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Abstract: A novel video object segmentation algorithm, which segments out multiple objects in a 
video sequence in unsupervised or weakly supervised manners, is proposed in this work. First, we 
match visually important object instances to construct salient object tracks through a video sequence 
without any user supervision. We formulate this matching process as the problem to find maximal 
weight cliques in a complete k-partite graph and develop the sequential clique optimization algorithm 
to determine the cliques efficiently. Then, we convert the resultant salient object tracks into object 
segmentation results and refine them based on Markov random field optimization. Second, we adapt 
the sequential clique optimization algorithm to perform weakly supervised video object segmentation. 
To this end, we develop a sparse-to-dense network to convert the point cliques into segmentation 
results. The experimental results demonstrate that the proposed algorithm provides comparable or 
better performances than recent state-of-the-art VOS algorithms.

Keywords: video object segmentation; primary object segmentation; salient object detection; sequen-
tial clique optimization; convolutional neural networks

1. Introduction

Video object segmentation (VOS) is the task of classifying each pixel in video frames
into target objects or backgrounds. VOS can be categorized according to the level of user
supervision: unsupervised, weakly supervised, semi-supervised, and interactive VOS. Unsu-
pervised VOS, in general, attempts to segment out primary objects from the background
without any user annotations, where a ‘primary’ object [1] refers to the most salient one
in a video. In contrast, users can provide annotations to facilitate VOS and obtain de-
sired segmentation results. In interactive VOS, a user provides annotations repeatedly to
refine results. Semi-supervised VOS tracks and segments a target object manually anno-
tated in the first frame. Finally, weakly supervised VOS requires weaker supervision (e.g.,
points [2], scribbles, boxes [3,4], and video tags [5,6]) than pixel-level accurate annotations
for target objects.

Many VOS algorithms adopt deep learning models with advances in regularization
techniques [7–10]. One early unsupervised VOS algorithm [11] uses motion and appearance
information to produce segmentation results automatically, but it does not consider the
appearance frequency of objects. In other words, it may fail to detect primary objects, which
have less distinct features but appear frequently in the sequence. Some algorithms [12,13]
address these problems by considering the frequently appearing characteristics of primary
objects, but they are designed to extract only a single primary object. Thus, they have the
common limitation that they cannot handle multiple primary objects systematically. The semi-
supervised VOS algorithms in [14,15] can address the multi-object problem using annotations
in the first frames, but they need to fine-tune the networks for each video sequence, which
is computationally expensive. Even though recent semi-supervised algorithms [16,17] do
not need fine-tuning, the semi-supervised approach still demands that annotators provide
accurate pixel-level masks for target objects in the first frames, which is impractical.
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In this paper, we extend the work in a conference paper [18] to develop a novel
unsupervised VOS algorithm, which segments out multiple primary objects without any
mask annotations, and a weakly supervised VOS algorithm, which may reduce the efforts
for masking target objects in the first frame. For this purpose, we develop sequential
clique optimization (SCO), which can be employed in both unsupervised and weakly
supervised VOS. First, we extract object instances in each frame based on the instance-wise
segmentation technique [19]. Then, we perform instance matching in order to construct
salient object tracks. This is similar to finding multiple cliques in a complete k-partite
graph [20] of object instances. Each clique should contain the instances over frames,
corresponding to an identical object. Thus, the instances should be similar to one another.
However, finding the optimal multiple cliques with maximal similarity weights is NP-hard.
Hence, we develop the clique optimization process, called SCO, which considers both
node and edge energies. SCO constructs the most salient object track by selecting one
object instance from each frame, and multiple salient object tracks can be extracted by
repeating the process. We convert these salient object tracks into VOS results. Then, we
perform the segmentation refinement based on two-class Markov random field (MRF)
optimization to improve the segmentation results. Furthermore, the proposed SCO can be
adapted to perform weakly supervised VOS, which accepts only a number of point clicks
on a target object in the first frame. To this end, we develop the sparse-to-dense network
(SD-Net) to obtain dense segmentation masks from sparse points. The experimental results
demonstrate that the proposed unsupervised and weakly supervised algorithms provide
comparable or better performances than the recent state-of-the-art VOS algorithms on the
DAVIS [21] benchmark dataset.

The main contributions of this paper are summarized as follows:

• We propose the SCO process to extract multiple primary objects effectively. It deter-
mines a clique efficiently with O(NT2) complexity, where T is the number of frames
in a video, and N is the number of instances in each frame.

• The proposed algorithm can extract multiple primary objects effectively, whereas most
conventional algorithms assume a single primary object.

• We extend the preliminary work [18] of this paper to achieve weakly supervised VOS
using the SD-Net, which yields segmentation results using only a few point clicks
instead of dense masks for target objects. The proposed SD-Net also improves the
unsupervised VOS results of the preliminary work.

• We develop two segmentation refinement methods to improve the unsupervised VOS
results based on MRF optimization and the SD-Net.

2. Related Work
2.1. Unsupervised VOS

The objective of unsupervised VOS is to separate foreground objects from the back-
ground in a video sequence without any user supervision, such as annotation masks. Many
unsupervised VOS algorithms assume that there exists a primary object in a video sequence
and attempt to extract such a single primary object. To this end, various cues, including
motion boundaries [22], saliency maps [23], and object proposals [12], have been used to
localize and segment a primary object. Papazoglou and Ferrari [22] constructed Gaussian
mixture models (GMMs) for foreground and background from the regions delineated by
motion boundaries and then used the models to segment out moving objects. By adopting
the boundary before image boundary regions tend to become backgrounds, Jang [23] com-
puted foreground and background probability maps. They also developed the alternate
convex optimization to minimize a hybrid energy function, including the antagonistic
energy. Object proposal techniques also have been employed to estimate the initial regions
of a primary object. Koh [12] estimated the initial primary regions from object proposals
and refined them based on the augmentation and reduction process.

Deep learning techniques have been employed for unsupervised VOS. Jain [11] pro-
posed end-to-end networks to yield pixel-wise segmentation results. They considered
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both appearance and motion information. Tokmakov [24] developed fully convolutional
networks to learn motion patterns. They used synthetic video sequences to augment
training data. In [13,25,26], differentiable attention models have been adopted to detect re-
curring primary objects. For instance, Lu [13] developed the co-attention Siamese network.
Yang [25] computed dense correspondences between frames in an embedding space to seg-
ment out foreground objects. Zhou [26] proposed the motion-attentive transition network,
which transforms appearance features into motion features at each convolutional stage.
Additionally, human eye gaze has been predicted to initialize primary object regions [27].
Zhuo [28] achieved unsupervised online VOS by combining salient motion detection results
and object proposals. Ventura [29] employed recurrent neural networks to consider the
spatiotemporal features of primary objects. Moreover, object detection methods [30,31] can
be adopted for unsupervised VOS.

2.2. Semi-Supervised VOS

Semi-supervised VOS segments and tracks target objects, which are annotated by users
in the first frames. Recently, deep learning models have been adopted in semi-supervised
VOS. For example, in [14], CNNs were fine-tuned by exploiting user annotations in the
first frames. In [32], segmentation masks, propagated from previous frames, were refined
by deep networks. Sun [33] performed reinforcement learning to obtain a reliable region
of interest. For fast VOS, Yin [34] reduced training iterations to fine-tune the deep neural
networks, which tune the target objects. Furthermore, some algorithms [16,17] perform
segmentation without fine-tuning. Chen [16] classified pixels based on a nearest-neighbor
criterion by employing features extracted from embedding networks. Voigtlaender [17]
performed end-to-end embedding learning of the multiple object segmentation task with a
cross-entropy loss.

3. Proposed Unsupervised VOS Algorithm

We segment out foreground objects in video frames I = {I1, . . . , IT}, where It is the
tth frame, and T is the number of frames in the sequence. The output is the corresponding
sequence of pixel-wise maps, which locate the foreground objects in the frames. Figure 1
shows an overview of the proposed algorithm. First, we generate the object instances
in each frame. Second, we construct a complete k-partite graph using the set of object
instances. Gray lines in Figure 1 represent positive edges that connect the object instances
in different frames. Third, we extract the salient object tracks by finding cliques in the graph
and refine each object track. Finally, we convert the salient object tracks into VOS results.

Input frames
Instance

generation Complete -partite graph Finding salient object tracks Segmentation results

Figure 1. An overview of the proposed algorithm.

