flip patterns are: a bit-flip for every qubit, or for
every second qubit. Lastly, the measurements are classically analyzed and combined in
order to filter out the measurement errors. May et al. [72] introduce similar approaches.
No reference to an implementation is provided.

5. Adaptive Invert-and-Measure (AIM) [21]: This method analyzes and learns the rel-
ative biases of different states, based on device-specific error rates, to place bit-flips
at suitable qubits. First, the device characteristics are learned, e.g., by a CM. Then,
several circuit executions are performed to estimate each qubit’s bias and to determine
the most fitting bit-flip positions. Finally, the circuit including the pre-measurement
bit-flips is executed and evaluated. No reference to an implementation is provided.

6. Bit-flip Averaging (BFA) [73]: BFA flips random qubits prior to the measurement with
every shot. Immediately after the measurement, another bit-flip is applied classically
to restore the original state. Generally, this removes all measurement biases from the
measurement process. This bias-free measurement can also be used to simplify the
CM generation process. No reference to an implementation is provided.

7. Model-Free Readout Error Mitigation for Quantum Expectation Values [74]: This
method focuses on mitigating correlated readout errors efficiently. First, general
information about the error rates is collected by executing benchmarking circuits that
contain random bit-flips prior to the state measurement. Second, circuit-specific data
are collected by generating modified versions of the target circuit containing random
bit-flips and executing them. Finally, readout errors are mitigated by evaluating the
data retrieved for the target circuit and the benchmarking circuits. The information
collected in step one can be reused for different target circuits. No reference to an
implementation is provided.

3.5. Expectation Value-Based Methods

In this section, we present methods approximating a mitigated expectation value.

1. Measurement Error Mitigation via Truncated Neumann Series [75]: This method
bypasses the problems of inverting exponentially growing CMs by approximating the
inverted CM with a truncated Neumann Series. This series is obtained by combining
multiple sequentially measured noisy expectation values. Therefore, this method is
only viable for algorithms that are based on the expectation value, such as VQE [76]
or QAOA [77]. No reference to an implementation is provided.

2. Local, Spatially Uncorrelated Measurement Error Model (LSU) [78]: This method
computes the expectation value via a simple error model. First, for each qubit i, the
probabilities of unexpectedly flipping from |0〉 to |1〉 and vice versa are determined,
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as pi(1|0) and pi(0|1), respectively. Afterwards, these are used to correct the result’s
expectation value E by applying the following formula:

E(counts) = ∑
x∈counts

p(x)
len(x)

∏
i=1

(−1)xi − p−i
1− p+i

p(x) is the probability of measuring the bit-string x, xi are the bit-string’s individual
bits, and p±i = pi(0|1)± pi(1|0). Summing up the values for each bit-string returns
the mitigated expectation value. No reference to an implementation is provided.

3.6. Machine Learning-Based Methods

Machine learning-based REM methods mitigate errors by learning a device’s error
behavior using typical machine learning techniques, such as neural networks.

1. Deep Neural Network Readout Error Mitigation [22]: This method employs a deep
neural network (DNN) for the characterization of a device’s error rates. Deep learning
is known for finding non-linear effects in a data set, making it a good candidate
for mitigating non-linear measurement errors. To mitigate measurement errors, the
DNN first needs to be constructed and trained. The input and output layers have 2n

nodes, whose values represent the measurement probabilities. Further, several fully
connected hidden layers are added in between. These employ an activation function
that is trained to be the inverse of the true error mapping. The training is performed
by running various simple circuits with known optimal solutions. Once the DNN is
set up, a mitigated measurement for circuits without a known optimal solution can be
determined by the DNN. No reference to an implementation is provided.

3.7. Summary of Categorized Configuration Options

The survey of REM methods shows that the configuration options vary notably across
different method categories. In the following, we discuss the identified configuration op-
tions and highlight other characteristics that need to be considered when performing REM.

• Configurations for Quantum Device Selection: The same provider and QPU must
be used to perform REM as are used to execute the target circuit. Therefore, REM-
specific circuits, e.g., calibration circuits, must be generated in a language that is
compatible with the chosen QPU. Further, some QPU providers already offer a set
of publicly available calibration data that can be taken advantage of during the REM
process [37]. For example, IBM provides data for each qubit’s bit-flip probability
during measurement. This data can be used by methods that focus on uncorrelated
single-qubit measurement errors, such as the TPNM method.

