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Abstract: With the popularization of unmanned aerial vehicle (UAV) applications and the continuous
development of the power grid network, identifying power line scenarios in advance is very impor-
tant for the safety of low-altitude flight. The power line scene recognition (PLSR) under complex
background environments is particularly important. The complex background environment of power
lines is usually mixed by forests, rivers, mountains, buildings, and so on. In these environments, the
detection of slender power lines is particularly difficult. In this paper, a PLSR method of complex
backgrounds based on the convolutional capsule network with image enhancement is proposed.
The enhancement edge features of power line scenes based on the guided filter are fused with the
convolutional capsule network framework. First, the guided filter is used to enhance the power line
features in order to improve the recognition of the power line in the complex background. Second, the
convolutional capsule network is used to extract the depth hierarchical features of the scene image
of power lines. Finally, the output layer of the convolutional capsule network identifies the power
line and non-power line scenes, and through the decoding layer, the power lines are reconstructed in
the power line scene. Experimental results show that the accuracy of the proposed method obtains
97.43% on the public dataset. Robustness and generalization test results show that it has a good
application prospect. Furthermore, the power lines can be accurately extracted from the complex
backgrounds based on the reconstructed module.

Keywords: capsule network; image enhancement; power line scene recognition; complex background

1. Introduction

With the continuous development of the modern power grid system, the demand for
electricity is also greatly increased, and transmission lines spread to all parts of the world
in a complex network. It is also of great significance for low-altitude flight to detect the
power lines and implement obstacle avoidance. The Australian transport safety report
shows that between 1994 and 2004, there were 119 helicopter crashes into power lines, of
which 45 caused fatal injuries and 22 caused serious injury [1]. Hitting power lines will
cause serious damage to the helicopter. The U.S. military data report shows that 54 power
line collisions occurred between 1997 and 2006, resulting in 13 deaths and economic losses
of up to USD 224 million [2]. Flight safety accidents threaten people’s lives and cause huge
economic losses.

Flight obstacle avoidance mainly depends on the pilot’s reaction and experience. They
can avoid large obstacles, but small obstacles, especially power lines, they often fail to
dodge, which in turn leads to disasters. The power line scene recognition (PLSR) is mainly
used for the flight obstacle avoidance of power lines, which can identify the presence or
absence of power lines in advance, and use this as a judgment basis for reminding the
driver. Thus, it is a meaningful research work and has a huge market prospect.

Although there were many publications in scene recognition of remote sensing im-
ages [3–8], little research focused on the PLSR. The leading cause for this is that the public
dataset of the power lines is very scarce; only three types of power line data sets could
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be easily downloaded on the internet [9–12]. Among them, only one type can be used
for the classification and recognition of power line scenarios [9,10]. Due to the inherent
characteristics of power lines and the low resolution of datasets, it is difficult to obtain
good recognition results. There were still state-of-the-art PLSR methods presented in recent
years. Yetgin et al. [13] presented a PLSR framework based on the discrete cosine transform
(DCT) of scenes obtained from aircraft-based cameras. This work attacked the problem
of extracting signatures from the DCT coefficients by systematically changing the DCT
matrix sizes and applying known classifiers to the DCT sub-matrices. The details were
given in [14]. First, the image filtering was used to reduce the interference of noise and
normalize the amplitude. Second, different types of image features of power lines were
extracted through the DCT, local binary pattern (LBP), and histogram of oriented gradient
(HOG), respectively. The absolute value of the logarithm of the discrete cosine coefficient
in the DCT domain was taken to emphasize the dynamic range. Finally, the naive bayes
(NB), random forest (RF), and support vector machine (SVM) classifier were used for
the PLSR task. Although these kinds of methods were simple, it needed to manually set
the feature extraction and feature matching methods. The PLSR method, based on deep
learning, does not require manual feature extraction of power lines, and the established
convolutional neural network (CNN) model can automatically extract effective features.
Thus, some researchers tried to apply the CNNs to PLSR [15]. The VGG19 model and the
ResNet50 model were fine-tuned to adapt to the power line dataset in literature [15], and
an end-to-end PLSR method is proposed. The VGG19 model and the ResNet50 model were
divided into five stages, and then the feature maps of these five stages were outputted. The
feature maps were inputted to the NB, RF, and SVM classifiers, respectively, for the PLSR
task. A fast PLSR network for the pixel-wise straight and curved power line detection
method is proposed in [16]. The edge attention fusion module was combined together with
a filter block, which extracts semantic and spatial information to improve the PLSR result
along the boundary.