3.1. Generating Object Instances

To detect object instances without requiring user annotations, we employ the instance-
aware semantic segmentation method, FCIS [19]. Figure 2b illustrates examples of object
instances in a frame in the “Boxing-fisheye” sequence. Let Ot = {ot,θ | θ ∈ NNt} denote
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the set of detected object instances in frame It, where Nm = {1, 2, . . . , m} is the finite index
set, and Nt is the number of object instances in frame It. In general, each frame contains
a different number of object instances. The θth object instance ot,θ in frame It has two
attributes: the saliency score st,θ and feature vector ft,θ .

(a) (b) (c)

Figure 2. Object instance generation in the “Boxing-fisheye” sequence: (a) input frame, (b) object
instances, and (c) foreground distribution.

For the saliency score st,θ , we adopt the boundary prior to estimating a foreground
distribution map for frame It. More specifically, we divide It into SLIC superpixels [35].
Then, we construct a three-ring graph of the superpixels; two superpixels vi and vj are
connected if there is a sequence (vi = vi1 , vi2 , . . . , vik = vj) of boundary-sharing superpixels
from vi to vj for k ≤ 4. The edge weights between two connected superpixels are computed
by summing up the difference between the average LAB colors and the difference between
the average optical flow vectors [36]. By assigning nonzero restart probabilities to the
superpixels on the image boundary, we obtain a background distribution map using the
random walk with restart (RWR) simulation. Finally, we obtain the foreground distribution
map by inverting the background distribution map, as illustrated in Figure 2c. We then
determine st,θ by averaging the foreground probability values of the pixels within the
instance ot,θ .

Moreover, we use the bag of visual words (BoW) method to define the feature vector
ft,θ . To obtain the bag of visual words, we extract the LAB colors from 40 video sequences
and quantize them into 300 codewords using the K-means algorithm. We then build the
histogram of the codewords for the pixels within ot,θ and normalize it into the feature
vector ft,θ .

3.2. Finding Salient Object Tracks
3.2.1. Problem Formulation

The set of all object instances from the video sequence, V = O1 ∪ O2 ∪ · · · ∪ OT ,
includes many non-salient objects, as well as salient ones. From this set, we attempt to
extract as many salient objects as possible, while excluding non-salient ones, assuming that
a salient object should have distinct features and appear frequently throughout the entire
video sequence.

We construct a complete k-partite graph G = (V , E) using the set of object instances
V = O1 ∪O2 ∪ · · · ∪ OT as the node set [20]. Thus, each object instance becomes a node in
the graph G. Note that the sets O1,O2, · · · ,OT form a partition of V , since Ot ∩Oτ = for
t 6= τ. Moreover, we define the edge set as E = {(ot,i, oτ,j) | t 6= τ}. In other words, every
pair of object instances in different frames are connected by an edge in E , whereas two
object instances in the same frame are not connected in graph G. As a result, G is complete
k-partite [20], where k = T. For example, Figure 3a illustrates the complete k-partite graph
for four frames, i.e., k = 4. We assign a weight to the edge (ot,i, oτ,j) by

w(ot,i, oτ,j) = exp

(
−

dχ2(ft,i, fτ,j)

σ2

)
(1)

where dχ2 denotes the chi-square distance, which is often used for comparing two his-
tograms, and σ2 = 0.01 is a scaling parameter.
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(a) (b) (c)

Figure 3. Illustration of finding salient object tracks over four frames in the “Boxing-fisheye” sequence:
(a) complete 4-partite graph, (b) 1st salient object track Θ1, and (c) 2nd salient object track Θ2.

We perform the instance matching in order to construct multiple salient object tracks,
where each salient object track is obtained by selecting one object instance (one node) from
each frame (each node subset Ot). This process of finding object tracks is equivalent to
finding multiple cliques in the complete k-partite graph G. Notice that selecting one node
from each frame satisfies the condition of a clique [20]: Every pair of nodes within the
clique is connected. When the clique corresponds to the track of an identical object in
the video sequence, the features of the member nodes should be similar to one another.
Therefore, we select the clique to maximize the sum of the edge weights in Equation (1).

Let Θp = {θt}T
t=1 denote the pth clique, which is represented by the sequence of node

indices. Here, θt ∈ NNt is the index of the selected node from the instance set Ot at the tth
frame. Then, we define the similarity Esimilarity(Θp) of the clique Θp as

Esimilarity(Θp) =
T

∑
t=1

T

∑
τ=1,τ 6=t

w(ot,θt , oτ,θτ
) (2)

which is the sum of all edge weights in Θp. Assuming that the features of an identical
object do not change drastically across the frames, the clique Θp should have a maximal
similarity score. Moreover, object instances in the clique, representing a salient object track,
should have high saliency scores. We hence define the saliency Esaliency(Θp) of the clique
Θp as

Esaliency(Θp) =
T

∑
t=1

st,θt . (3)

We then attempt to find the set of maximal weight cliques Θ∗ = {Θ∗p}M
p=1 that maxi-

mizes the sum of the similarity scores,

Θ∗ = arg max
Θ

M

∑
p=1

Esimilarity(Θp) (4)

subject to the constraint that Θp is more salient than Θq if p < q. However, even the
unconstrained problem in Equation (4) is NP-hard [37]. There are N1 × N2 × · · · × NT
possible cliques, which makes an exhaustive search unfeasible. Some approximation
methods, e.g., the local search [37] and binary integer program [38], have been developed
to obtain suboptimal cliques in complete k-partite graphs; however, these methods are
still computationally expensive and do not consider node energy (e.g., Esaliency in this
work). Instead, we develop an efficient optimization technique, called sequential clique
optimization (SCO), to find the clique that considers both the node energy Esaliency and the
edge energy Esimilarity.

3.2.2. SCO

For efficient instance matching, we propose SCO, which extracts the most salient object
track. It selects an object instance in each frame that corresponds to one identical salient
object. Then, after removing all instances in the track from V , we repeat the process to
extract the next salient object track, and so on. In this section, we consider the finding of
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one clique, Θp, which represents the most salient object track, and omit the subscript p
from all notations for the sake of simplicity.

In SCO, we first initialize the clique Θ(0) to maximize the saliency Esaliency in Equa-
tion (3). Specifically, the tth element in Θ(0) is determined by

θ
(0)
t = arg max

θ∈NNt

st,θ . (5)

Then, at iteration κ, we update θ
(κ)
t by selecting the node that is the most similar to the

nodes in the other frames,

θ
(κ)
t = arg max

θ∈NNt

T

∑
τ=1,τ 6=t

w(ot,θ , oτ,θτ
), (6)

and then set θt to be θ
(κ)
t for each t sequentially from one to T. We repeat this sequential

update of the nodes in all frames until Θ(κ) = {θ(κ)t }T
t=1 is unaltered from Θ(κ−1) =

{θ(κ−1)
t }T

t=1. This process is theoretically guaranteed to converge since Esimilarity(Θ(κ)) is
a monotonically increasing function of κ. To summarize, SCO initializes the clique to
maximize the saliency Esaliency and then refines it iteratively to achieve a local maximum of
the Esimilarity. Thus, at the initialization, the clique consists of salient object instances across
the frames, which may not represent an identical object. However, as the iteration goes on,
the clique converges to a salient object track, in which the nodes represent an identical object
and thus exhibit high similarity weights in general. Algorithm 1 summarizes the proposed
SCO process. In most cases, less than 10 iterations are required for the convergence.

Algorithm 1 (SCO) Sequential Clique Optimization
Input: Sets of object instances V = O1 ∪O2 ∪ · · · ∪ OT

1: Construct a complete k-partite graph G = (V , E)
2: for each frame It do
3: Initialize the node index in clique Θ via
4: θt ← arg maxθ∈NNt

st,θ
5: end for
6: repeat
7: for each frame It do
8: Update the node index via
9: θt ← arg maxθ∈NNt

∑T
τ=1,τ 6=t w(ot,θ , oτ,θτ

)

10: end for
11: until node indices are unaltered
Output: Optimized clique Θ = {θ1, θ2, . . . , θT}

Let Θ1 denote the most salient object track, obtained by this SCO process. To extract
the next track Θ2, we exclude the nodes in Θ1 from G and perform SCO again. This is
repeated to yield the set of tracks {Θ1, Θ2, . . . , ΘM} until no node remains in G. In general,
if p < q, Θp is more salient than Θq. Thus, the subscript p in Θp is the saliency rank of the
track. Figure 3b,c illustrate the first two tracks Θ1 and Θ2, respectively.