• Configurations for Quantum Circuit Execution: Due to the probabilistic nature of
quantum computing, quantum circuits need to be run multiple times on the quantum
device to obtain a reliable probability distribution. The number of shots used for
execution depends on the number of measured qubits n, as the sampled state space
scales with 2n and consequently the number of samples must be increased. Thus,
a suitable number of executions needs to be chosen to not retrieve an imprecise
probability distribution or to waste quantum resources.
Furthermore, since the set of measured qubits can differ between the target circuit’s
non-transpiled and transpiled versions, it is crucial for many REM methods to know
the mapping of the logical qubits to the physical qubits. As each qubit’s error rate
differs, determining calibration data for the wrong set of qubits can lead to inaccurate
mitigation results if the qubits’ error rates differ significantly. Explicitly considering
the transpiled version of the target circuit is particularly important for methods that
determine error rates independently of the target circuit, e.g., CM-based methods or
learning-based methods. Otherwise, it is unclear if the error rates were determined
for qubits that were actually measured by the target circuit. Whereas, for example,
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bit-flip-based methods, such as BFA and SIM, automatically operate on the correct
qubit, as the bit-flips are part of the modified target circuit.
Finally, QPU providers typically require users to log in with their user account or to
authenticate themselves with a token, to execute circuits on available quantum devices
via the cloud. For example, to generate a CM for an IBM device, a valid token provid-
ing access to the selected device must be included in the circuit execution request.

• Method-Specific Configurations: Reusing existing calibration data and mitigators
can significantly speed up the mitigation process and lower costs, as no new quantum
circuits need to be executed. However, reusing existing data is only possible for
REM methods that prepare a target circuit-independent error model of the device,
e.g., CM-based methods, since the generated calibration data and mitigators can also
be used for other target circuits run on the same device and with the same set of
qubits. For this purpose, calibration data and mitigators must be stored and annotated
with metadata, such as the device name, the set of qubits, and a timestamp. Future
REM process instances can check for suitable calibration data and mitigators, instead
of generating new data. In particular, the NISQ-typical VQAs benefit from reusing
existing data, as they repeatedly run similar circuits on the same QPU within a short
period of time. Due to continuously changing error rates, users must be careful not to
use outdated mitigation data [36,37]. This can be supported by limiting the maximum
age of existing calibration data. For example, when using QAOA for solving an
optimization problem, the same parameterized quantum circuit is run multiple times
in a loop. After each circuit execution, REM is performed. When using a reusable
REM method, such as TPNM, and when there is no suitable mitigator available, it is
sufficient to execute the calibration circuits to obtain a CM containing the calibration
data and compute a mitigator, e.g., by inverting the CM only once in the first iteration
of the QAOA algorithm. For each subsequent iteration, the mitigator can be reused,
assuming that the same set of qubits is used, and the time in-between the iterations
does not exceed the set maximum age for the mitigator. On the contrary, target circuit-
dependent REM methods, such as Active REM [65], which mitigate errors based on
the target circuit, in most cases do not produce reusable calibration data, making it
necessary to execute additional REM circuits with every iteration of the algorithm.
Therefore, configuration options focusing on the reusability and storage of calibration
data and mitigators are not relevant for these methods.
Furthermore, a variety of methods presented in the survey involve method-specific
parameters. For example, when using the DNN REM method, the number of hidden
layers and the activation function need to be set up. Another example is the scalable
T matrix estimation method, which requires the configuration of the neighborhood
range used for mitigation. Looking at optimization-based methods, such as the
genetic-based REM method, the chosen optimization function, e.g., COBYLA or
SPSA, can drastically impact the runtime and quality of the REM process. Further,
different objective functions, rating the quality of the measured solution, can be
selected. For example, these can emphasize or ignore parts of the solution to facilitate
the optimization process for the optimization function [42].