The power line extraction (PLE) is the pixel-wise PLSR method, which was paid more
attention than the PLSR task. A PLE method based on the weakly supervised learning, which
solved the problem of labeling large-scale datasets, was proposed in [17]. A PLE method based
on pyramid patch classification, which used a CNN-based classifier to help eliminate power
line pseudo-targets, was proposed in [18]. The generative adversarial network was combined
with the conic and hue perturbation to enhance the datasets to reduce the model parameters
and computational complexity through model pruning in [19]. Artificially synthesized power
line images were used as the training data, and a fast single-shot line segment detector (LSD)
was proposed in [20]. A real-time segmentation model for power lines was proposed in [21].
They used a spatial branch to capture rich spatial information and utilized classification
with subnet-level skip connections. It recovered long-distance features and improved the
performance of the power line extraction. Liu et al. improved the Unet model and its variants
to the power line scene recognition and extraction task [22].

Since the capsule network (CapsNet) [23] is widely used in various classification tasks
with its rich feature expression ability and effectiveness on small data sets and achieved good
classification results [24–29]. The CapsNet is also tentatively studied in the scene recognition
of remote sensing images [3–8]. Thus, in this paper, the CapsNet is selected as the backbone
network, and the edge of line features of the power lines are enhanced. Finally, a novel PLSR
method is proposed. The main innovation can be summarized as follows:

(1) A PLSR method based on the convolutional CapsNet fused with image enhance-
ment is proposed. The edge structures of the power lines are enhanced by using the guided
filter. The lone points and lines that are reinforced at the same time are weakened by the
convolutional CapsNet. Various experiments show that it is suitable for the PLSR task with
complex backgrounds.

(2) The power line scene recognition and feature extraction tasks can be performed
simultaneously based on the convolutional CapsNet structure. The PLSR task is performed
based on the output of the digital capsule layer, and the PLE task is performed based on
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the output of a reconstructed module. The sections of this paper are arranged as follows:
The CapsNet is introduced in Section 2. The proposed convolutional CapsNet with image
enhancement is explained in Section 3. The scene recognition results and analysis of the
proposed method are given in Section 4. The reconstruction results and analysis of the
proposed method are shown in Section 5. The conclusion is obtained in Section 6.

2. Capsule Network

The CapsNet is used to maintain the location information and the inherent attributes
of objects in the image, which can model the spatial relationship of the image [23]. In
the CapsNet structure, the scalar output of the feature detector in the CNN is replaced
with a vector output, and the maximum pooling is replaced with a protocol routing
simultaneously. Meanwhile, all the capsules, except the last capsule layer, maintain the
convolutional structure. By doing this, the advantages of the CNN in copying the learned
knowledge across space is retained. The higher-level capsules can cover a larger image area
the same as the CNN. Unlike with the maximum pooling, the CapsNet can partially retain
the precise location information of entities in the region through the protocol routing [30].
The CapsNet is composed of the input layer, output layer, convolutional layer, primary caps
layer, and digit caps layer. The convolutional layer is used to extract the low-level features
of the detect target. The primary caps layer is used to express the spatial relationship
between the features, and transfers the extracted features to the digit caps layer. The
dynamic routing algorithm is used to predict the classification results in the digit caps
layer [31]. The coupling coefficient c, according to the similarity between the low-level
capsule layer and the high-level capsule layer, is adjusted. The weight W between networks
is updated. If the similarity between the i-th capsule in the lower layer and the j-th capsule
in the upper layer is greater, the coupling coefficient cij is greater, and the formula is shown
in Equation (1). Where the initial value of a priori coupled probability bij of the capsule i
and the capsule j is set to 0, and updated as Equation (2).

cij =
exp

(
bij

)
∑k exp

(
bij

) (1)

bij ← bij + ûj|ivj (2)

where the calculation method is shown as Equations (3) and (4), respectively.

