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Abstract: Fat-corrected R2* relaxometry from multi-echo gradient-recalled echo sequences (mGRE)
could represent an efficient approach for iron overload evaluation, but its use is limited by compu-
tational constraints. A new method for the fast generation of R2* and fat fractions (FF) maps from
mGRE using a convolutional neural network (U-Net) and deep learning (DL) is presented. A U-Net
for the calculation of pancreatic R2* and FF maps was trained with 576 mGRE abdominal images
and compared to conventional fat-corrected relaxometry. The U-Net was effectively trained and
provided R2* and FF maps visually comparable to conventional methods. Predicted pancreatic R2*
and FF values were well correlated with the conventional model. Estimated and ground truth mean
R2* values were not significantly different (43.65 ± 21.89 vs. 43.77 ± 19.81 ms, p = 0.692, intraclass
correlation coefficient-ICC = 0.9938, coefficient of variation-CoV = 5.3%), while estimated FF values
were slightly higher in respect to ground truth values (27.8 ± 16.87 vs. 25.67 ± 15.43 %, p < 0.0001,
ICC = 0.986, CoV = 10.1%). Deep learning utilizing the U-Net is a feasible method for pancreatic MR
fat-corrected relaxometry. A trained U-Net can be efficiently used for MR fat-corrected relaxometry,
providing results comparable to conventional model-based methods.

Keywords: convolutional neural network; fat-corrected relaxometry; pancreas; iron overload; U-Net

1. Introduction

With the consequent damage to several organs such as the liver, heart, and pancreas,
iron overload represents a critical health problem in patients with primary and secondary
hemochromatosis [1,2]. The most important pathology associated with secondary hemochro-
matosis is beta-thalassemia major, the most common genetic disorder worldwide [3]. Tha-
lassemia major is a multi-organ disease; hence the proper management should include iron
overload quantification in the liver, heart, pancreas, and other organs [4].

Magnetic resonance imaging (MRI) represents the most established approach for iron
overload evaluation, as iron deposits increase the magnetic field heterogeneities, resulting in
increased R2 and R2* relaxation values that lead to a decline in MRI signal proportionally to
the importance of iron overload. Among several proposed techniques, R2* relaxometry by
the use of multiecho gradient-echo (mGRE) sequences is the most established approach with
an important number of applications, including iron quantification in the liver, heart [5],
pancreas [6], kidney [7], and brain. In R2* relaxometry, R2* values are estimated by fitting
the signal intensity at each pixel of the images acquired at multiple echo times (TEs) with an
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appropriate decay model [8]. The result of the fitting method is an R2* map with the same
dimensions of the originating images. The setting of the signal fitting process should take
into account several acquisition/physical aspects that deviate the measured signal from the
theoretical one [9], such as the limited range of practicable TEs (about 1–20 ms), the presence
of MR rectified noise [10], and the chemical shift effect induced by the presence of fat [11].
The latter issue is particularly challenging if the organ under examination is subjected to
fat infiltration, as it usually happens in the liver and pancreas. Hence, the development of
methods for the compensation of the chemical shift effect in R2* measurement is important
in the diagnosis of iron overload. Fat modulates the signal decay generating a periodic
signal fluctuation, with a period of about 4.52 ms at 1.5 T, over-imposed to the exponential
decay. To minimize the effect of fat on R2* measurement, the out-of-phase/in-phase GRE
sequence (using a 2.26 ms TE interval, half of the oscillation period) is largely adopted in
the clinical setting for R2* quantification [12,13]. In this sequence, the signal oscillation is
“symmetric” with respect to the pure exponential decay and can be compensated by the
fitting algorithm. However, the accuracy of this approach is invalidated by the interference
of multiple spectral peaks of fat [14,15]. Fat suppression (FS) techniques could be used to
minimize the fat signal [16]. However, FS methods increase the acquisition time and are
less efficient in the presence of iron overload. In pancreatic iron overload, the progressive
manual removal of TEs corresponding to the strongest deviations from the theoretical
exponential decay was demonstrated to be reproducible and led to results comparable with
measurements on FS images [17]. The best approach is represented by the use of fitting
models that separate the multi-peak fat signal from the water contribution (fat-corrected
relaxometry), firstly proposed for R2* quantification in the liver [15,18] and later extended
to the pancreas [19,20]. A further advantage of this approach is to make available an
additional clinical value of the MRI exam by estimating the fat fraction (FF) in the pancreas.
However, the fat-corrected relaxometry process is generally very slow due to the use
of multi-start iterative optimization algorithms, which are necessary to obtain a correct
convergence of the pixel-wise fitting procedure [19,21,22]. Hence, the development of near
real-time algorithms for the generation of R2*/FF maps could favourite the spread of this
technique in the clinical setting, allowing both a more precise R2* measure and evaluation
of fat deposition in thalassemia patients. In fact, the integration of R2*/FF maps generation
in clinical software requires near real-time image processing, as the software is used in an
interactive manner to explore different pancreatic regions.