• Restrictions: The REM process may have certain restrictions that are introduced
by the process requirements or the available hardware. In addition to high quality,
other aspects must also be taken into account, e.g., costs and processing time. Hence,
the solution providing the highest quality is not always the one that is the most
interesting. In specific use-cases, e.g., time-critical computations, such as traffic flow
control [79], the maximum processing time is more important than precision, since
an outdated solution is of no use. The choice of REM method can also influence the
costs for quantum and classical resources, as new data might need to be generated and
processed. Therefore, cost constraints must also be considered when setting up REM.
REM can not only be limited by the available quantum hardware and business deci-
sions, but also by the available classical resources that are required for post-processing.
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For example, CMs grow large in size for quantum circuits with a high number of
qubits as their size scales exponentially (see Section 3.2). Similar, processing times for
operations such as matrix inversion can also be very high. Hence, keeping hardware
constraints in mind when performing REM can prevent long processing times, out of
memory, and insufficient storage exceptions during the mitigation process.

4. Automating Readout Error Mitigation in Quantum Workflows

The survey of REM methods and their configuration options presented in Section 3
highlights a variety of general and method-specific options that must be considered when
utilizing REM. In this section, we show how this configuration process can be automated
to avoid manual, more error-prone configuration tasks and facilitate the reuse of resulting
configurations for application developers, hence, addressing Challenge 2 formulated in
Section 1. The focus is to provide these functionalities to workflow-based quantum applica-
tions, by building our approach on top of QuantME [27]. First, we discuss the process of
automated workflow model refinement, which enables finding executable REM workflow
fragments based on provided method configurations and reusing them as parts of general
workflow-based executions of quantum applications. Next, we elaborate how the identified
configuration options are mapped to different phases of the presented automated REM
process. As examples, we introduce and discuss two REM workflow fragments that enable
automatically executing methods from two REM categories discussed in Section 3, namely
(i) matrix-based and (ii) circuit modification-based REM methods. Finally, we present a sys-
tem architecture enabling our approach and elaborate on its prototypical implementation.

4.1. Overview of the Approach

From a modeling perspective, the REM configuration involves multiple manual tasks:
depending on the chosen REM method and its respective implementation, the mitigation
control flow and configuration options vary significantly, as shown in Section 3. Therefore,
to reduce time-consuming and error-prone manual configuration tasks, we automate the
REM configuration, as shown in Figure 4. The configuration process involves automated
steps for both workflow modeling and execution. In the first step of the process, workflow
modelers select a REM method. To enable transitioning to executable REM workflow
fragments at design time, we extend the QuantME REM task to enable the specification of
all configuration details for REM. Thus, the modelers provide the method- and process-
specific information by configuring the QuantME REM task’s options (Step 2). Table 1
shows the configuration options described in Section 3.7 and provides an overview of the
corresponding data types and exemplary values. To facilitate the configuration of REM
options, a list of suitable options for a chosen REM method can be provided, e.g., a selection
of available QPU providers or usable mitigation methods. As a result, after Step 2, the
QuantME REM tasks contain general preferences regarding the selected REM method and
its configuration. Generally, options can be set during design time and execution time; e.g.,
the mitigation method and method-specific configurations are typically specified during
the design time, whereas the target circuit’s measurement result or the time of execution is
not known during design time and has to be provided at execution time.
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Figure 4. Overview of the REM process from a modeler’s perspective.

Table 1. Overview of supported configuration options.

Configuration Option Datatype Example

Provider name String “IBM”
QPU name String “ibm_auckland”

QPU credentials Dict of QPU-specific credentials {“token”: “1m3isj902sb74cdfak3”}
Qubit mapping List of measured qubits in order [0,1,5,19,7,6]

Shots Integer 1000
Counts * Dict of results to mitigate {“00”: 4, “01”: 33, “10”: 2, “11”:61}

Mitigation method String “Inversion”
Calibration method String “TPNM”

Method-specific values Dict of method-specific fields {“#DNNLayers”: 7,
“activFunction”: ...}

Max age (in minutes) Integer 720
Max REM costs (in $) Integer 25
Max CM size (in MB) Integer 500

Time of execution Datetime 2022-04-22 11:23:57
* Synonymous to the term “measurement result”, e.g., Qiskit “counts” or Braket “measurement_counts” (see
Section 2.1 for more details).