3.2.3. Salient Object Track Refinement

The track selection is greedy in the sense that, if an object instance is mistakenly
included in a track Θp, it cannot be included in a later track Θq even when it indeed belongs
to Θq. To alleviate this problem, we perform postprocessing to maximize the sum of the
similarity scores

M

∑
p=1

Esimilarity(Θp) (7)
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as follows. In each frame It, we match the object instances in Ot to the tracks in {Θp}M
p=1.

The matching cost C(ot,i, Θp) between an instance ot,i in Ot and a track Θp is defined as the
sum of the feature distances from ot,i to all object instances in Θp, except for the instance in
the same frame It. After computing the matching costs, we find the optimal matching pairs
using the Hungarian algorithm and update the tracks to include the matched instances.
This is performed for all frames. As a result, we obtain the set of refined salient object
tracks {Θ̃1, Θ̃2, . . . , Θ̃M}.

3.2.4. Disappearance Detection

Next, we detect object disappearing events in each refined salient object track. Notice
that, when an object disappears or is fully occluded in some frames, noisy objects are
selected instead in those frames. For simple notations, let Θ̃ = {θ̃t}T

t=1 denote a refined
salient object track. We determine whether to discard ot,θ̃t

at frame It from Θ̃. To this
end, for each τ 6= t, we compare the edge weight w(oτ,θ̃τ

, ot,θ̃t
) against the average edge

weight w̄ in the track. Specifically, we count the number of object instances oτ,θ̃τ
for τ 6= t,

which satisfies w(oτ,θ̃τ
, ot,θ̃t

) < w̄. If the number is larger than 0.7T, we declare ot,θ̃t
as noisy

and discard it. On the other hand, the proposed algorithm can detect reappearing objects
automatically, since every pair of object instances in different frames are fully connected in
the complete k-partite graph. In other words, reappearing object instances are connected
to all object instances in different frames, so that they are selected by SCO, in general,
without requiring any postprocessing.

Figure 4 shows an example of object disappearance and reappearance. In this exam-
ple, a bicycle and its rider are the primary objects. In Figure 4c, the rider on the bicycle
disappears in a frame due to occlusion by another human body, which is a noisy ob-
ject. The proposed disappearance detection method identifies the noisy human body and
excludes it from the salient object tracks. Moreover, in Figure 4d, the proposed SCO au-
tomatically recognizes the object’s reappearance and declares the reappearing rider and
bicycle as the primary objects.

(a) (b) (c) (d)

Figure 4. A rider on a bicycle disappears and reappears in the “BMX-bumps” sequence. (a) Frame 55;
(b) Frame 58; (c) Frame 70; (d) Frame 78.

3.3. Segmentation Results
3.3.1. Object Track Selection

We develop four schemes to choose segmentation results from the object tracks in
{Θ̃1, . . . , Θ̃M}: SCO-F, SCO-M, SCO-OF, and SCO-OM.

• SCO-F: The first track Θ̃1 extracts the primary object in a video in general. Thus, SCO-
F selects Θ̃1. However, it may fail to extract spatially connected objects. For example,
given a motorbike and its rider, it may detect only one of them. Therefore, SCO-F
additionally picks another salient object track Θ̃p, only when Θ̃1 and Θ̃p are spatially
adjacent in most frames in a video.

• SCO-M: To handle multiple primary objects, which may not be spatially connected,
we choose multiple tracks from {Θ̃1, Θ̃2, . . . , Θ̃M}. To this end, we compute the mean
saliency score of the object instances in each track and discard the tracks whose mean
scores are lower than a pre-specified threshold δ. We fix δ = 0.1 in all experiments.

• SCO-OF: The aforementioned SCO-F is an offline approach that constructs the global
T-partite graph for an entire video. In contrast, SCO-OF is an online approach that
uses the t-partite graph for frames I1, . . . , It to obtain the segmentation result for the
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current frame It. In other words, SCO-O uses the information in the current and past
frames only to achieve VOS.

• SCO-OM: SCO-OM is an online approach of SCO-M.

3.3.2. Pixel-Wise Segmentation Refinement

The foreground region masks of the object instances from FCIS are noisy in general
since the pooling layers in FCIS cause the loss of object details. We hence refine the region
masks of the object instances at the pixel level based on the MRF optimization in [32].
In this section, we consider the refinement of an object instance ot,θ in frame It.

We design a weighted graph for MRF, by employing the pixel set X in frame It as the
node set. We construct the edge setH by connecting each pixel x ∈ X to its four neighbors.
Then, we determine the segmentation label map L by dichotomizing each pixel x into either
foreground (L(x) = 1) or background (L(x) = 0) based on the cost function

C(L) = ∑
x∈X

Cunary(x,L) + γ ∑
(x,y)∈H

Cpariwise(x, y,L) (8)

where Cunary and Cpariwise are the unary and pairwise costs, respectively, and γ is a bal-
ance parameter.

To define the unary cost Cunary, we use two GMMs for the foreground and background.
To build the GMMs, we use the RGB colors of the pixels in the initial foreground region
ot,θ and the initial background region oc

t,θ , respectively. Each GMM is a full-covariance
Gaussian mixture with 10 components. Then, the unary cost is given by

Cunary(x,L) =


0 if x ∈ F and L(x) = 1
0 if x ∈ B and L(x) = 0
mink{− log p(x; ML(x),k)} otherwise

(9)

where p(x; ML(x),k) denotes the probability distribution function of the kth Gaussian com-
ponent ML(x),k of the foreground GMM (when L(x) = 1) or the background GMM (when
L(x) = 0).

In Equation (9), F and B denote the sets of definite foreground pixels and definite
background pixels, respectively. In this work, we attempt to refine only the segmentation
labels of the pixels near object boundaries. To this end, we define the definite foreground set
F and the definite background set B using the SLIC superpixels [35] in frame It. Specifically,
F has the superpixels, which are fully included in ot,θ as subsets. Similarly, B is composed
of the superpixels, which are fully included in oc

t,θ . Then, we try to refine only the pixels
in the other superpixels, which overlap with both ot,θ and oc

t,θ . Note that, to preserve the
foreground pixels in F , Cunary(x,L) in Equation(9) has a zero cost if x ∈ F is labeled as
the foreground, i.e., L(x) = 1. In other words, by minimizing Cunary(x,L), the pixels in F
are encouraged to be labeled as the foreground. Similarly, the pixels in B are likely to be
labeled as the background.

Next, we define the pairwise cost to encourage neighboring pixels to have the same
labels,

Cpairwise(x, y,L) =
{

exp (−d(x, y)) if L(x) 6= L(y)
0 otherwise.

(10)

The distance d(x, y) = dc(x, y) + do(x, y) is the sum of the RGB colors’ difference
dc(x, y) and the optical flow difference do(x, y) given by

dc(x, y) = ‖c(x)− c(y)‖, (11)

do(x, y) = ‖u(x)− u(y)‖, (12)

where c(x) and u(x) are the RGB color and the optical flow vectors for pixel x, respectively.
We normalize both dc(x, y) and do(x, y) into the range [0, 1] to balance their magnitudes.
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We repeat the following two steps. First, we optimize the label map L∗ by minimizing
the MRF cost function in Equation (8) via the graph-cut algorithm [39]. Second, we update
the GMMs based on L∗ and the corresponding cost function. We terminate the iteration
when there is no change in L∗. We then determine the refined segmentation region for the
object instance ot,θ using the converged optimal map L∗.

3.4. Complexity Analysis

Let us analyze the computational complexity of the proposed SCO algorithm. For the
convenience of analysis, we fix the number of object instances in each frame to N. Note
that SCO has two steps: initialization and update. In the initialization in Equation (5),
N− 1 comparisons are made to find the maximum saliency in each frame, requiring O(NT)
comparisons in total. In the update step in Equation (6), N(T − 2) additions and (N − 1)
comparisons are performed for each frame in one iteration. Thus, the update step demands
O(KNT2) complexity, where K is the number of iterations and is restricted to be less than
10 in this work.

We repeat the SCO process N times to extract N object tracks. Thus, the complexity
is O(KN2T2). Then, in the refinement, the Hungarian matching of O(N3) complexity is
performed for each frame. Hence the complexity of the refinement is O(N3T). Moreover,
the complexity of the disappearance detection is O(NT2). Finally, the overall complexity
of the proposed SCO algorithm can be approximated to O(KN2T2), since T is larger than
N in general. This complexity is significantly lower than the binary integer program
in [38], which requires O(2T2 N2

) complexity in the worst case because of the depth-first
node selection.