ûj|i = Wijui (3)

vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(4)

where in Equation (4), Sj is the input vector of the j-th capsule in the upper layer, and the
formula is given as follows:

sj = ∑
i

cij
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The object function of the CapsNet is defined as follows:

Lk = Tk·max
(
0,
(
m+ − ‖vk‖

))2
+ λ(1− Tk)·max

(
0,
(
‖vk‖ −m−

))2 (6)

where vk is the output of a capsule in the softmax layer. Tk represents the tag of the k-th
target. If a training sample belongs to class k, Tk = 1. Otherwise, Tk = 0. m−, and m+ are,
respectively, the upper bound for the probability of a training sample not belonging to class
k and the lower bound for the probability of a training patch being an instance of class k.
They are set as m+ = 0.9 and m− = 0.1. λ is a weight regularization factor, which is usually
set as 0.5 [32].
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The CapsNet was used to classify the MNIST images of 28 × 28 at first. The original
network has a convolution layer, including 256 convolution cores with a scale of 9 × 9,
and outputs a local feature map with a scale of 20 × 20 as the input of primary caps. The
primary caps contain 32 different capsules, each with eight 9× 9× 256 convolution kernels.
Both layers use the ReLU activation function. Moreover, the digital capsule layer outputs
16-D vector reconstruction objects contain all the required instantiation parameters [26,33].

3. Convolutional Capsule Network with Image Enhancement
3.1. Motivation

The aerial image of power lines is mainly taken by the inspected unmanned aerial
vehicles (UAVs), which has its inherent characteristics. In terms of color and lustre, the
brightness of power lines is uniform and is higher than the backgrounds. In terms of
shape, the power line usually exists in the form of a straight line, with a pixel width of
about 1~5 [23], but some power lines, in the shape of a solitary vertical curve, still exist. In
terms of spatial relationship, power lines usually run parallel to each other throughout the
image, except for single ones. The background of power lines is complex and changeable.
It is found that the background images of power lines are mostly forest, lake, river, field,
mountain, sky, white cloud, pole, tower scene, and so on. It makes the power line scene
recognition and extraction task challenging.

In general, power lines account for less than 15% of pixels in power line scenes. The
complex backgrounds also have good edge features. Thus, pooling operation in the CNN
may lose the spatial information of power lines, or misdetect part of the edge background
as power lines. Due to the excellent performance of the CapsNet in the image classification
mentioned above, the CapsNet is our first choice for the PLSR task. The CapsNet also has
drawbacks: (1) It is unable to handle large size input well (2) It is unable to fully extract
the input features. (3) The classification accuracy decreases with the complexity of the
dataset. Two additional convolutional layers are used to better extract features and reduce
input size simultaneously. The guided filter can enhance the edge lines well, meanwhile,
the CapsNet can preserve the spatial relationship of power lines. Thus, the convolutional
CapsNet with image hencement by guided filter is proposed.

3.2. Image Enhancement with Guided Filter

Experiments show that the guided filter [34] proposed by He et al. can better enhance
the edge features of power lines and increase the recognition accuracy of power lines in
complex backgrounds. The guided filter [34] is an edge-preserving algorithm based on
the local linear model. It uses a guided image to guide the filtering process, defines any
pixel in the image as a linear relationship with some of its adjacent pixels, and performs
filtering processing, respectively. Finally, all local filtering results are accumulated to derive
the global filtering results, and an output image with a structure similar to the input image
is obtained.