Recently, Convolutional Neural Networks (CNN) have become extremely popular,
especially in medical image processing. One widely used CNN is the so-called U-net,
specifically designed for image segmentation [23] and also applicable to image-to-image
translation tasks [24]. Several studies exploited the U-Net design to solve the water/fat
separation problem from mGRE sequences [25–28], while the problem of fat-corrected
relaxometry is less explored. In particular, Andersson et al. [25] performed whole-body
FF mapping from 5-TEs sequences, without computation of R2* maps. Cho and Park [26]
performed water-fat separation from 6-TEs sequences, obtaining water and fat images as the
output of the U-Net network. A similar approach was proposed by Liu et al. [27] by using
a MEBCRN network, including a feature extraction module and a water–fat separation
module. The input of the MEBCRN network was represented by real and imaginary 8-TEs
sequences. Finally, Goldfarb et al. [28] used a cardiac dark blood real/imaginary 12-TEs
sequence as input of a U-Net network, while the output was represented by four channels
(water, fat, R2*, and off-resonance maps).

As both R2* and FF mapping are needed for the iron overload assessment in the
pancreas, an effective U-Net design should provide both FF and R2* maps as output, as
in the Goldfarb approach [28]. Moreover, as in the clinical setting, where only magnitude
images are provided by the scanner, the input of the U-Net should be represented by
magnitude image sequences instead of real/imaginary images. Finally, the computational
efficiency of the trained U-Net should be assured to overcome the limits of the standard
curve-fitting approach, as previously described.
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The objective of the present study is to develop a computationally efficient method,
based on a deep learning approach, to obtain the precise and fast generation of fat-corrected
pancreatic R2* and FF maps from mGRE magnitude images acquired to estimate the iron
overload level in the pancreas.

2. Materials and Methods
2.1. Fat-Corrected Relaxometry

R2* relaxometry allows the quantitative evaluation of the R2* parameter in a tissue
based on mGRE MR sequences. R2* relaxometry requires the acquisition of a series of
images at increasing TEs, that can be performed after a single excitation pulse in mGRE
sequences. R2* values are estimated by fitting the signal intensity from the tissue of interest
at multiple TEs with an appropriate decay model. To compensate for the interference of
multiple spectral peaks of the fat that deviate the measured signal from the theoretical
exponential decay, the effect of fat should be introduced in the decay model. Accordingly,
for magnitude MR images that are commonly used in clinical practice, the signal decay can
be modeled as [15]:

S
(

TE, ρw, ρ f , R2∗
)
=
∣∣∣ρw + ρ f

(
∑N

n=1αnej2π fnTE
)

e−R2∗TE
∣∣∣, (1)

where ρw and ρ f are the amplitudes of water and fat signals, and TE is the echo time.
The R2* values of water and fat (R2∗w and R2∗f , respectively) are usually modeled as a
unique value R2*, as described in Equation (1). fn are the frequencies for the fat spectral
peaks and αn are the relative amplitudes of the fat signal, such that ∑N

n=1αn = 1. Previous
studies suggested that N = 6 provides a correct estimation of the fat spectrum. The
fat spectrum depends on the nature of the fat tissue, as demonstrated in spectroscopy
studies [29,30], and their parameters can be fixed once the organ under study has been
defined. Hence, the signal model described in Equation (1) has three unknown parameters
to be estimated: ρw, ρ f , and R2∗. The fat-corrected magnitude fitting procedure herein
described can be implemented by a descent-based nonlinear least-squares (NLLS) fitting,
that also compensates for B0 field inhomogeneities [31], where all unknown parameters
(ρw, ρ f , R2*, and B0 field) are estimated jointly [31,32]. As NLLS is a local optimizer,
the estimated parameters’ values will depend on the initial values and the limits of the
search space.

Fat-corrected relaxometry is a computationally expensive procedure, as the fitting
procedure could be easily trapped in local minima due to the low number of available signal
samples (6–10 in most applications). Hence, computationally expensive global optimization
approaches such as multi-start are often needed [19]. When the procedure is iterated to
obtain pixel-wise R2* and FF maps, the required time could become not compatible with
the clinical practice.

2.2. Ground Truth

Images from 192 thalassemia major patients (92 males and 100 females, age 7–58 years,
mean age 39.5 ± 16.2 years) were retrospectively studied. All patients were consecutively
enrolled from years 2009 to 2020 in the core lab of the MIOT/eMIOT (Myocardial Iron
Overload in Thalassemia) network, constituted by thalassemia and MRI centers where
MRI exams are performed using homogeneous, standardized, and validated procedures
and where patients’ clinical–instrumental data are collected in a centralized, web-based
database [33,34]. The study complied with the Declaration of Helsinki. All subjects or their
parents gave written informed consent to the protocol. The project was approved by the
institutional ethics committee.