Since the QuantME REM task is not directly executable, in Step 3, the QuantME
REM task is transformed by means of QuantME replacement fragments [27]. In this
transformation step, the configuration enabled by the QuantME REM task, which abstracts
away all complex configuration and implementation details on the modeling level, is linked
with the actual programs handling the execution of the configured REM method. To find a
suitable replacement fragment, a repository containing QuantME replacement fragments
added by domain experts is searched. For each of the fragments, it is checked whether the
selected method and configuration choices are supported. Once a suitable replacement
fragment is found, the QuantME REM task is replaced by it. Different REM methods are
typically implemented by different QuantME replacement fragments, as their execution
steps and implementation logic differ. In addition to describing the REM steps and their
order, the replacement fragment must link the modeled functionality with implementations
providing the functionality. Hence, the availability of these implementations must be
ensured, e.g., by deploying them with the workflow. The implementations themselves can
range from small scripts implementing a single REM method over services implementing a
variety of REM methods. As generally any REM implementation can be integrated via a
service into a replacement fragment, versatility and extensibility are ensured.

In the automated REM execution phase (Step 4), all required services are deployed [80,81]
and the retrieved replacement fragment is executed as part of the overall quantum ap-
plication workflow using a workflow engine. Furthermore, the configured QuantME
replacement fragment can be saved and reused by future applications.

Figure 5 shows the steps of a CM-based REM method, including tasks for the reuse
of calibration data and mitigators. First, it is checked if there is a suitable mitigator, i.e.,
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a mitigator that is computed for the selected device is not outdated and fits the set of
measured qubits. If a suitable mitigator is found, it is retrieved from the data storage and
subsequently employed to mitigate errors in the noisy measurement. In case no suitable
mitigator is found, the next step is to check whether suitable calibration data that can be
used to compute a mitigator without executing additional circuits on the quantum device
is available. If there is recent calibration data for the selected device and measurement
qubits, it is retrieved from the data storage and subsequently used to compute a mitigator,
which is saved in the data storage for future use. Afterwards, the mitigator is employed
to mitigate errors in the noisy measurement. In case there is no suitable calibration data
available, new information about the QPU’s error rates needs to be retrieved. Hence, a set
of method-specific calibration circuits is generated and subsequently executed on the QPU.
Based on the measurement results of these calibration circuit executions, a mitigator is
generated, which is eventually used to mitigate the errors in the noisy measurement results.
To enable reuse of the generated data, they are saved in a data storage. It is important that
the data are annotated with all necessary metadata, such as the used QPU and set of qubits,
and the date and time of the calibration.
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Figure 5. Exemplary REM workflow fragment for CM-based methods.

Figure 6 shows the steps of circuit modification-based REM method using bit-flips.
Since the mitigation process is optimized for a specific circuit and there is no assessment or
use of general error rates, results from previous executions cannot be used. The workflow
starts by computing suitable positions for the bit-flips. Next, new circuits containing pre-
measurement bit-flips at the determined qubits are generated by modifying the target
circuit. Afterwards, the circuits are executed on the quantum device, and the bit-flips are
classically reversed to restore the original result. Finally, the observed difference in error
rates when measuring |0〉 and |1〉 can be used to mitigate the result.

Modify 
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Execute

Modified 

Circuits

Uncompute

Bit-Flips

Compute 
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Bit-Flip 
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Mitigate 

Results

Figure 6. Exemplary REM workflow fragment for a bit-flip-based circuit modification method.

4.2. System Architecture

Our overall system architecture for automating configurable REM is shown in Figure 7.
It comprises a graphical workflow modeler, the extended QuantME Transformation Frame-
work [82], and a workflow engine for workflow integration and execution. Further, a prove-
nance system is integrated to collect data for provenance, and multiple quantum execution
services are used for executing quantum circuits on different QPUs [37]. Additionally, the
REM Service is implementing the functionalities required by the REM workflow fragments
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presented in the previous section. New components are highlighted in black, extended
components in dark gray, and unchanged components are highlighted in light gray.
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Figure 7. System architecture for automating REM configuration in quantum workflows.

The graphical workflow modeler enables the modeling of BPMN workflows containing
QuantME tasks by means of a graphical user interface. Thereby, the QuantME REM task is
extended to support the identified configuration options. The QuantME Validator ensures
the validity of the QuantME tasks by highlighting errors during the modeling process in
the graphical user interface. To guarantee the validity of modeled REM tasks, the QuantME
Validator is extended by a new set of validation criteria, providing rules for the newly added
REM configuration options. The QuantME Transformer transforms a QuantME workflow
model into a native BPMN workflow model that can be executed by a BPMN workflow
engine. The QuantME Repository is responsible for the management of QuantME-related
data, such as QuantME replacement fragments.

