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Abstract: In this paper, we present a powerful underwater image dehazing technique that exploits
two image characteristics—RGB color channels and image features. In using RGB color channels,
each color channel is decomposed into two units based on the similarities via the k-mean. This
markedly improves the adaptability and identification of similar pixels, and thus reduces pixels
with a weak correlation, leaving only pixels with a higher correlation. We use an infinite impulse
response (IIR) in the triple-dual and parallel interaction structure to suppress hazed pixels via a pixel
comparison and amplification to increase the visibility of even very minor features. This improves the
visual perception of the final image, thus improving the overall usefulness and quality of the image.
The softmax-weighted fusion is finally used to fuse the output color channel features to attain the
final image. This preserves the color, leaving our proposed method’s output very true to the original
scene’s. This is accomplished by taking advantage of adaptive learning based on the confidence levels
of the pixel contribution variation in each color channel during subsequent fuses. The proposed
technique both visually and objectively outperforms the existing methods in several rigorous tests.

Keywords: underwater image dehazing; RGB color channel; triple dual; parallel interaction;
softmax weighted

1. Introduction

Underwater images have tremendous usage in marine engineering. However, poor un-
derwater image quality caused by the presence of wavelength-dependent light absorption
and scattering [1] often hinders their use. Underwater image dehazing is an approach to
combat this, where underwater images are processed to improve quality, thereby increasing
their application in the marine environment. The processing focuses on reducing the effects
of wavelength-dependent light absorption and scattering. According to Alenezi et al. [1,2],
an underwater dehazing model can be defined as:

Γc(x) = Λc(x)τc(x) + Λc(x)τc(x) ∗ ηc(x) + Θc(1− τc(x)) (1)

where Γc(x) denotes the intensities of the c ∈ {R,G,B} color channel at the pixel x in an
input underwater image. Λc(x) denotes the scene radiance image and Θc denotes the
ambient light. Λc(x)τc(x) is the direct transmission, representing the attenuated scene
radiance by transmission. ηc(x) denotes a point spread function of pixel x. Similar to
in-air dehazing models [3], underwater dehazing models aim to reduce the effect of haze in
images. However, unlike in the atmospheric model, the underwater model presented in (1)
considers scene radiance, Λc(x), as a function of point spread to take into consideration the
effects of wavelength-dependent light absorption. This makes underwater image dehazing
a complex phenomenon that requires the continual exploration of effective techniques in
order to improve the image quality and the usability of underwater images.

Recent years have seen underwater image dehazing attracting attention, leading to
many suggested techniques. Traditional methods, such as image restoration and enhance-
ment, estimate the dehazing models’ parameters to reduce the effect of haze. Such models
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include He et al.’s [4] dark channel prior (DCP) that estimates the transmission map and
atmospheric light from a hazy image to recover the underwater image. The simplicity of the
DCP has enabled its modification to address the severe attenuation of the red color in water
to attain images with improved color. Such techniques include that of Galdran et al. [5] who
recovered short wavelength-based colors via a red channel prior (RCP) to restore image
contrast. Peng et al. [6] used a DCP to present an underwater dehazing technique where
they considered the green and blue color channels to restore the underwater image. Chiang
and Chen [7] enhanced underwater images via a compensation-based light attenuation
dehazing algorithm. Peng and Cosman [8] used depth estimators, image blurriness and
light absorption to restore underwater images. These methods have been popular due
to their ability to reduce the effect of blur and color cast effects on underwater images
to a significant degree. However, they also estimate many parameters, making their re-
sults inflexible and sometimes inferior compared to other complex methods, such as those
by [9,10]. On the other hand, the most recently proposed underwater image dehazing
models reduce the effect of haze by disregarding the underwater modeling parameters and
improving the image’s visual quality by adjusting the image pixel values. Such methods
include Ancuti et al. [11], where the contrast of the underwater images was improved via a
fusion-based method. Fu et al. [12] proposed an effective retinex-based method to enhance
underwater images. Though effective in improving the underwater image quality in many
instances, these methods have one major shortcoming: they fail to consider underwater
physical parameters, making them inefficient in recovering high-quality images.