4. Proposed Weakly Supervised Algorithm

In supervised VOS, a user can provide annotations about an object of interest, which is
the target object to be segmented out. In particular, semi-supervised VOS [14,32] assumes
that the accurate pixel-wise segmentation mask of a target object is available. Interactive
VOS [40] repeatedly allows a user to check the segmentation results, select a frame with
erroneous results, and give refining annotations, such as scribbles, for improving the results.
For the annotations, point clicks also can be adopted. For example, the interactive image
segmentation algorithm in [41] obtains an initial segmentation result when a user inputs
the first click on a target object. After considering the segmentation result, the user provides
a new click to refine the result. This refinement is performed recursively until the user
stops clicking. Notice that point clicks are also used to refine the segmentation results
in interactive VOS algorithms [16]. Moreover, the four extreme point clicks, composed
of the left-most, right-most, top, and bottom pixels of a target object, are used for object
segmentation in [2].

In this section, we propose a weakly supervised VOS algorithm, which takes point
clicks on target objects in the first frame, as illustrated in Figure 5b, but does not require
repetitive interaction to refine the results. In this regard, the proposed algorithm requires
weaker supervision than the semi-supervised and interactive cases. To obtain the segmen-
tation results in Figure 5c from the weakly supervised points, we train the sparse-to-dense
network (SD-Net) for binary classification, which separates each target object from the
background. In this work, the proposed SD-Net is adopted to achieve weakly supervised
VOS and also to refine the segmentation results of unsupervised VOS.
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(a) (b) (c)

Figure 5. Examples of weakly supervised VOS: (a) inputs, (b) point clicks, and (c) segmentation results.

4.1. Network Architecture

Figure 6 is the architecture of the proposed SD-Net, which has two encoders, a feature
mixer, and a decoder. The two encoders are based on a Siamese structure and thus share
parameters. For each encoder, we modify ResNet50 [42] to take a four-channel input: RGB
images and a point map. The spatial resolution of the input is 384× 640. The final block of
the encoder is also modified to maintain the spatial resolution by employing the dilated
convolution with stride 1. We adopt the Siamese structure to use features of the first frame
and the annotated point map. Thus, the top encoder takes the first frame and its annotated
point map, while the bottom encoder takes the current frame and its point map warped
from the previous frame. Then, they extract feature vectors from their input, respectively.

In the feature mixer, the two features, extracted from the first frame and the current
frame, are concatenated, and the concatenated feature passes through a 3 × 3 convo-
lution layer and the ReLU activation. To mix features of the first and current frames
more efficiently, we use two modules: the squeeze and excitation module [43] and the
dilated convolution, in parallel. The squeeze and excitation module adaptively recalibrates
channel-wise features to determine which channels are significant for the segmentation
task. Additionally, the dilated convolution increases the receptive field of the concatenated
feature vector. The larger receptive field is beneficial since the spatial locations of a target
object in the first frame and the current frame are generally different from each other due
to the movements of the target object.
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Figure 6. The architecture of the proposed SD-Net.

Next, the decoder draws segmentation inferences on the current frame from the
blended feature of the feature mixer and the output of the bottom encoder. We design two
kinds of decoder modules to consider both the blended feature of the first and current
frames and the feature of the current frame only. First, the ASPP module [44] is adopted
to extract multi-scale features with different receptive fields from the blended feature.
Using the ASPP module, SD-Net can enlarge the receptive field and exploit various scale
information without increasing the number of parameters or the number of computations.
Moreover, the two upsample modules are used in series to extract effective multi-scale
features from the current frame, where each upsample module consists of one upsample
layer and three convolutional layers. The upsample modules take the multi-scale interme-
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diate features of the bottom encoder through skip connections. Then, the output vectors
of the ASPP module and the upsampling modules are concatenated and fed into the de-
coder combiner, which has three convolutional layers with the batch normalization and the
ReLU activation. The combiner yields a segmentation probability map for the target object.
By thresholding the map, a binarized segmentation result for the target object is obtained.

To train the proposed SD-Net, we use two datasets: (1) the YouTube2018 dataset [45],
which is the largest VOS dataset, and (2) the training set in the DAVIS2017 dataset.
YouTube2018 and DAVIS2017 are used for pre-training and fine-tuning, respectively.
For each video, we randomly choose two frames that contain an identical target object.
One of them becomes a reference frame, and the other becomes a target frame. Then,
for each frame, we produce a point map by sampling points from the ground-truth mask
for the target object. More specifically, we sample 50 points randomly from the mask in
the reference frame, while we choose one point randomly from every 50 mask pixels in the
target frame. We then use the reference frame and its point map as input to the top encoder.
On the other hand, to mimic inaccurate optical flow warping, we deform the point map of
the target frame using random rotation, scaling, translation, and erosion. Then, we input
the target frame and its deformed point map to the bottom encoder. We adopt pixel-wise
cross-entropy losses between a predicted probability map and the ground-truth binary
mask. We use the Adam optimizer [46] with learning rates 10−4 and 10−5 for pre-training
and fine-tuning, respectively. We decrease the learning rates by a factor of 0.1 every 20
epochs. The training is repeated for 50K iterations with an RTX 2080Ti GPU.

4.2. SD-Net for Weakly Supervised VOS

Given a number of point clicks (50 clicks in this work) on each target object in the first
frame, we perform the segmentation of multiple target objects throughout all frames in a
video sequence. For each object, an identical pair of the first frame and the corresponding
point map are fed into both top and bottom encoders in the Siamese network in Figure 6.
In this way, the segmentation results for the multiple objects in the first frame, O1 = {o1,p |
p ∈ NM}, are obtained from the decoder, where M is the number of the target objects. Then,
we initialize object tracks {Θp}M

p=1, where Θp = {θ1 = p}. In other words, each initial
track Θp contains the single index of the target object in the first frame I1.

From the second frame I2, we extend the object tracks by employing warped segmenta-
tion masks from SD-Net, as well as object instance masks from FCIS. For each target object
p, we generate a warped point map by randomly selecting one point for every 50 pixels
in o1,p and then transferring those points from the first frame to the second frame using
optical flow vectors [36]. Then, by employing SD-Net, we obtain the warped segmentation
mask in the second frame. We then decide whether to add the warped segmentation mask
to the set of object instances O2. After computing the intersection over union (IoU) ratios
between the warped segmentation masks and the object instance masks, we find optimal
matching pairs using the Hungarian algorithm. For each matching pair, if the IoU ratio is
smaller than 0.6, we add the warped segmentation mask to the set of object instances O2.
By adding these segmentation masks, we can boost the recall rate of target objects.

Given the set of object instances O2 in frame I2, we extend the object tracks by modify-
ing the SCO process. Specifically, for the track Θp = {θ1 = p} of target object p, its second
element θ2 is determined by

θ2 = arg max
θ∈NN2

w(o2,θ , o1,θ1) (13)

to maximize the similarity of the clique in a greedy manner. Then, we have the extended
track Θp = {θ1 = p, θ2}. The selected instance o2,θ2 is excluded from the set of object
instances O2, and the track extension is performed for the next target object. This is
repeated to extend the tracks for all target objects, i.e., {Θp}M

p=1. Then, the object track

refinement in Section 3.2.3 is performed to yield the refined object tracks {Θ̃p}M
p=1.
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We sequentially perform this processing from the second frame to the last frame in
the video sequence to extend the target object tracks. For frame It, t ≥ 2, the selection rule
in (13) is generalized to

θt = arg max
θ∈NNt

t−1

∑
τ=1

w(ot,θ , oτ,θτ
). (14)

Finally, the refined track Θ̃p contains the segmentation results of target p in the
video sequence.

4.3. SD-Net for Segmentation Refinement in Unsupervised VOS

SD-Net is also adopted to refine the segmentation results in unsupervised VOS.
For each frame, we generate two point maps by randomly choosing 50 points from the
segmentation mask for the first point map and one point from every 50 mask pixels for
the second point map. We then input the frame and the first point map to the top encoder,
while we use the same frame and the second point map as input to the bottom encoder.
Then, we obtain the output of SD-Net as the refined segmentation result.