The REM Service provides a REST API that can be used to trigger a REM process.
The Circuit Generator generates the required quantum circuits for the REM method. These
are executed on the selected quantum device via the Connector that triggers the circuit
execution via an API call to the corresponding quantum execution service. These SDK-
specific quantum execution services transpile the circuits and subsequently execute them
on quantum devices provided via the cloud, e.g., IBMQ or Rigetti Quantum Cloud Services.
An in-depth description of the execution services is provided by Salm et al. [83]. For target
circuit-independent methods, the Mitigator Generator computes a mitigator on the basis
of the calibration circuits’ measurement results. Further, the mitigator is annotated with
metadata and saved in the Mitigation Data repository for later reuse. The metadata can be
used to identify suitable, already existing mitigators for subsequent REM requests instead
of computing new ones. The Mitigation Executor mitigates the target circuit’s measurement
result by employing a mitigator or the REM method’s circuits’ measurement results. All
the REM service’s components are modularized; therefore, additional mitigation methods
and execution services can be integrated easily.

A provenance system is used to continuously collect data from the workflow engine,
the REM Service, the quantum execution services, and the quantum cloud services [37].
The collected data are saved in the long-term to enable the reproducibility and analysis of
quantum applications. Furthermore, the data can be used to provide additional information
supporting the REM process, e.g., when the last calibration of the QPU happened.

4.3. Prototypical Implementation

For the graphical modeling of quantum workflows in BPMN, the QuantME Transfor-
mation Framework [82] extends the Camunda Modeler [84], a JavaScript-based open-source
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workflow modeler. It is provided as a standalone application and enables the modeling of
QuantME tasks and their transformation using QuantME replacement models. QuantME
tasks and replacement fragments are defined in BPMN XML syntax, and can be easily
stored in a GitHub repository. To collect provenance data, we employ QProv [37], an open
source, Java-based provenance system that is using the provenance standard PROV [85] to
enable provenance for quantum applications.

Our implementation of the REM Service [86] supports all steps of the REM process,
from the generation of REM-related circuits to the mitigation of the results. However, the
individual REM steps could also be implemented differently, e.g., as separate services. Our
REM Service is implemented prototypically in Python, using the Flask web framework
to provide access to the service functionalities via an HTTP REST API. The API consists
of endpoints for the generation of calibration data, the generation of mitigators, and for
performing REM. The former two can be used to retrieve error rates and generate mitigators
on a regular basis. Thereby, the evolution of hardware performance can be monitored,
and suitable mitigators can be generated prior to or in parallel to the execution of the
quantum application, speeding up the overall process. In addition to mitigating individual
measurement results, the REM service is also capable of accepting bulks of measurement
results. Thereby, the overhead that would be caused by a high number of individual
requests can be reduced drastically. To guarantee quantum hardware independence, a
common format is used for the measurement results. Thereby, the provider-specific result
formats do not need to be taken care of for the implementation of the REM methods. For
storing mitigators, we use MinIO [87], a distributed high-performance cloud object storage.