Deep neural network-based methods solved the problems of DCP-related models and
image pixel-based models. Such techniques include image segmentation by Zhang et al. [13],
pattern recognition by Gedamu et al. [14] and image dehazing by Liang et al. [15]. Some
methods utilized deep neural networks to utilize similarities between clear or ground-truth
and hazy images. Such methods used similar network structures to achieve a higher image
quality. These methods’ major shortcoming come when the images compose a harsh and
complex scenario where attaining ground-truth images is impossible. In order to solve such
problems, researchers have explored the pairing of in-air images with haze images and then
used the same analogy to solve underwater images from harsh and complex scenarios. Such
models are generative adversarial networks (GAN) for underwater images (WaterGAN)and
others [16]. The technique corrects the color of underwater images by pairing in-air images
and using the attained depth information to simulate underwater images. Fabbri [17]
proposed paired training data generated by employing a cycle-consistent GAN (CycleGAN)
by [18] to formulate an underwater GAN (UGAN), which simulated the degradation
process. Finally, they used the pix2pix model to reduce the effect of haze in underwater
images. The suggested techniques were later exploited by Guo et al. [19] and Fabbri [17]
to develop a more sophisticated model based on the dense multiscale GAN, boosting
the performance and rendering more details in the final underwater images than the
previous methods. Li et al. [20] recently proposed an underwater convolutional neural
network (UWCNN), which used underwater scenes prior to generating satisfactory clear
underwater images. The deep neural network’s major shortcoming is its reliance on in-air
images to attain underwater clear images. This is not always directly usable in underwater
applications and is regarded as an extension of in-air dehazing networks; thus, their results
may be misleading.

The general approach of underwater dehazing based on neural networks (NN) has not
yielded accurate images due to an over-reliance on scene depth and on atmospheric light
based on image pixels. However, if considered in terms of the red, green and blue (RGB)
color channels, these pixels can yield images whose visual appearances are closer to that of
the raw images. Inspired by this fact, the proposed technique approaches the underwater
imaging dehazing problem based on the difference in pixel arrangements within the RGB
color channels. Thus, a novel triple-dual end-to-end NN is proposed, in other words,
a triple-dual-path recurrent network (TDPRN) to model scene radiance and ambient light.
The proposed TDPRN consists of a feature extraction block, a transmission estimation map
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block, a TDPRN block with a parallel interaction function, image reconstruction and the
softmax function for image fusion. The network information is modified from the already
existing network by [21]. Given the hazy underwater image, the network decomposes the
image into the RGB channels and then the TDPRN uses the feature extraction block and
the transmission map estimation block to extract features from the color channels from
the hazed underwater images. These features are then fed into the dual-path block via
three parallel branches to restore the image features and improve the color of the dehazed
images. Unlike [21]’s structure, the proposed structure has three units of convolution—
long short-term memory (convLSTM) in each branch and a convolution layer based on
the corresponding color channels’ pixels. ConvLSTM has the ability to learn and store
information on the input image of the pixel correlation and compare it with the output.
The communication between the interacting layers enables a comparison of the correlation
patterns, thus enhancing the extraction of features in the output images. This extraordinary
communication and comparison help approximate the infinite impulse response (IIR)
model, which was already proposed by [21,22]. A parallel interaction function is also
proposed to fuse the intermediary features between the branches. Thus, the basic features
and information of the dehazed image are recovered alternatively. The corresponding
features based on each color channel are then processed stepwise to obtain the ultimate
dehazed image via a series of softmax-weighted fusion, whose details are discussed in
detail by Zhao et al. [23].

The proposed technique, presented in Figure 1, can produce an output image with
improved visual perception. Figure 1 shows a summary of the visual perception improve-
ment of the proposed method compared to the input images. The top row contains the raw
(hazed) images. The bottom (second) row shows the corresponding output of the proposed
method. The summary presented in Figure 1 indicates that the proposed technique can
learn and reduce the effects of haze in the output images.