5. Experimental Results

Given a video sequence, the proposed algorithm can yield segmentation results for
each frame, which delineates target objects at the pixel level, in both unsupervised and
weakly supervised scenarios. Target objects are automatically segmented in the unsuper-
vised scenario, while they are extracted using point clicks in the first frames in the weakly
supervised scenario. We compare the proposed algorithm with

• unsupervised VOS algorithms: FST [22], ACO [23], FSEG [11], ARP [12], AGS [27],
LSMO [24], COSNet [13], AnDiff [25], MATNet [26], UOVOS [28], Zhao [47], FEM-
Net [48], Wang [49], RVOS [29];

• weakly supervised VOS algorithms: BBOX [3], SiamMask [4], En [6].

We use the DAVIS dataset [21]. Note that the DAVIS dataset has two versions,
DAVIS2016 and DAVIS2017. DAVIS2016 is a benchmark for evaluating VOS algorithms. It
consists of 50 video sequences, which are divided into training and validation videos. These
videos are challenging due to various factors, including appearance change, fast motion,
and motion blur. Each video contains a single object or spatially connected objects, e.g.,
a motorbike and its rider, which appear repeatedly in the sequence. Spatially connected
objects are also regarded as primary objects. DAVIS2016 was extended to DAVIS2017. It
includes 90 train–validation sequences: 60 are training sequences, while 30 are validation
sequences. We evaluate the proposed algorithm on the validation sets in DAVIS2016 and
DAVIS2017 unless specified otherwise. Note that DAVIS2017 is more challenging than
DAVIS2016, since multiple objects, which are not connected, correspond to different targets.

5.1. Ablation Studies

In Tables 1–5, we conduct various ablation studies on the validation sets in DAVIS2016
and DAVIS2017. To assess the proposed algorithm on DAVIS2016, we adopt SCO-F, SCO-M,
and SCO-OF. On the other hand, we use only SCO-M and SCO-OM, which segment out
multiple objects, for DAVIS2017, whose sequences contain multiple object instances. For the
evaluation metrics, we employ the region similarity J and the contour accuracy F [21].

The region similarity J is defined as the IoU ratio J =
|Sp∩Sgt|
|Sp∪Sgt| , where Sp and Sgt are an

estimated segment and the ground-truth, respectively. Additionally, the contour accuracy
F is the F-measure, which is the harmonic mean of the contour precision and recall rates.
In these metrics, there are two statistics: ‘mean’ measures the average score and ‘recall’
denotes the proportion of the frames whose scores are higher than 0.5.
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Table 1. Ablation studies on the validation set in DAVIS2016 according to the refinement methods.

Refinement Region Similarity J Contour Accuracy F

Algorithm MRF SD-Net Mean Recall Mean Recall

SCO-F

0.788 0.958 0.757 0.867
X 0.809 0.957 0.770 0.877

X 0.815 0.962 0.796 0.885
X X 0.819 0.962 0.799 0.881

0.751 0.885 0.736 0.852
X 0.772 0.887 0.749 0.855

X 0.776 0.892 0.766 0.855SCO-OF

X X 0.781 0.894 0.773 0.856

SCO-M

0.743 0.851 0.727 0.823
X 0.763 0.860 0.740 0.831

X 0.766 0.857 0.761 0.833
X X 0.771 0.865 0.764 0.837

Table 2. Ablation studies on the validation set in DAVIS2017 according to the refinement methods.

Refinement Region Similarity J Contour Accuracy F

Algorithm MRF SD-Net Mean Recall Mean Recall

SCO-M

0.518 0.615 0.552 0.640
X 0.532 0.620 0.557 0.644

X 0.533 0.618 0.567 0.646
X X 0.537 0.623 0.568 0.651

0.474 0.561 0.510 0.577
X 0.483 0.562 0.514 0.580

X 0.486 0.565 0.523 0.589SCO-OM

X X 0.490 0.568 0.524 0.587

Table 3. Performances on the validation set in DAVIS2017 according to the saliency estimation
methods: ‘w/o OF’ denotes that optical flow is not used in the proposed saliency estimation.

Region Similarity J Contour Accuracy F

Algorithm Saliency Mean Recall Mean Recall

SCO-M
CSF [50] 0.512 0.597 0.549 0.625
w/o OF 0.509 0.594 0.543 0.618

Proposed 0.537 0.623 0.568 0.651
CSF [50] 0.485 0.557 0.523 0.592
w/o OF 0.472 0.543 0.511 0.569SCO-OM

Proposed 0.490 0.568 0.524 0.587

Table 4. Ablation studies on the validation set in DAVIS2017: ‘w/o SOTR’ and ‘w/o DD’ mean that
the salient object track refinement and the disappearance detection are not used, respectively.

Region Similarity J Contour Accuracy F

Algorithm Setting Mean Recall Mean Recall

SCO-M
Proposed 0.537 0.623 0.568 0.651

w/o SOTR 0.525 0.611 0.562 0.642
w/o DD 0.522 0.607 0.559 0.637

Table 5. Performances on the validation set in DAVIS2017 according to the feature settings. The per-
formance of the proposed setting is boldfaced.

Feature Distance Region Similarity J Contour Accuracy F

Algorithm Type Metric Mean Recall Mean Recall

SCO-M

VGG16 Chi-square 0.504 0.580 0.551 0.616
VGG16 Cosine 0.512 0.600 0.557 0.636

ResNet50 Chi-square 0.514 0.597 0.552 0.623
ResNet50 Cosine 0.516 0.603 0.560 0.639

BoW Chi-square 0.537 0.623 0.568 0.651
VGG16 Chi-square 0.470 0.545 0.519 0.569
VGG16 Cosine 0.469 0.543 0.514 0.571

ResNet50 Chi-square 0.475 0.549 0.520 0.571
ResNet50 Cosine 0.477 0.552 0.523 0.578

SCO-OM

BoW Chi-square 0.490 0.568 0.524 0.587

Table 1 lists the J and F performances according to the refinement methods on
DAVIS2016. The segmentation refinement can be performed using two methods: (1) MRF
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in Section 3.3.2 and (2) SD-Net in Section 4.3. Without any refinement, SCO-F yields a
mean J of 78.8% and a mean F of 75.7%. MRF increases these scores by 2.1% and 1.3%,
while SD-Net increases them by 2.7% and 3.9%. Moreover, when both MRF and SD-Net
are used sequentially, SCO-F provides the best J and F performances of 81.9% and 79.9%,
respectively. The studies on SCO-OF and SCO-M exhibit similar improvements due to the
refinement methods. Table 2 shows the ablation studies on DAVIS2017. Again, both MRF
and SD-Net improve the segmentation accuracy of SCO-M and SCO-OM on DAVIS2017.
Thus, in the following experiments, both MRF and SD-Net are used for the refinement,
unless specified otherwise.

Table 3 compares the performances when different methods are used to compute the
saliency scores of object instances. We replace the RWR-based saliency in Section 3.1 with
the state-of-the-art salient object detection algorithm [50]. This salient object detection
algorithm does not improve performance since it does not consider motion information.
Additionally, we compute the RWR-based saliency without using the optical flow (‘w/o
OF’). Without the optical flow, unreliable saliency maps are obtained, degrading the perfor-
mances severely.

In Table 4, we analyze the efficacy of each component of the proposed algorithm
through two ablation studies. First, we measure the performance of SCO-M without the
salient object track refinement. Second, we do not perform the disappearance detection. Let
us refer to these settings as ‘w/o SOTR’ and ‘w/o DD’. Table 4 provides the J and F scores
on DAVIS2017 for these settings. In this test, we use only SCO-M since the two components
are not applied in SCO-OM. Without track refinement or disappearance detection, the J
and F scores are lowered. Thus, these components are essential in the proposed SCO-M.

Table 5 shows the J and F scores on DAVIS2017 according to the feature settings.
In the proposed algorithm, a color-based BoW is employed to describe the feature of each
instance. In this test, instead of the BoW, we use deep features extracted from VGG16 [51]
and ResNet50 [42]. To generate a feature of an object instance, we feed the rectangular patch
containing the object instance to each baseline network and extract the output of the last
pooling layer. For the deep features, we use two metrics, i.e., the chi-square distance and
cosine similarity, to compute edge weights in the graph. In Table 5, we observe that deep
features degrade the performances regardless of the metrics. This is because deep semantic
features yield high similarity weights between different objects in the same class. This is
undesirable in VOS applications since different objects should be clearly distinguished
from each other.