5. Case Study

To demonstrate the practical feasibility of our approach, we integrate it into an existing
quantum workflow from the quantum humanities domain [88,89], which aims to detect
patterns in costume data from movies, and enables the mapping of new costume data to
these patterns. Thereby, clustering is used to partition the data into clusters; subsequently,
a classification algorithm is executed to map new data to these clusters. Both the clustering
and classification are implemented using quantum algorithms. To improve the result
quality of these algorithms, we perform error mitigation after every circuit execution by
extending the workflow model with our REM approach. The corresponding workflow is
shown in Figure 8. The workflow model, implementation, and detailed instructions for
setting up our case study are available on GitHub [90].
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For the integration of quantum tasks into the workflow, we use the BPMN extension
Quantum4BPMN [27], which applies QuantME to BPMN. The workflow instantiation can
be triggered by a message, e.g., via a simple HTTP request containing all required data.
In Figure 8, the task of pre-processing the categorical costume data by transforming it into
numerical data and reducing its dimension is not shown for brevity, and the workflow
expects a URL to the prepared data as input instead (see [88] for details). Once instantiated,
the workflow starts off by running the quantum k-means-algorithm [91], which consists of
multiple tasks. First, the data is loaded from the URL, initial centroids are determined,
and the initial set of circuits is created based on the centroids. Next, the clusters are
optimized in a hybrid quantum-classical loop. Thereby, the “Execute KMeans” sub-process
comprises the circuit execution, followed by REM, which improves the quality of the
retrieved measurement results, and the computation of new centroids on the basis of the
mitigated measurement results. The circuits are modified, and the loop is rerun until the
difference between the old and new centroids is not significant anymore, i.e., smaller than a
given threshold. Once the centroids converge, the final clustering is used as an input for the
second hybrid quantum-classical loop, which performs classification using a variational
Quantum Support Vector Machine (QSVM) [92]. Quantum circuits and initial parameters
are generated, which are then once more optimized within the loop, following a similar
approach as in the workflow’s first optimization loop. Once the optimization process is
finished, the result is returned via a message end event and can be analyzed by users.

REM is performed via the extended QuantME REM task described in the previous
section. Figure 9 shows different steps of our case study execution. First, as depicted
in Figure 9a, we selected the TPNM method for CM generation and matrix inversion to
generate the mitigator. Next, in the REM configuration step, shown in Figure 9b, we
chose IBM’s ibmq_lima QPU and set the number of shots to 2000, the maximum matrix
size to 512 MB, and the maximum age to 600 min. Information about the measurement
results and the qubits used for measurement is provided to the REM task during workflow
runtime. To utilize our prototypical implementation of the REM service via the QuantME
task, we provided a suitable replacement fragment, managing the communication between
the workflow engine and our REM service. It is integrated into the workflow in the
transformation phase, shown in Figure 9c. Thereby, a replacement fragment repository
provided via GitHub is checked for available replacement fragments, and a suitable one is
chosen. This replacement fragment is executed during every iteration of the clustering and
classification loop. It utilizes the REM service to retrieve a mitigator for the measurement
qubits of the selected QPU. In the first iteration of the clustering loop, no suitable mitigator
was available via the REM service’s database yet. Therefore, two calibration circuits were
executed whose measurement results were subsequently used to generate a mitigator that
could be used to mitigate the target circuit’s results. As the circuit in future iterations
remained similar, the generated mitigator was reused and the mitigation overhead was
minimal in comparison to the overall execution time. Once the workflow is transformed, it
can be deployed and instantiated. During execution, the user can monitor the current state
of the workflow instance. Figure 10 gives an overview of the Camunda Cockpit, the graphical
user interface of the Camunda engine to monitor and analyze workflow executions. Thereby,
the token flow within the workflow instance is visualized, i.e., the currently active task in
the workflow is shown. Furthermore, it also displays the current values of the variables,
e.g., comprising the counts of the quantum circuit execution before and after the mitigation
or the number of the current iteration. When the workflow terminates, all collected data
are moved to the audit trail and can be analyzed from there [26]. This enables, e.g., a
comparison of the execution of quantum workflows using different REM methods and
configurations, which can be the basis for adjusting their configurations accordingly for
future executions.
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(a) (b) (c)

Figure 9. REM method selection (a), configuration (b), and workflow transformation (c) for our
case study.

Figure 10. Overview of the case study’s workflow execution in the Camunda user interface.

6. Discussion

In this section, we first discuss potential threats to the validity of the conducted survey
and what measures were taken to mitigate these threats. Further, we evaluate our approach
critically, focusing on the current state and developments in the quantum computing area.
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6.1. Threats to the Survey’s Validity

Conducting a survey is a challenging task, as the goal is to accurately capture all work
fulfilling certain criteria in a huge pool of data. In the following, we elaborate on the key
aspects threatening the validity of our survey.