Figure 1. These examples show the visual performance of the proposed technique. Top row: input
(hazed) images. Bottom row: the corresponding results produced by the proposed technique.

Contribution

This proposed paper contains the following significant contributions:

1. The input image is decomposed according to the RGB color channels and the features,
with each color channel decomposed into two units based on the similarities via the
k-means. The k-means are described in detail by [24,25]. This guarantees the ease
of adaptability and identification of similar pixels, and thus, by extension, removes
pixels with a weak correlation, leaving only pixels with a higher correlation.

2. The structure’s triple-dual and parallel interaction allows a comprehensive com-
parison; hence, even minor features, i.e., pixels with the weakest correlations, are
considered. This improves the visual perception of the final image.
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3. The use of softmax-weighted fusion in the arrangement of the proposed structure also
preserves the color, which explains why the proposed result’s color is very similar to
the input color. This is achieved via adaptive learning based on the confidence levels
of the pixel contribution variation in each color channel during the subsequent fuses.

2. Proposed Methodology
2.1. Triple-Dual-Path Recurrent Network
2.1.1. Network Architecture

The proposed TDPRN network consists of feature and transmission map blocks.
The triple-dual-path block has a series of parallel interaction functions and a softmax-
weighted fusion block. The first and second convolution layers increase the width to 16,
reduce the resolution of the feature maps in each color channel and increase the width
of the image to 32. After each convolution layer, a Leaky ReLU with a slope of −0.01
(based on the experimental findings) is added to the feature extraction block. The block for
transmission map uses RGB color channels from the underwater hazy image to estimate
transmission maps. The respective color channel image features and their corresponding
transmission maps are fed into the dual-path blocks. The blocks contain parallel branches
for restoration and dynamic fusion of the basic content of the intermediate image details.
The reconstruction block consists of a 9× 9 convolution layer, a bi-linear up-sampling
layer and a 3× 3 convolution layer. The bi-linear up-sampling layer up-samples the color
channel image features to twice the input size. The width of the color channels’ feature
maps are reduced by the 3× 3 convolution layer. The reconstructed dehazed underwater
color channels are then fused via softmax-weighted fusion to attain final image.

2.1.2. Triple-Dual-Path Block

Equation (1) suggests that the underwater dehazed image can be found from

Λc(x) =
1

1 + ηc

(
Γc(x)
τc(x)

+
θc

Ψc

)
, (2)

where
Ψc =

τc

τc − 1
, (3)

and
ηc(x) =

(
e−Ωcdc(x) − e−Πcdc(x)

)
F−1

c

{
e−δcdc(x)vc

}
. (4)

Ωc and δc are the empirical coefficients of the c color channel related to the hazed
image scene, such that |Ωc| < |Πc| . F−1

c denotes the inverse Fourier transform and vc
denotes the radial frequency. The term Θc(1− τc(x)) in (1) is the backward scattering term
with Θc being the background light of the c color channel.

dc(x) = φc0 + φc1 εc(x) + φc2 $c(x), (5)

where dc(x) is the underwater depth scene at pixel xc ∈ {i, j}. φci are color channel-based
linear coefficients derived from the pixel difference plots between the highest and lowest
pixel values. εc(x) is the mean intensity function showing the absolute difference between
the pixels in the color channels. $c(x) is the mean intensity function showing the absolute
difference between the pixels in the color channels. εc(x) is the mean intensity function
showing the absolute difference between the pixels in the color channels. As one of the
improvements in the proposed method as compared to the existing [2,26–30], this proposed
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scene depth use of pixel intensities in the color channels strengthens scene artifacts. We
re-write (5) as

dc(x) = φc0+

φc1

∣∣∣∣[( argmax
(

min
x∈(i,j)

(
min
(i,j)∈c

εc(x)
)))

−
(

argmin

(
max
x∈(i,j)

(
max
(i,j)∈c

εc(x)

)))]∣∣∣∣
+φc2

∣∣∣∣[( argmax
(

min
x∈(i,j)

(
min
(i,j)∈c

$c(x)
)))

−
(

argmin

(
max
x∈(i,j)