The output image fo of the guided filter can be linearly represented by the guided
image Ii in a square window i, as shown below [35].

f o = ak Ii + bk, ∀i ∈ wk (7)

where wk is a square window with a radius of r centered on the pixel k, ak and bk are con-
stants in fo, and their coefficients are solved by minimizing the following energy function:

E(ak, bk) = ∑
i∈wk

((
f o
i − f in

i

)2
+ ηa2

k

)
(8)

where η is the regularization parameter to prevent it with too large a value, fiin is the input
image of the filter.

Because the guided filter uses a guided image for reference, choosing a different
guided image will obtain different learning tasks. It is suitable for the deep learning
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process. A power line scene image as input is shown in Figure 1a, and its enhanced image
by the guided filter is shown in Figure 1b. Where the input image itself is selected as the
guided image. It is obvious that the power lines are enhanced. Simultaneously, grass and
the outline of a wheat field are also enhanced. If the CNN is used for the deep learning
network, these enhanced backgrounds will represent the surrounding spaces because of
several pooling operations. If the surrounding spaces are considered by the CapsNet,
power lines can be easily distinguished with the enhanced backgrounds.
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If the ground truth images are selected as the guided image, the training process of the
network will be sped up. A power line image as input is shown in Figure 2a, the ground
truth label is shown in Figure 2b, and the output image of the guided filter by using the
ground truth as the guided image is shown in Figure 2c. Obviously, the output image, by
using the guided filter, is greatly enhanced. If this type of guided filter is combined with
deep learning, not only will the training time be greatly reduced, the network performance
will be also improved.
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Figure 2. Power line scene image enhancement by using a guided filter. The ground truth is selected
as the guided image. (a) Power line image. (b) Ground Truth. (c) Enhanced image.

In practice, there are no responded ground truth labels with the input images. Except
for choosing the input image itself, more clarity for an image with special features can be
selected as the guided image. For example, the line segment detection (LSD) [36] can better
outline the power lines, it can be considered as the guided image. A power line image as
input is shown in Figure 3a, the responded LSD map is shown in Figure 3b, and the output
image of the guided filter by using the LSD as the guided image is shown in Figure 3c.
Obviously, the output image, by using the guided filter, is greatly enhanced.
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In order to further improve scene recognition performance, the reconstructed image
can be used as the guided image again for feedback. For feature extraction and classification,
the ground truth image, feature enhanced image, or reconstructed image can be selected
as the guided image to improve the accuracy. The input image itself is used as the guided
image, and has a wider application. In order to make a more general comparison, the input
image itself is selected as the guided image in the experiment. In brief, the guided filter
with its variations [37–40], has a broad research prospect in the field of deep learning.

3.3. Convolutional CapsNet Framework

The proposed PLSR framework is shown in Figure 4. After image enhancement, the
original image of 128 × 128 × 3 is grayed to an image of 128 × 128 × 1 and enters the
first convolutional layer. The first convolutional layer contains 32 kernel functions with
a scale of 5 × 5, and stride = 2. The output 64 × 64 × 32 feature image enters the second
convolutional layer. The second convolutional layer contains 64 kernel functions with a
scale of 5× 5, stripe = 2. The output 32× 32× 64 feature map enters the third convolutional
layer. The third convolutional layer contains 128 kernel functions with a scale of 9 × 9, and
stripe = 2. The output 16 × 16 × 128 feature map enters the primary capsule layer. The
primary capsule layer contains 32 different capsules, each capsule performs eight times of
9 × 9 kernel convolution, and stripe = 1. The last digital capsule layer outputs 16-D vector,
which is used for binary classification tasks (power line scene or non-power line scene), and
provides necessary information for image reconstruction. The ReLU activation function is
applied to all layers. After the subsequent reconstruction module, the digital capsule can
reconstruct the extracted power line binary image. The dimensions are 128 × 128 × 1.