5.2. Assessment of Unsupervised VOS Algorithm

Table 6 compares the proposed algorithm with the conventional unsupervised VOS al-
gorithms on the validation set in DAVIS2016. The scores of the conventional algorithms are
from the DAVIS dataset’s website [21]. Note that the proposed SCO-F achieves comparable
performances to the recent state-of-the-art VOS algorithms AnDiff [25] and MATNet [26].
In particular, SCO-F yields the highest recall score of the region similarity J , which is as
high as 96.2%. As compared with SCO-F, SCO-M yields lower performances, since it selects
non-primary objects, as well as primary ones, in some videos. Additionally, the online
version SCO-OF even surpasses the offline approach LSMO [24], as well as the online
UOVOS [28].
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Table 6. Comparison of the proposed SCO algorithm with the conventional unsupervised VOS
algorithms on the validation set in DAVIS2016. The best results are boldfaced, and the second best
ones are underlined.

Region Similarity J Contour Accuracy F
Algorithm Mean Recall Mean Recall

FST [22] 0.558 0.649 0.511 0.516
FSEG [11] 0.707 0.835 0.653 0.738
ARP [12] 0.762 0.911 0.706 0.835

LSMO [24] 0.782 0.891 0.759 0.847
AGS [27] 0.797 0.911 0.774 0.858

COSNet [13] 0.805 0.931 0.795 0.895
AnDiff [25] 0.817 0.909 0.805 0.851

MATNet [26] 0.824 0.945 0.807 0.902
UOVOS [28] 0.739 0.885 0.680 0.806

Zhao [47] 0.634 0.703 0.602 0.627
FEM-Net [48] 0.799 0.939 0.769 0.883

Wang [49] 0.816 - 0.797 -
SCO-F 0.819 0.962 0.799 0.881

SCO-OF 0.781 0.894 0.773 0.856
SCO-M 0.771 0.865 0.764 0.837

The video sequences in DAVIS2016 have multiple attributes that describe the chal-
lenging factors. In Table 7, we analyze the performances according to the nine attributes:
low resolution (LR), scale variation (SV), fast motion (FM), camera shake (CS), dynamic
background (DB), motion blur (MB), occlusions (OCC), out of view (OV), and appearance
change (AC). For the evaluation, we compute the average of the mean J and mean F
scores (mean J&F ) on the validation set in DAVIS2016. For the LR, FM, CS, and AC
attributes, SCO-F experiences no or negligible performance losses as compared with the
overall J&F score of 80.9%, which is computed by averaging the mean J and mean F
scores of SCO-F in Table 6. However, the DB and MB attributes decrease the performances
of SCO-F since the refinement methods are less effective in the presence of motion blur
and dynamic background. Nevertheless, except for the OCC attribute, the proposed SCO-F
provides better performances than the conventional algorithms.

Table 7. Attribute-based performance comparison on the validation set in DAVIS2016.

Mean J &F

Attr. ARP FSEG LSMO AGS SCO-F

LR 0.722 0.712 0.772 0.815 0.861
SV 0.698 0.603 0.724 0.744 0.779
FM 0.728 0.660 0.734 0.775 0.805
CS 0.754 0.756 0.817 0.831 0.845
DB 0.693 0.482 0.556 0.640 0.697
MB 0.689 0.607 0.721 0.735 0.751

OCC 0.725 0.628 0.767 0.769 0.768
OV 0.728 0.629 0.696 0.754 0.766
AC 0.759 0.674 0.766 0.800 0.840

Table 8 compares the proposed algorithm with RVOS [29], which yields multiple
segment tracks, on the validation set in DAVIS2017. We see that the proposed SCO-OM
and SCO-M outperform RVOS. The experimental results in Tables 6–8 indicate that the
proposed algorithm is more effective than the existing unsupervised VOS algorithms at
segmenting both a single primary object and multiple primary objects.
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Table 8. Comparison of the proposed SCO algorithm with the conventional unsupervised algorithms
on the validation set in DAVIS2017.

Region Similarity J Contour Accuracy F

Algorithm Mean Recall Mean Recall

RVOS [29] 0.368 0.402 0.457 0.464
SCO-OM 0.490 0.568 0.524 0.587
SCO-M 0.537 0.623 0.568 0.651

5.3. Assessment of Weakly Supervised VOS Algorithm

Table 9 compares the proposed weakly supervised algorithm with existing weakly
supervised algorithms on the validation sets in DAVIS2016 and DAVIS2017. The scores of
the conventional algorithms [2–4,6] are from their respective papers. In Table 9, ‘Annotation’
denotes the types of annotations, which are provided in the first frame. We compare
the proposed weakly supervised algorithm with two existing weakly supervised VOS
algorithms in [3,4] that take the bounding box annotation. Even though the point-click
annotation in the proposed algorithm requires more human effort than the bounding box
annotation in [3,4], the proposed weakly supervised algorithm achieves more accurate
VOS and provides the best performances on both DAVIS2016 and DAVIS2017. Moreover,
the proposed algorithm outperforms [2,6], which take four points for a target object per
frame and category labels, respectively.

Table 9. Comparison of the proposed weakly supervised algorithm with the conventional weakly
supervised algorithms on the validation sets in DAVIS2016 and DAVIS2017 according to annotation
types: ‘# of targets’ denotes the number of target objects.

Region Similarity J Contour Accuracy F

Algorithm Annotation Mean Recall Mean Recall

A. DAVIS2016

BBOX [3] Box 0.803 0.952 – –
SiamMask [4] Box 0.717 0.868 0.678 0.798

DEXTR [2] 4 points 0.795 – – –per frame
En [6] category label 0.769 0.927 0.720 0.870

Proposed 50 points 0.815 0.955 0.795 0.886

B. DAVIS2017

SiamMask [4] Box 0.543 0.628 0.585 0.675
Proposed # of targets 0.537 0.630 0.566 0.650
Proposed 50 points 0.658 0.781 0.688 0.804

Table 9 also shows the performance of the proposed algorithm on DAVIS2017, when
only the number of target objects is provided without point clicks. In other words, su-
pervision is limited to the number of target objects. Then, the proposed algorithm selects
as many salient object tracks as the provided number of targets. Even with this minimal
supervision, the proposed algorithm achieves comparable performances to SiamMask [4].
Figure 7 shows the mean J&F scores on DAVIS2017 according to the number of point
clicks in the inference. We see that the performance generally increases as the number of
point clicks becomes larger, but it is saturated when more than 30 points are used. We fix the
number of point clicks to 50 in this work. Moreover, the proposed algorithm outperforms
SiamMask [4] using only five point clicks.
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Figure 7. The mean J&F performances on DAVIS2017 according to the number of point clicks [19].

Note that the proposed algorithm requires 50 point clicks on each target object in
the first frame of a video sequence. Then, SD-Net in Figure 6 uses and propagates the
information to segment the object in all frames in the sequence. We can generalize this
weakly supervised algorithm straightforwardly to perform interactive VOS, in which
repetitive user interactions are provided to refine the segmentation results. In the first
interactive segmentation round, given 50 point clicks for each object in the first frame,
the proposed SD-Net obtains the segmentation results for all frames. In the next round,
we find the frame with the worst segmentation result and then provide additional point
clicks to SD-Net to refine the inaccurate result. Then, SD-Net propagates the refined result
bi-directionally to both ends of the sequence. This is repeated until a desired level of
segmentation is achieved. Table 10 shows the segmentation performances according to
the number of interaction rounds. The performances increase quickly and saturate at
approximately the fifth round. Figure 8 shows the qualitative results of the proposed
weakly supervised algorithm on DAVIS2017. The first column illustrates the point clicks,
annotated by users on the first frames, and the other columns are the corresponding
segmentation results in the first and subsequent frames. We see that multiple target objects,
either connected or not, are segmented out well using the point clicks.

Table 10. Performance on the validation set in DAVIS2017 according to the number of interaction
rounds.