(
max
(i,j)∈c

$c(x)

)))]∣∣∣∣
+φc3

∣∣∣∣[( argmax
(

min
x∈(i,j)

(
min
(i,j)∈c

εc(x)
)))

−
(

argmin

(
max
x∈(i,j)

(
max
(i,j)∈c

εc(x)

)))]∣∣∣∣,

(6)

Equation (6) suggests that the scene depth value increases with an increase in the pixel
difference between the maximum and minimum values. The decomposition of (6) into
three different color channels enhances the accuracy of the representation of the original
image. This is because each pixel is a sample of an original image. This further enables
accurate estimation of scene depth, and global background light helps improve the accuracy
of underwater image dehazing. It also allows the network to concentrate on features per
the color channels. This helps control and identification of features more accurately.

Equation (3) suggests that dehazed image has two components: the basic content
details Γc(x)

τc(x) and the image details θc
Ψc

. In air dehazing models, ηc = 0. However, in under-
water imaging, ηc is given by (4). Therefore, the proposed dehazing model is assumed to
be composed of two functions:

Λc(x) = 1
1+ηc

(
Ξ1(Γc, τc) + Ξ2(Θc, Ψc)

)
= 1

1+ηc

(
Λc

1 + Λc
2

)∣∣∣∣c∈{r,g,b} (7)

Equation (7) indicates that underwater image dehazing comprises two parts—the
basic content details and the image details divided by the point spread function ηc. The mo-
tivation for this approach is that the hazing effect varies throughout the image; thus,
the assumption of parameter values does not give accurate results. Therefore, in order to
dehaze the images accurately, the treatment of the image pixels should be homogeneous
but non-static. Using Λc

1 and Λc
2 to approximate the clear image may render the estima-

tion of transmission map and global light useless. In this paper, we consider the dc(x) as
given by (6) to tighten the approximation of the transmission map. This is indicated in
Figure 2 and helps increase the color concentration of the output image compared to the
existing input.

The estimates of Ξ1(Γc, τc) and Ξ2(Θc, Ψc) are fundamental to meeting the objective
of the paper. We employ the infinite impulse response (IIR) due to its versatility, ease of
computation and cost-friendliness. Its use in this paper was also guided by the need to
amplify the pixels with strong correlation to suppress the hazed pixels. This also explains
why the proposed method has a more extensive concentration of color channels than
existing methods, as presented in Figure 2. IIR models are often approximated as a cascade
of summation of lower structures, via recurrent neural networks [21,31]. Using IIR model,
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Λc
1 =

N−1
∑

i=0
Γcx−i

M−1
∑

i=0
τcx−i

, (8)

if M = N, then

Λc
1 =

Γc

τc
(9)

Figure 2. A summary of the effectiveness of including the transmission map function to extract more
color channels compared to existing techniques. From left to right are the raw underwater images,
results from Fus [32], WCID [33], Ts [34], LD [35] and proposed results. Image, R, G, B color channel
concentration are shown from top to bottom.

We use a similar approach to estimate Λc
2. With this, we propose a dual-path block for

underwater image dehazing based on the IIR models summarized by (8) and (9). Figure 3
illustrates that the proposed recurrent neural network used to approximate IIR for the
proposed technique consists of five units with three branches, each branch representing
different color channels. Each unit contains ConvLSTM and a pixel-wise convolution
layer. ConvLSTM decides the type of information to store and omit from the network
at every step each branch gradually reduces the effect of haze in the image, as indicated
in Figures 4 and 5. Furthermore, the LSTM’s general proven capabilities in handling the
long-range dependencies make it usable in establishing correlations between local and
global pixel neighborhoods. Thus, image features are extracted and preserved throughout
the process. The output features from each branch are fused via softmax-weighted fusion
to obtain the final output image (see Figures 3 and 4). The details of the softmax-weighted
fusion stack are summarized by [23]. The stack is chosen due to its ability to adaptively
learn the variation of pixels in the corresponding {R, G, B} color channels output images
and fuse the images based on the contribution’s modalities to the final image.