The specific parameters of the convolutional CapsNet structure are shown in Table 1.
In this paper, before the primary capsule layer, three convolutional layers with a stripe of 2
are selected in order to reduce the image dimension and extract more image information.
The convolutional layer with a stripe of 2 can prevent the loss of spatial information caused
by the pooling layer. The power line itself is very slender, and the spatial information is
particularly important for the identification and extraction of power lines.

Table 1. The convolutional CapsNet structure.

Filter Kernel Size Stride Output

input 128 × 128 × 1
Conv1 32 5 × 5 2 64 × 64 × 32
Conv2 64 5 × 5 2 32 × 32 × 64
Conv3 128 9 × 9 2 16 × 16 × 128

primary capsule 32 × 8 9 × 9 1 16 × 16 × 256
digital capsule - - - 16 × 2

output - - - 2
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4. Scene Recognition Results and Analysis
4.1. Dataset and Experimental Configuration

The public data set of power line scenarios is adopted for experiment in this paper [9].
The dataset contains two subsets, infrared (IR) and visible light (VL). Each subset contains
two parts, including and excluding. Each part has 2000 images of power line scenarios with
128 × 128 pixels. The subset with visible light [9] is used to carry out the experiment in this
paper. The dataset is divided into training set, cross-validation set, and test set according
to 3:1:1.

The configuration used in this paper, in terms of the hardware and the software
platform, is shown in Table 2.

Table 2. Configuration of the experimental environment.

Platform Configuration

Operating system 64 bit version of Windows 10
Central processing unit (CPU) Graphic

processing unit (GPU)
Intel(R) Core(TM) i9-10900k CPU @ 3.70 GHz

NVIDIA GeForce RTX 2070 8 G
Deep learning framework PyTorch1.7

Compilers PyCharm
Scripting language Python 3.7

Solid state disk (SSD) 500 GB

The experimental parameters used to train the proposed network are shown in Table 3.

Table 3. Experimental parameters of the convolutional CapsNet.

Parameters Configuration

Input Size 128 × 128 × 1
Batch size 64
Optimizer Adam

Learning rate 0.001
Training epochs 200
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4.2. Evaluation Metric

In this experiment, the accuracy rate is selected as the evaluation criteria, and the
formula is given as Equation (9).

Accuracy =
Number o f correct predictions
Total number o f predictions

(9)

The PLSR task is a binary classification problem, and the above-mentioned formula
can be written as Equation (10).

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(10)

where TP indicates that the actual case is positive, and the prediction is positive; TN
indicates that the actual case is negative, and the prediction is negative; FP indicates that
the actual case is negative, and the prediction is positive; FN indicates that the actual case
is positive, and the prediction is negative.

4.3. Experimental Results and Analysis
4.3.1. Scene Recognition Results and Analysis

The visualization results of the proposed convolutional capsule network, with image
enhancement on the visible light data set, are shown in Figure 5, where all the 32 images
are visually displayed. The lower left part with the red font represents the real label, and
the lower right part with the yellow font represents the model prediction results. Where
0 represents the scene without power lines, and 1 represents the scene containing power
lines. All the 32 images are visually displayed, the presence or absence of power lines are
correctly judged by using the proposed method.
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In order to verify the superiority of the method on the visible light data set, the
comparative experiments with the traditional image processing based methods [13,14]
are given in Figure 6. The parameters of these compared methods are given based on
literature [13,14]. The detailed methods are listed as follows: SVM is used to classify local
binary pattern (LBP) features; naïve bayes (NB) is used to classify LBP features; random
forest is used to classify LBP features; SVM is used to classify histogram of oriented gradient
(HOG) features; naïve bayes is used to classify HOG features; random forest (RF) is used to
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classify HOG features; SVM is used to classify classical selection DCT (CS_DCT) features;
naïve bayes is used to classify CS_DCT features; random forest is used to classify CS_DCT
features; SVM is used to classify reversed selection DCT (RS_DCT) features; naïve bayes is
used to classify RS_DCT features; and random forest is used to classify RS_DCT features.
Although a good detection result can be obtained by the DCT+RF, the feature extractor
and matching method should be manually set. If the DCT+RF is tested on a larger dataset
with a more complex background, the calculation will become more complicated, and
the detection accuracy will not be guaranteed. The proposed model achieved the highest
accuracy of 97.43%, which was 7.93% higher than the second place. It can be seen that on
the visible light dataset, the proposed model has significant advantages over traditional
image processing methods.
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Figure 6. Comparison results with the traditional image processing based methods.