Selection bias. One of the main threats to the survey of REM methods is that the
primary set of publications is not representative enough and existing methods are not cov-
ered by the survey. To provide a broad set of initial data, we queried six well-established
electronic research databases with a query consisting of high-level keywords. As a con-
sequence, our initial data set was much larger than the final data set. To filter out the
large number of false positives, we first scanned the papers by their title and abstract, and
afterwards applied a set of selection criteria. To reduce the number of false negatives, we
used the adaptive reading depth strategy [46] in unclear cases, and resolved conflicting
opinions by discussing them internally. Further, we performed the survey with a team of
six researchers, reducing the risk of an individual researcher wrongfully judging a paper.

Reproducibility. To enable other researchers to reproduce and verify our results, we
described all steps performed during our survey in detail in Section 5.

External validity. In our study, we focused on peer-reviewed works from academia
and pre-prints available via arXiv.org. Gray literature was not in the scope of this work.
Therefore, we did not cover other knowledge sources, such as blog posts, code documenta-
tion, and other industrial efforts that are not published as academic research.

6.2. Extensibility and Limitations of the Automated REM Configuration in Quantum Workflows

The rapid developments in quantum computing require current quantum applications
to be adaptable [93]. For example, new error mitigation methods are published on a regular
basis, making the extensibility of our approach for new methods crucial. Further, the lack
of well-defined standards leads to a high heterogeneity of quantum hardware and software
development tools, which makes it non-trivial to provide a system with universal support.
Additionally, there exist various workflow languages and engines that developers might
want to use for realizing our approach. In the following, we discuss the extensibility and
portability of our approach and system architecture for the aforementioned aspects.

1. Adding new REM methods: New REM methods can be added to our approach by
integrating their configuration options into the QuantME REM task and ensuring that
a suitable QuantME replacement fragment implementing the method is available in
the replacement fragment repository. In the case of our prototypical implementation,
we ensured that the QuantME tasks can easily be extended with new methods and
configuration options, and that new REM methods can be included in the REM service
as plugins implementing well-defined abstract functions.

2. Adding new quantum providers: New quantum providers can be integrated by
providing an additional quantum execution service that is capable of executing a set
of circuits and returning a list of results. This execution service is connected to the
REM service via the execution connector component. Thereby, it is important that the
language used by the new provider is already supported, otherwise further changes,
which are discussed next, are necessary to enable the REM for this new provider.

3. Adding new quantum programming languages: Currently, there is no well-defined
standard for the modeling and execution of quantum circuits. As a consequence,
many quantum providers have developed their own languages, which are frequently
incompatible with each other. Therefore, supporting all existing languages is a difficult
task. In our prototype, we provided the support for Python with the Qiskit SDK and
OpenQASM, which are employed by the majority of quantum providers and can be
translated into many other languages [94]. Therefore, publicly available translators
can be used to enable an easy integration of an additional language into the REM
service. However, this comes at the cost of an increased amount of circuit translations.
To natively support a new language in the REM service, the circuit implementations
for all supported REM methods need to be implemented as plugins.
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4. Using a different workflow language or engine: In past years, a wide variety of
workflow languages and engines have been developed [95]. Although our prototype
is implemented using BPMN and the Camunda engine, our approach is not limited to
a specific workflow language or engine. For example, it is also compatible with BPEL
or any other workflow language that (i) supports the definition of tasks, (ii) enables
the configuration of tasks by attributes, (iii) allows the specification of a control flow (iv)
and data flow, (v) and supports alternative control flows for error handling [27].

Furthermore, hybrid runtimes, e.g., Qiskit Runtime [96] and Amazon Braket Hybrid
Jobs [97], enabling the execution of classical tasks close to the quantum device have emerged.
Thereby, the latency for switching between the self-orchestrated classical tasks and the
quantum circuit executions is reduced. The providers of these runtimes have announced
the integration of automatic error handling into their hybrid runtimes, facilitating the
application of error mitigation [98]. However, solely relying on the built-in solutions of a
cloud provider limits developers’ options to try other methods and leads to a vendor lock-
in. Further, typical workflow advantages such as robustness, scalability, and monitoring
capabilities are lost when using a hybrid runtime environment.

7. Related Work

The survey of REM methods provided in this work gives an overview of current REM
methods and briefly describes how they work. In addition to this survey, there are other
works showcasing and comparing REM methods [34,99]. However, they focus on a small
number of methods and do not give a broad overview of available REM methods.