2.1.3. Interaction Functions within the Dual Blocks

Figures 3–5 indicate that Λc
i,j ∀ i = 1 . . . 5 : j = 1, 2 are the image input features

restored within the branches of triple-dual blocks. The image feature and content are
complementary, and thus, are inseparable. The parallel interaction in the block integrates
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the image content and features to produce fine-tuned details in the final images. Thus,
every arrow in the block performs a unique function: blue estimates the global atmospheric
light, red estimates the transmission maps and the yellow arrow transfers features to the
next unit. The process is repeated until the last stage. The arrows enable the solution of
complex processes, which would need complex algorithms in other cases. The network is
reactive, thus emphasizing the visual aspect of the images in terms of features. Therefore, it
does not predict the futuristic outcome of the images such as the end color, hence image
tent to retain the initial colors of the input image in the final output. This is the weakness
of the proposed method compared to existing techniques. In addition, the arrows ensure
continuity of the image features, thus restoring, preserving and emphasizing the strong
pixel correlations. The dual interaction enables control and identification of features and
content. This is the strength of the proposed technique compared to the existing methods.
This ability makes the network focus on suppressing the haze effects while strengthening
the image features.

Figure 3. The proposed overall architecture of TDPRN. Feature maps are extracted via the feature
extraction and transmission map estimation blocks. These blocks also estimate the transmission map
for the dual-path block. Within the dual-path block, the top sequential units constitute a branch Path
Λc

1, and the bottom units constitute the other branch Path Λc
2 . These two paths interact with feature

maps through the parallel interaction function until the final stage. The image reconstruction block is
used to reconstruct the corresponding color channel’s dehazed images. The color channels are then
fused via the softmax-weighted stack to obtain the final dehazed image.
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Figure 4. A detailed illustration of the dual-path block and the parallel interaction function. Within the
dual-path block, the top sequential units constitute a branch Path Λc

1, and the bottom units constitute
the other branch Path Λc

2 . These two paths interact with feature maps through the parallel interaction
function (four red-colored dotted lines) until the final stage. The image reconstruction block is
used to reconstruct the corresponding color channel’s dehazed images. The color channels are
then fused via a softmax-weighted stack to obtain the dehazed image. At each stage, units Sc

i,j
∀i = {1, 2}, j = {1, . . . 5} of a ConvLSTM block and a pixel-wise convolution take features from the
parallel interaction function and previous units as inputs.

Figure 5. An extract of the detailed illustration of the dual-path block and the parallel interaction
function for the green color channels’ RCNN from Figure 4.

3. Experimental Results
3.1. Dataset

In order to test, analyze and compare the proposed algorithm, we performed many
tests and simulations. The experiment was conducted in the Zorin OS 16/15 April 2021
using the Tensorflow deep learning framework. The computer used was a BIZON X5000
G2 with 16 GB RAM.

3.2. Comparison Methods

In order to compare the visual and perception competitiveness of the proposed meth-
ods, the proposed results are compared with those from common or recently developed
techniques. These techniques are listed in Table 1. The comparison techniques were chosen
based on the objective (improving the image features, specifically the visual features). In or-
der to show the competitiveness of the proposed methods, these techniques are selected
based on the years as follows: 2010 (1) , 2011 (1), 2012 (1), 2016 (2), 2017 (5), 2018 (1), 2019
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(4), 2020 (4) and 2021 (1). This indicates that out of 20 comparison methods, 15 are less than
five years old.

Table 1. Competitive methods used to compare the proposed algorithm.