The proposed model is also compared with the deep learning methods implemented
by us, and the experimental results are shown in Figure 7. The CapsNet is implemented
as follows: After graying the 128 × 128 × 3 power line scene image, it is resized to
the size of 28 × 28 × 1 and input into the original CapsNet network, without changing
the network architecture. The accuracy is 77% by using the original CapsNet. The at-
tention mechanism based CapsNet achieved accuracy of 78.8% [41]. Resizing the size
from 128 × 128 × 1 to 28 × 28 × 1 simply results in the loss of the spatial information of
power lines. Even with the attention mechanism-based CapsNet, it is hard to improve the
accuracy of classification. Comparing the experimental results of the convolutional Cap-
sNet, it can be seen that the two additional convolutional layers, without pooling operation,
are effective, as the accuracy gets to 92.38% from 77%. The accuracy of the convolutional
attention-based CapsNet (CA-CapsNet) reaches 93.5%. When image enhancement is added,
the proposed model achieves the highest accuracy of 97.43%, and the guided convolutional
attention-based CapsNet (GCA-CapsNet) obtains 97.15%. Since the power lines are very
thin and run throughout the image, it is hard to design which part should be paid more
attention, especially when both the edge lines of power lines and surrounding backgrounds
are enhanced together.

Furthermore, U-net gets a very good classification performance, the accuracy of which
is calculated by us from the result in [22]. It is verified that image enhancement with the
guided filter is effective in improving the accuracy of the convolutional CapsNet and its
variations. It also can be combined with other methods. It also has a further research value
to improve the performance of itself by exploring more information.
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4.3.2. Performance Robustness Analysis

The robustness of the proposed PLSR method is tested in this section. The test dataset,
containing 800 images, is selected for the experiment. The quantitative results are shown in
Table 3. The accuracy of power line scene recognition in fog, snowfall, strong light, and
motion-blurred scenes are 95.8%, 92.1%, 96.6%, and 88.3%, respectively. Compared with
the normal scenes, the deviation of power line scene recognition accuracy in the above four
scenes is −1.67%, −5.47%, −0.85%, and −9.37%, respectively. The deviation of motion-
blurred scenes is slightly higher, but it is also less than 10%, and its performance is better
than that of many normal scenes in Table 4. Other scenarios have a good performance
robustness. Because the power line has the characteristics of small targets and weak
features in aerial images, motion blur will affect the boundary response of the foreground
and background. Through image feature enhancement and two additional convolution
layers, the proposed method improves the robustness of power line scene recognition in
the complex environments.

Table 4. Performance comparison of PLSR methods.

Scenes Accuracy

Foggy 95.8
Strong light 92.1

Snow fall 96.6
motion blur 88.3

4.3.3. Generalization Test and Analysis

In order to evaluate the generalization performance of the proposed model more
clearly, the test dataset in [12], containing 120 power line scene images with complex
backgrounds, are selected, and another similar 80 images without power lines are also
selected for testing. The total accuracy is 94.8%. Part of the test results of the proposed PLSR
is shown in Figure 8. The lower left part with the red font represents the real label, and
the lower right part with the yellow font represents the model prediction results. Where
0 represents the scene without power lines, and 1 represents the scene containing power
lines. The experiment shows the recognition cases of eighteen images, of which the 13th
image, the 14th image, and the 18th image are the display of false recognition cases.
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5. Reconstruction Results and Analysis