In previous work, we introduced quantum error handling patterns, showcasing dif-
ferent error handling approaches in an abstract manner [8]. Thereby, REM is introduced
as a pattern for mitigating measurement errors in the NISQ era. The pattern highlights
the context and forces of REM, and explains how REM generally works and how it can be
integrated into a quantum application. Since patterns focus on presenting solutions in an
abstract manner, the REM pattern only includes two concrete examples of REM methods.
Thereby, the survey in this work can serve as an addition to the REM pattern, providing
more methods and an approach for integrating REM into a real-world application.

Devitt et al. [100], Endo et al. [101], and Matsumoto and Hagiwara [102] survey differ-
ent quantum error handling methods. However, they focus on quantum error correction
and quantum gate error mitigation, and only briefly describe REM.

Various SDKs, such as Qiskit [103] and PennyLane [104] offer quantum error mitigation
capabilities. Thereby, they implement individual methods, e.g., TPNM [15], or employ error
mitigation frameworks, such as Mitiq [105]. Typically, these implementations are designed
to be directly integrated into the code of the quantum application, instead of being provided
as a service. Additionally, they focus on mitigating individual circuit executions and are
not optimized for the execution of a high number of circuits. Furthermore, some method
implementations expect SDK-specific objects and therefore are not platform-independent.

McCaskey et al. [106] present the hybrid programming model eXtreme-scale ACCelera-
tor (XACC). XACC enables the compilation and execution of quantum algorithms indepen-
dent of their format and language. Further, XACC comprises a REM module, which can
directly include REM into the execution process. However, this drastically limits the user’s
configuration and monitoring capabilities to the ones provided by XACC.

In 2020, Zapata Computing released Orquestra, a software platform for building
and deploying quantum-ready applications [107]. These applications are built using so-
called quantum-enabled workflows, using a YAML-based workflow language. To build a
workflow, users have to define the required imports, e.g., a file in a Git repository containing
application logic, and all steps of the workflow in the YAML file describing the workflow.
Further, all information regarding the resources used for the orchestration of the tasks and
the initial values of the parameters used for the execution of the tasks are also included in
the same file. Moreover, Orquesta currently does not provide a tool enabling the graphical
modeling of workflows to facilitate the modeling process, and does not provide a broad
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set of common quantum task types comprising typical configuration options. Rather,
users have to start building their workflow from scratch by means of writing a YAML file.
In contrast, our approach uses standardized workflow models that can be executed on
full-fledged workflow engines, providing advantages, such as robustness and scalability.

Another framework for executing quantum workflows is Covalent [108]. It is a Pythonic
workflow tool specialized for executing tasks on HPC and quantum hardware. The work-
flow is generated by annotating the code with Covalent-specific decorators. In contrast to
our approach, it is not based on a standardized workflow language and does not provide
workflow-typical features such as transactions, error-compensation, and user tasks.

8. Conclusions and Future Work

A variety of error mitigation methods have been developed to improve the perfor-
mance of today’s noisy quantum devices. To facilitate the integration of REM in quantum
applications, we first analyzed the literature for existing methods. We categorized the found
methods and summarized their basic functionality to ease their understanding. Further,
we evaluated the methods’ configuration options to identify common and method-specific
options that need to be considered when integrating REM into a quantum application. As
quantum applications typically contain many quantum and classical software components,
implementing, configuring, deploying, and orchestrating all components manually is error-
prone and time-consuming. Thus, workflow technologies have been proposed as a means
for orchestrating quantum applications. To automate the REM process in a configurable
manner, we introduced an approach integrating service-based, configurable, and extensi-
ble REM into quantum workflows. To validate our approach, we provide a prototypical
implementation and employ it in a case study from the quantum humanities domain.

In future work, we plan to further extend our prototype by providing accurate cost
estimations for performing REM for different quantum providers. Furthermore, we will
integrate REM in the NISQ Analyzer [83] to facilitate the hardware selection process. More-
over, we plan to compare the presented REM methods using a model-driven benchmarking
approach. As hybrid runtimes, such as Qiskit Runtime [96] or Amazon Braket Hybrid
Jobs [97], are becoming more popular, we plan to investigate how our workflow-based REM
approach can be combined with current hybrid runtime environments. Finally, we plan to
investigate whether our approach is also applicable to other types of error mitigation, such
as gate error mitigation, and we extend our prototype to support these methods too.
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