Method Reference Year Method Reference Year

Ancuti [11] 2012 Guo [36] 2016
Dark channel prior (DCP) [4] 2010 Berman [37] 2017

Histogram distribution prior (HP) [36] 2016 Cosman [8] 2017
Water-Net [26] 2019 Zhuang [19] 2019

Fus [32] 2017 gl [38] 2020
WCID [33] 2011 CBF [32] 2017

Ts [34] 2017 ULAP [39] 2018
LD [35] 2020 UWCNN [20] 2020

MLFcGAN [40] 2019 FUnIEGAN [41] 2020
waterNet [26] 2019 UICoE-Net [42] 2021

3.3. Objective Evaluation of the Proposed Images’ Visual Quality

The proposed technique was evaluated based on an objective evaluation because a
subjective evaluation is time-consuming, though the latter is more accurate. In this paper,
a mixed objective evaluation method was employed. One objective evaluation relied on the
reference approaches of the mean Average Precision mAP. Three non-reference approaches
were also used; the Naturalness Image-Quality Evaluator (NIQE)52 [43], Normalized
Underwater Image-Quality Metric UIQMnorm 55 [44] and Underwater Color Image-Quality
Evaluator (UCIQE) [45] are used in their values presented in Tables 2–6. The later sections
also present the underwater image sharpness measure (UISM) [44].

3.4. Subjective Assessment

The perceptual quality of the images is evaluated by the presentation of the different
categories of the images shown in Figures 6–10.

Figure 6. Visual comparison of real underwater images sourced from [46]. From left to right are
raw underwater images, and the proposed images. The proposed results are compared with the
results from Ancuti [11], dark channel prior (DCP) [4], histogram distribution prior (HP) [36], and
Water-Net [26].
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Figure 6 shows that the proposed method tends to retain the original color of the
input image when compared to the existing methods. The visual inspection shows that
the results of the Ancuti [11] are almost similar to the raw images. There is not much
change in the final results, which indicates either a failure of the accurate transmission map
estimation or background light. The DCP [4] results also exhibit similar traits to the results
by Ancuti [11] but are closer to the raw results than Ancuti’s [11]. The HP [36] results
have exaggerated red colors. The Water-Net [26] results have a grayish color in the top
image, while the bottom is almost similar to the input image. The proposed results have
evidently improved the color output in both images. The proposed results are visually
more appealing compared to the existing techniques.

Figure 7. Comparison of coral reef, fish, whale, ship anchor and stingray images from the top row to
the last row. From left to right are raw underwater images, and proposed images. These images are
compared with the results from Fus [32], WCID [33], Ts [34], LD [35].

Figure 7 shows a subjective comparison of the proposed output with the existing
techniques using different scenes. The Fus [32] tends to have an exaggerated red color in
three out of five image samples, making its results less appealing. The WCID [33] also has
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exaggerated red colors in four out of five samples, showing a trend of increasing unwanted
artifacts in the final results. The Ts [34] results are more appealing than the Fus and WCID
results but tend to darken the whale image (third from top). The LD [35] results are better
than the first three. However, the method tends to overexpose the surfaces (see the whale
image). Finally, the proposed technique results have more exaggerated colors but are
visually appealing. The coral reefs (first image from the top) and whale (third image from
the top) show the strength of the proposed balancing of the colors. The second and fourth
images suggest a weakness in the proposed methods, that is, the exaggeration of the blue
colors in cases of overexposed regions.

Figure 8. Visual comparison of synthetic underwater images. From left to right are raw underwater
images, proposed and clean (ground-truth) images. The proposed and clean images are compared
with results from Ancuti [11], Guo [36], Berman [37], Cosman [8], Zhuang [19], and gl [38].

Figure 8 shows a visual comparison of the performance of the existing and proposed
techniques for synthetic underwater images. The synthetic images have ground-truth
images (the images in the last column). A visual inspection indicates that the Guo [36]
results were closer to the synthetic ground-truth images but failed in the first image (top
image) because it is darker than the ground truth. The Zhuang [19] and gl [38] results
are almost similar, with the slight difference being the top and bottom images. However,
the proposed results produce images with more details than the existing techniques. This
observation is a strength of the proposed method because one of the main aims of image
dehazing is to expose image details in addition to suppressing the haze effects.
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Figure 9. Visual comparison of natural underwater images. From left to right are raw underwater
images, and proposed images. The proposed images were compared with the results from Ancuti [11],
Guo [36], Berman [37], Cosman [8], Zhuang [19], gl [38]. The images are sourced from [38].
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Figure 9 shows the comparison of the visual effect of the proposed technique in the
case of the synthetic images without the ground-truth images. While the Ancuti [11],
Guo [36] and Berman [37] results exhibit reddish regions in the final images, the Cosman [8]
results appear overexposed. The Zhuang [19] results have exaggerated colors. The gl [38]
is gray such that the algae in the final image, known to be greenish, are also gray. This
means the [38] technique is not versatile. Like the previous examples, the proposed method
tends to retain the input image colors but enhances the image details. The proposed results,
compared to their counterparts, are more visually appealing.