The Number of Interaction Rounds

Metric 1 2 3 4 5 6

Mean J 0.655 0.676 0.685 0.696 0.713 0.718
Mean F 0.690 0.707 0.719 0.735 0.750 0.758
J&F 0.673 0.692 0.702 0.716 0.732 0.738

Table 11 shows the performance on the SegTrack v2 dataset [52]. SegTrack v2 contains
14 low-resolution videos with 24 generic foreground objects. We perform the experiments
on the full videos in SegTrack v2 using the proposed weakly supervised algorithm with
30 initial point clicks. Notice that the proposed SD-Net is trained on DAVIS2017 and
YouTube2018 and is not fine-tuned on SegTrack v2. In Table 11, the mean J score is
averaged across all instances. The scores of the conventional algorithms are from their re-
spective papers. We see that, despite requiring weaker supervision, the proposed algorithm
achieves a higher score than RGMP [53] and a comparable score to [54–57].
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(a) (b) (c) (d) (e) (f)

Figure 8. VOS results of the proposed algorithm in the weakly supervised scenario on the DAVIS2017
dataset: (a) point interaction of target objects in 1st frames, (b) segmentation results in 1st frames,
and (c–f) segmentation results in subsequent frames. From top to bottom, “Dogs-jump”, “Gold-fish”,
“Horsejump-high”, “Loading”, “Motocross-jump”, “Pigs”, “Lab-coat”, and “Soapbox”.

Table 11. Comparison of the proposed weakly supervised algorithm with the conventional semi-
supervised algorithms on SegTrack v2.

Semi-Supervised Weakly Supervised
RGMP [53] DMM-Net [54] DIPNet [55] NPMCA-net [56] SiamPolar [57] Proposed

Mean J 0.711 0.767 0.738 0.761 0.728 0.726

5.4. Running Time Analysis

We measure the running time of the proposed SCO algorithm for finding cliques
in a complete k-partite graph. In this test, we use the “Boxing-fisheye” sequence in the
DAVIS2017 dataset. We use a computer with a 2.6GHz CPU. The running time of SCO is
affected by two factors: (1) the number N of object instances in a frame and (2) the number
T of frames in a sequence. Figure 9a shows the running times according to N, when T
is fixed to 50. Figure 9b plots the running times according to T, when N is limited to 10.
The proposed algorithm is faster than the binary integer program in [38], which consumes
about 1 s when N = 10 and T = 50.
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Figure 9. The running times according to (a) the number of object instances and (b) the number of
frames.

Table 12 analyzes the running times of SCO-F. The proposed algorithm performs
FCIS [19] for generating the object instances and also the optical flow estimation [36],
saliency estimation, and feature extraction in each frame. Then, it performs SCO for the
global optimization. In this analysis, the number of frames is 80, and the number of object
instances in each frame is 10. SCO takes 0.21 s for the entire sequence, which is negligible.
Then, the proposed algorithm also performs two segmentation refinement methods based
on MRF and SD-Net in each frame. In total, the proposed algorithm takes 1.79 s per frame
(SPF). It is comparable to MATNet [26] (0.75 SPF) and faster than UOVOS [28] (9.96 SPF).

Table 12. Running times in seconds per frame (SPF).

Optical Saliency Feature
FCIS Flow Estimation Extraction MRF SD-Net Total

Time 0.24 0.19 0.30 0.15 0.76 0.15 1.79

6. Conclusions

We proposed a novel algorithm to segment out objects in a video sequence in both
unsupervised and weakly supervised scenarios by solving the problem of finding cliques
in a complete k-partite graph. We first generated the object instances in each frame. Then,
we chose a salient instance from each frame to construct the salient object track. For this
purpose, we developed the SCO technique using both the saliency and similarity energies.
By applying SCO repeatedly, we obtained multiple salient object tracks. Finally, we trans-
formed these tracks into VOS results. For weakly supervised VOS, we adapted SCO and
developed SD-Net to produce segmentation results by exploiting point clicks on the target
objects in the first frame. The experimental results showed that the proposed algorithm
provides comparable or better performances than the state-of-the-art VOS algorithms on
the DAVIS2016 and DAVIS2017.

In spite of its achievements, the proposed algorithm still has a limitation. To obtain the
set of object instances, the proposed algorithm uses FCIS, which is trained on still-image
instance segmentation. In future work, we plan to develop an instance segmentation
network for video sequences that takes advantage of the temporal context information
in different frames. Instead of frame-by-frame instance segmentation, we expect that
the instance segmentation results from multiple frames can provide more reliable salient
instance segments to perform the proposed SCO process. Moreover, we will improve
SD-Net by adding the transformer in the feature mixer to fuse the two features of the first
frame and the current frame more effectively.



Electronics 2022, 11, 2899 20 of 22

Author Contributions: Conceptualization, Y.J.K.; formal analysis, Y.H.; investigation, Y.J.K. and C.-
S.K.; data curation, Y.H.; writing–original draft preparation, Y.J.K.; writing—review and editing, Y.J.K.
and C.-S.K.; supervision, Y.J.K.; funding acquisition, Y.J.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partly supported by the National Research Foundation of Korea (NRF)
grants funded by the Korea government (MSIT) (NRF-2021R1A4A1031864), Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Edu-
cation (NRF-2022R1I1A3069113), Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT) (No. RS-2022-00155857, Artificial
Intelligence Convergence Innovation Human Resources Development (Chungnam National Uni-
versity)), and Institute of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2020-0-01441, Artificial Intelligence Convergence
Research Center (Chungnam National University)).

Conflicts of Interest: The authors declare that they have no known competing interests.

References
1. Koh, Y.J.; Jang, W.D.; Kim, C.S. POD: Discovering primary objects in videos based on evolutionary refinement of object recurrence,

background, and primary object models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Cecognition,
Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1068–1076.

2. Maninis, K.K.; Caelles, S.; Pont-Tuset, J.; Van Gool, L. Deep extreme cut: From extreme points to object segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp.
616–625.

3. Zhang, Z.; Hua, Y.; Song, T.; Xue, Z.; Ma, R.; Robertson, N.; Guan, H. Tracking-assisted Weakly Supervised Online Visual Object
Segmentation in Unconstrained Videos. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Korea,
22–26 October 2018; pp. 941–949.

4. Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H.S. Fast Online Object Tracking and Segmentation: A Unifying Approach. In
Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 1328–1338.

5. Wei, L.; Lang, C.; Liang, L.; Feng, S.; Wang, T.; Chen, S. Weakly Supervised Video Object Segmentation via Dual-attention
Cross-branch Fusion. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–20.

6. En, Q.; Duan, L.; Zhang, Z. Joint Multisource Saliency and Exemplar Mechanism for Weakly Supervised Video Object Segmenta-
tion. IEEE Trans. Image Process. 2021, 30, 8155–8169.

7. Zheng, Q.; Yang, M.; Yang, J.; Zhang, Q.; Zhang, X. Improvement of generalization ability of deep CNN via implicit regularization
in two-stage training process. IEEE Access 2018, 6, 15844–15869.

8. Zhao, M.; Chang, C.H.; Xie, W.; Xie, Z.; Hu, J. Cloud shape classification system based on multi-channel cnn and improved fdm.
IEEE Access 2020, 8, 44111–44124.

9. Jin, B.; Cruz, L.; Gonçalves, N. Deep facial diagnosis: deep transfer learning from face recognition to facial diagnosis. IEEE Access
2020, 8, 123649–123661.

10. Zheng, Q.; Zhao, P.; Li, Y.; Wang, H.; Yang, Y. Spectrum interference-based two-level data augmentation method in deep learning
for automatic modulation classification. Neural Comput. Appl. 2021, 33, 7723–7745.

11. Jain, S.D.; Xiong, B.; Grauman, K. FusionSeg: Learning to Combine Motion and Appearance for Fully Automatic Segmentation of
Generic Objects in Videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 3664–3673.

12. Koh, Y.J.; Kim, C.S. Primary Object Segmentation in Videos Based on Region Augmentation and Reduction. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3442–3450.

13. Lu, X.; Wang, W.; Ma, C.; Shen, J.; Shao, L.; Porikli, F. See More, Know More: Unsupervised Video Object Segmentation With
Co-Attention Siamese Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 15–20 June 2019; pp. 3618–3627.

14. Caelles, S.; Maninis, K.K.; Pont-Tuset, J.; Leal-Taixe, L.; Cremers, D.; Van Gool, L. One-Shot Video Object Segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp.
221–230.

15. Voigtlaender, P.; Leibe, B. Online adaptation of convolutional neural networks for video object segmentation. arXiv 2017,
arXiv:1706.09364.

16. Chen, Y.; Pont-Tuset, J.; Montes, A.; Van Gool, L. Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp.
1189–1198.



Electronics 2022, 11, 2899 21 of 22

17. Voigtlaender, P.; Chai, Y.; Schroff, F.; Adam, H.; Leibe, B.; Chen, L.C. FEELVOS: Fast end-to-end embedding learning for video
object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 15–20 June 2019; pp. 9481–9490.