The CapsNet uses an automatic encoder structure to reconstruct data; the automatic
encoder is composed of an encoder and decoder [16]. This section discusses and analyzes
the effect of power line reconstruction based on capsule network. In the proposed CapsNet,
the encoder is composed of a convolution layer, primary capsule layer, and digital capsule
layer. The decoder includes three full connection layers. The decoder uses the image
features of the power line scene generated in the encoder to reconstruct an image with the
same size as the input image. During reconstruction, the encoder uses the difference of
the mean square error between the reconstructed image and the label image. Low error
indicates that the reconstructed image is similar to the label image. The decoder structure
of the proposed model is shown in Figure 9.
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Based on the proposed method, the PLE results, with typical background, are shown
in Figure 10. The six power line scene images with typical backgrounds are given in
Figure 10a. The first and third pictures show the background of the tower. The second
and fifth images show the field backgrounds. The fourth shows the grassland background.
The sixth picture shows the road background. Figure 10b shows the real power line label
corresponding to the original image, and Figure 10c shows the PLE results based on the
proposed method. It can be seen that the power line can be completely extracted from the
background by using the proposed model.
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In order to continue to evaluate the effect of the reconstruction model in the pixel level-
recognition of power lines, Figure 11a shows six power line scene images with complex
backgrounds. Due to the influence of complex backgrounds, the power lines are difficult to
be found with naked eyes. The first and second pictures show the forest backgrounds. The
third and fourth pictures show the mountain backgrounds. The fifth and sixth images show
the backgrounds of the field. Figure 11b shows the real power line label corresponding to
the original image, and Figure 11c shows the PLE results based on the proposed method.
In these six images, although the power line is difficult to distinguish with naked eyes,
the first image is perfectly extracted. The second and fourth images are partially bent and
broken. The third and fifth pictures are partially missed, and the sixth picture has a small
section of trees with multiple inspections. Overall, a good pixel level-recognition effect
is achieved.
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6. Conclusions

In this paper, the background of power line scene recognition is carefully analyzed
at first, and the guided filter is found that can enhance the power line features effectively.
Thus, the feature enhancement module with the guided filter is introduced to weaken
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the influence of complex background images on power line detection and extraction. A
convolutional capsule network is used to design the power line scene recognition and
extraction method. Experiments show that the proposed method has a high recognition
accuracy and good robustness in the PLSR task. The image output from the convolutional
capsule network decoder can also obtain a better power line pixel-level recognition effect.
Based on the proposed method, we can not only judge whether there is a power line scene,
but also extract the power line completely from the scene image of power lines. It lays
a foundation for the future research of UAV tracking along the line and fault diagnosis
attached to components of power lines.

For the issue of not-so-perfect performance robustness in a strong light environment,
the fusion of infrared images and visible light images can be introduced in the future,
since in the strong light environment, although the power lines are indistinguishable
from the background, the high-temperature power lines can be distinguished from the
low-temperature background environment. For the issue of not-so-good performance
robustness in a motion blur environment, in the future, more stable and active disturbance
rejection UAV trajectory-tracking methods can be studied to obtain a better image capture
effect and reduce motion blur in aerial images.

This article makes sense despite its simplicity. The selection of guided images in the
guided filter is variable, which makes the combination with deep learning have unlimited
potential. New features, such as edge detection, texture preservation, and image enhance-
ment could be used as guiding images, which will enhance the performance of the network.
In addition, the design is flexible and simple, and the computational complexity is lower
than that of the attention mechanism, which can be widely combined without various deep
learning tasks. In supervised learning, selecting the ground truth label as the guide image
can greatly improve the training performance of the network. In unsupervised learning and
predictive analysis tasks, first selecting the original image or enhanced image as the guided
image, and then selecting the reconstructed image as the guided image as the relevant
feedback will improve the performance of the image classification task.
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