Figure 10. Subjective comparison of underwater images from [42]. From left to right are raw under-
water images, results from CBF [32], ULAP [39], UWCNN [20], MLFcGAN [40], FUnIEGAN [41],
waterNet [26], UICoE-Net [42] and the proposed.

Figure 10 shows the subjective evaluation of the proposed technique compared to
others in the case where the images have rich colors. The aim here is to show that the
proposed method can detect the color variation. In a comparison with the existing methods,
CBF [32], ULAP [39],UWCNN [20], MLFcGAN [40], FUnIEGAN [41], waterNet [26] and
UICoE-Net [42], the proposed method, on two occasions (images in the second and third
rows), appears to outperform the existing methods. For the case of the first and the last
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row images, the proposed images exhibit its weakness—an exaggeration of the green color
channels. This predominant trait might be due to the failure of the network to estimate the
global background light accurately. This could be true because the network estimated the
global ambient light while the transmission map was slightly predetermined.

Analysis of Underwater Image Overall Quality

Figures 6–10 present different underwater dehazing techniques with many different
types of environments. All the examples presented show that different techniques produced
different visual distortion and residual color casts. The methods of improvement in clarity
vary in the examples. However, the proposed algorithm results, compared with the existing,
in almost all cases, improve the sharpness, color and precision in many examples.

Tables 2–6 present the objective evaluation for the overall quality indicators for the
images presented in Figures 6–10. Besides the indicators, we calculated the average statistics
because we could not present everything in the tables. Table 2 indicates that the proposed
have better results in the UIQMnorm and UCIQE. Table 3 indicates that the proposed have
better UIQMnorm values. Table 4 indicates that the proposed technique outperforms in all
the metrics compared to the existing techniques. Tables 5 and 6 indicate that the proposed
have better UIQMnorm and UCIQE values. The consistency in better performance in the
values of the UIQMnorm and UCIQE is due to the ability of the proposed technique to
restore image-rich colors. While this could be a weakness because the dehazing methods
need to restore the natural colors, it is also an advantage because the resulting output
images tend to be more appealing than the existing methods. Figure 11 shows the box
plot of the mean Average Precision of the proposed technique compared to the existing
methods. The box plot indicates that the proposed has higher values and mean (red line)
than its counterparts. The mAP values of the proposed are also higher because the box-plot
body is shorter and higher than other box plots. The subjective and objective evaluation
indicates that the proposed algorithm has the best effect on the overall underwater quality
in various scenes compared to the existing techniques.

Table 2. Average niqe, UIQMnorm, UIQE comparison of different techniques whose results are
partially presented in Figure 6. The best result is bold.

Technique Niqe UIQMnorm UCIQE

Input 6.3007 1.0773 30.6619
Ancuti [11] 4.704 1.2584 31.4635

DCP [4] 5.9239 1.1049 32.0602
HP [36] 4.2751 1.5625 35.1167

Water-Net [26] 6.6270 1.0714 26.7070
Proposed 4.0614 1.6016 35.7874

Table 3. Average niqe, UIQMnorm, UCIQE comparison of different techniques whose results are
partially presented in Figure 7. The best result is bold.

Technique Niqe UIQMnorm UCIQE

Input 3.4554 1.0952 26.7702
Fus [32] 7.5204 1.5673 34.9629

WCID [33] 6.7322 1.7766 29.1488
Ts [34] 3.5524 1.1900 26.4551
LD [35] 3.5483 1.4806 31.6199

Proposed 3.9341 1.9499 32.9188
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Table 4. Average mAP, niqe, UIQMnorm, UCIQE comparison of different techniques whose results
are partially presented in Figure 8. The best result is bold.