18. Koh, Y.J.; Lee, Y.Y.; Kim, C.S. Sequential clique optimization for video object segmentation. In Proceedings of the European
Conference on Computer Vision (ECCV), Seoul, Korea, 22–26 October 2018; pp. 537–556.

19. Li, Y.; Qi, H.; Dai, J.; Ji, X.; Wei, Y. Fully Convolutional Instance-Aware Semantic Segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2359–2367.

20. Chartrand, G.; Zhang, P. Chromatic Graph Theory; CRC Press: Boca Raton, FL, USA, 2008.
21. Perazzi, F.; Pont-Tuset, J.; McWilliams, B.; Van Gool, L.; Gross, M.; Sorkine-Hornung, A. A Benchmark Dataset and Evaluation

Methodology for Video Object Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 26 June–1 July 2016 , 2016; pp. 724–732.

22. Papazoglou, A.; Ferrari, V. Fast object segmentation in unconstrained video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1777–1784.

23. Jang, W.D.; Lee, C.; Kim, C.S. Primary Object Segmentation in Videos via Alternate Convex Optimization of Foreground and
Background Distributions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 26 June–1 July 2016; pp. 696–704.

24. Tokmakov, P.; Schmid, C.; Alahari, K. Learning to segment moving objects. Int. J. Comput. Vis. 2019, 127, 282–301.
25. Yang, Z.; Wang, Q.; Bertinetto, L.; Bai, S.; Hu, W.; Torr, P.H.S. Anchor Diffusion for Unsupervised Video Object Segmentation. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 931–940.
26. Zhou, T.; Wang, S.; Zhou, Y.; Yao, Y.; Li, J.; Shao, L. Motion-Attentive Transition for Zero-Shot Video Object Segmentation. In

Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020.
27. Wang, W.; Song, H.; Zhao, S.; Shen, J.; Zhao, S.; Hoi, S.C.; Ling, H. Learning unsupervised video object segmentation through

visual attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019 ; pp. 3064–3074.

28. Zhuo, T.; Cheng, Z.; Zhang, P.; Wong, Y.; Kankanhalli, M. Unsupervised online video object segmentation with motion property
understanding. IEEE Trans. Image Process. 2019, 29, 237–249.

29. Ventura, C.; Bellver, M.; Girbau, A.; Salvador, A.; Marques, F.; Giro-i Nieto, X. RVOS: End-to-end recurrent network for video
object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 5277–5286.

30. Qi, G.; Zhang, Y.; Wang, K.; Mazur, N.; Liu, Y.; Malaviya, D. Small Object Detection Method Based on Adaptive Spatial Parallel
Convolution and Fast Multi-Scale Fusion. Remote. Sens. 2022, 14, 420.

31. Lazarow, J.; Xu, W.; Tu, Z. Instance Segmentation With Mask-Supervised Polygonal Boundary Transformers. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 4382–4391.

32. Jang, W.D.; Kim, C.S. Online Video Object Segmentation via Convolutional Trident Network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017 ; pp. 5849–5858.

33. Sun, M.; Xiao, J.; Lim, E.G.; Xie, Y.; Feng, J. Adaptive ROI Generation for Video Object Segmentation Using Reinforcement
Learning. Pattern Recog. 2020, 106, 107465.

34. Yin, Y.; Xu, D.; Wang, X.; Zhang, L. AGUnet: Annotation-guided U-net for fast one-shot video object segmentation. Pattern Recog.
2021, 110, 107580.

35. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282.

36. Sun, D.; Yang, X.; Liu, M.Y.; Kautz, J. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
8934–8943.

37. Zamir, A.R.; Dehghan, A.; Shah, M. GMCP-Tracker: Global multi-object tracking using generalized minimum clique graphs. In
Proceedings of the European Conference on Computer Vision, Providence, RI, USA, 16–21 June 2012 ; pp. 343–356.

38. Dehghan, A.; Modiri Assari, S.; Shah, M. GMMCP Tracker: Globally optimal generalized maximum multi clique problem for
multiple object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015 ; pp. 4091–4099.

39. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. In Proceedings of the IEEE Transactions on
Pattern Analysis and Machine Intelligence; IEEE: New York, NY, USA, 1999; Volume 1, pp. 377–384.

40. Fan, Q.; Zhong, F.; Lischinski, D.; Cohen-Or, D.; Chen, B. JumpCut: non-successive mask transfer and interpolation for video
cutout. ACM Trans. Graphics 2015, 34, 195:1–195:10.

41. Jang, W.D.; Kim, C.S. Interactive Image Segmentation via Backpropagating Refinement Scheme. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5297–5306.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

43. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.



Electronics 2022, 11, 2899 22 of 22

44. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.

45. Xu, N.; Yang, L.; Fan, Y.; Yang, J.; Yue, D.; Liang, Y.; Price, B.; Cohen, S.; Huang, T. YouTube-VOS: Sequence-to-sequence video
object segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018 2018; pp. 585–601.

46. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization; arXiv 2015, arXiv:1412.6980.
47. Zhao, Z.; Zhao, S.; Shen, J. Real-time and light-weighted unsupervised video object segmentation network. Pattern Recognit.

2021, 120, 108120.
48. Zhou, Y.; Xu, X.; Shen, F.; Zhu, X.; Shen, H.T. Flow-edge guided unsupervised video object segmentation. IEEE Trans. Circuits

Syst. Video Technol. 2021, https://doi.org/10.1109/TCSVT.2021.3057872.
49. Wang, Y.; Choi, J.; Chen, Y.; Li, S.; Huang, Q.; Zhang, K.; Lee, M.S.; Kuo, C.C.J. Unsupervised video object segmentation with

distractor-aware online adaptation. J. Vis. Commun. Image Represent. 2021, 74, 102953.
50. Gao, S.H.; Tan, Y.Q.; Cheng, M.M.; Lu, C.; Chen, Y.; Yan, S. Highly Efficient Salient Object Detection with 100K Parameters. In

Proceedings of the European Conference on Computer Vision (ECCV), Online Conference, 23–28 August 2020.
51. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
52. Li, F.; Kim, T.; Humayun, A.; Tsai, D.; Rehg, J.M. Video segmentation by tracking many figure-ground segments. In Proceedings

of the IEEE International Conference on Computer Vision, Portland, OR, USA, 23–28 June 2013; pp. 2192–2199.
53. Oh, S.W.; Lee, J.Y.; Sunkavalli, K.; Kim, S.J. Fast Video Object Segmentation by Reference-Guided Mask Propagation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
7376–7385.

54. Zeng, X.; Liao, R.; Gu, L.; Xiong, Y.; Fidler, S.; Urtasun, R. DMM-Net: Differentiable mask-matching network for video object
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019;
pp. 3929–3938.

55. Hu, P.; Liu, J.; Wang, G.; Ablavsky, V.; Saenko, K.; Sclaroff, S. Dipnet: Dynamic identity propagation network for video object
segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO,
USA, 2–5 March 2020; pp. 1904–1913.

56. Yu, S.; Xiao, J.; Zhang, B.; Lim, E.G.; Zhao, Y. Fast pixel-matching for video object segmentation. Signal Process. Image Commun.
2021, 98, 116373.

57. Li, Y.; Hong, Y.; Song, Y.; Zhu, C.; Zhang, Y.; Wang, R. SiamPolar: Semi-supervised realtime video object segmentation with polar
representation. Neurocomputing 2022, 467, 491–503.


	Introduction
	Related Work
	Unsupervised VOS
	Semi-Supervised VOS

	Proposed Unsupervised VOS Algorithm
	Generating Object Instances
	Finding Salient Object Tracks
	Problem Formulation
	SCO
	Salient Object Track Refinement
	Disappearance Detection

	Segmentation Results
	Object Track Selection
	Pixel-Wise Segmentation Refinement

	Complexity Analysis

	Proposed Weakly Supervised Algorithm
	Network Architecture
	SD-Net for Weakly Supervised VOS
	SD-Net for Segmentation Refinement in Unsupervised VOS

	Experimental Results
	Ablation Studies
	Assessment of Unsupervised VOS Algorithm
	Assessment of Weakly Supervised VOS Algorithm
	Running Time Analysis

	Conclusions
	References