Technique (mAP) Niqe UIQMnorm UCIQE

Input 0.1795 7.9761 1.4175 32.9212
Ancuti [11] 0.1891 8.4061 1.5278 33.1459

Guo [36] 0.2669 7.2922 1.5350 33.3579
Berman [37] 0.3394 7.4781 1.5617 33.4739
Cosman [8] 0.4095 7.1248 1.5371 34.1637
Zhuang [19] 0.4181 7.5798 1.5399 32.9392

gl [38] 0.4841 8.1367 1.5220 32.6404
Proposed 0.5017 9.2712 1.8174 35.9634

Table 5. Average niqe, UIQMnorm, UCIQE comparison of different techniques whose results are
partially presented in Figure 9. The best result is bold.

Technique Niqe UIQMnorm UCIQE

Input 5.4243 1.4116 32.6663
Ancuti [11] 5.9633 1.4541 37.1339

Guo [36] 5.6586 1.5828 33.8156
Berman [37] 5.4780 1.5612 33.3881
Cosman [8] 6.0975 1.4827 34.4037
Zhuang [19] 6.6109 1.4549 33.0792

gl [38] 5.9403 1.4536 34.5999
Proposed 6.2905 2.0299 37.1459

Table 6. Average niqe, UIQMnorm, UCIQE comparison of different techniques whose results are
partially presented in Figure 10. The best result is bold.

Technique Niqe UIQMnorm UCIQE

Input 5.6203 1.6118 31.1119
CBF [32] 7.9360 1.6938 31.0506

ULAP [39] 11.8648 1.8419 33.7829
UWCNN [20] 6.9041 1.6054 30.4853

MLFcGAN [40] 4.9413 1.4881 33.0000
FUnIEGAN [41] 7.6138 1.7062 32.1150

waterNet [26] 6.9541 1.6953 31.3519
UICoE-Net [42] 4.7577 1.5692 31.2444

Proposed 7.0530 2.1111 35.2936

Figure 11. Box plot showing the performance of the proposed technique compared to the exist-
ing methods.
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The proposed technique also focused on increasing the sharpness of the final image.
Figure 12 presents a graphical summary of the underwater image sharpness measure
(UISM). The figure indicates that the proposed technique averagely outperforms the exist-
ing techniques.

Figure 12. Graphical comparison of UISM.

The effectiveness of the proposed network in improving the pixel correlations is
presented in Figure 13. This is one of the main aims of the proposed techniques—removing
pixels with a weak correlation and leaving only pixels with a higher correlation. The use of
the IIR attains this. The IIR is used to amplify the pixels with a strong correlation, thereby
suppressing the hazed pixels. This leads to a smoother pixel correlation compared to
the original.

Figure 13. Pixel- correlation correction.
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4. Conclusions

We presented an underwater image dehazing technique based on two image character-
istics—RGB color channels and image features. Using RGB color channels markedly
improved the adaptability and identification of similar pixels and effectively removed
pixels with a weak correlation to leave only pixels with a high correlation. The IIR in the
triple-dual and parallel interaction structure allowed suppressed hazed pixels to make
even minute features, such as pixels with weak correlations, visible. This improved the
visual perception of the final image and thus also the overall usefulness and quality of
the image. The softmax-weighted fusion used to attain the final image helped preserve
the original scene’s color. This was accomplished thanks to adaptive learning based on
the confidence levels of the pixel contribution variation in each color channel during the
subsequent fuses. The proposed technique was compared with the existing state-of-the-art
algorithms, both visually and objectively, using various metrics: niqe, mAP, UIQMnorm,
UCIQE and UISM. The results indicated that the proposed technique outperforms the
existing methods. The one significant weakness of the proposed technique is that it pre-
dominantly exaggerates green colors in some environments. Future studies may consider
the external control mechanism, such as using ground-truth images so that the color of the
final image may be restored. This will also help address the weakness of the network.
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