For each patient, a specific MR data set acquired for assessing the iron overload level in
the pancreas was used in the study. Each data set included ten to twelve axial slices covering
the abdomen, including the liver and pancreas, obtained by an R2* mGRE sequence [6].
Each slice (thickness 8.0 mm) was acquired at ten echo times (first TE 2.0 ms, echo spacing
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of 2.26 ms) in a single end-expiratory breath-hold. The echo spacing was chosen equal to
the separation between the in-phase and out-phase conditions of the fat/water interface to
minimize the shift of signal decay. An MRI was performed using a 1.5 T MRI scanner (Signa
Excite HD or Signa Artist, GE Healthcare, Milwaukee, WI) with a cardiac phased-array
receiver surface coil (flip angle 25◦, matrix 192× 192 pixels, field of view (FOV) 40 × 40 cm,
bandwidth 62.5 KHz, number of excitations 1).

Images from each patient (Figure 1a) were associated with the corresponding clinical
labels, as defined in the clinical assessment of patients [6]. Labels were defined using a
custom-written, previously validated software (HIPPO-MIOT® v2.0, FTGM, Pisa, Italy). Three
regions of interest (ROIs) were manually drawn over the head, body, and tail of the pancreas,
respectively, encompassing the parenchymal tissue and taking care to avoid confounding
anatomy (e.g., large blood vessels or ducts) and areas involved in susceptibility artifacts from
gastric or colic intraluminal gas. ROIs stored in the HIPPO-MIOT software database were
exported as binary masks (Figure 1b). For each ROI mask, a squared region (64× 64) centered
on the mask was defined and propagated on all the images at different TEs, obtaining a
collection of 576 (192 × 3) multi-echo MR images (of size 64 × 64 × 10) (Figure 1c). Each
multi-echo image was processed by the fat-compensated relaxometry procedure previously
described, using a validated code [15,31] (Figure 1d) to obtain 576 pairs of 64 × 64 R2* and
FF maps (Figure 1e). The initial conditions of the NNLS optimizer were tuned based on the
expected range of R2* and FF values in the pancreas. Hence, the knowledge base for the deep
learning algorithm was constituted by 576 mGRE 64× 64× 10 images and 576 corresponding
pairs of 64 × 64 R2* and FF maps.
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Figure 1. Ground truth data generation. (a) original MR image data; (b) ROIs encompassing pan-
creatic regions; (c) cropped 64 × 64 × 10 MR images; (d) Fat-corrected relaxometry processing; (e) 
corresponding R2* and FF maps representing the Ground Truth for U-Net training and validation. 

Figure 1. Ground truth data generation. (a) original MR image data; (b) ROIs encompassing
pancreatic regions; (c) cropped 64 × 64 × 10 MR images; (d) Fat-corrected relaxometry processing;
(e) corresponding R2* and FF maps representing the Ground Truth for U-Net training and validation.

R2* and FF values corresponding to the three pancreatic regions were obtained by
computing the median value of R2* and FF of the pixels within the head, body, and tail
ROIs defined in the clinical assessment of patients.
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2.3. U-Net Model

The U-Net network was developed based on the model of Goldfarb el al [28]. The
input to the network was represented by mGRE images (10 frames with 64 × 64 pixels),
obtained from the original MR images by the procedure previously described. The U-Net
architecture was selected to generate relaxometry and FF maps [23,24]. Hence, a 10-input
2-output channel 2D U-Net (one channel for each of the 10 TEs in input, two channels
for R2* and FF maps as output) was used (Figure 2). The encoder has three layers, with
96, 192, and 284 filters. Each layer of the encoder block includes a 2D convolution filter,
a batch normalization, and a ReLU activation, followed by a max-pooling filter. The
bottleneck layer is constituted by 768 2D convolution filters. The decoder blocks include an
up-sampling filter, a 2D convolution filter, a batch normalization, and a ReLU activation.
A 3 × 3 kernel size was used in all convolution filters. The last layer is a 2D convolutional
layer with linear activation. The network included a total of 8,534,114 trainable parameters.
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The loss function was defined as the sum of mean squared errors (MSE) between the
U-Net’s R2* and FF maps and the ones generated by the fat-compensated relaxometry
(ground truth). An L2 kernel regularization of 0.2 was applied to each 2D convolution layer.
The accuracy metric was defined as the mean of the normalized Root Mean Square Error
(RMSE) between generated and ground truth R2* and FF maps.

The similarity between ground truth R2* and FF maps and U-Net output was assessed
by the normalized root MSE (NRMSE) and Structural Similarity Index (SSI) values. The
NRMSE is defined as:

NRMSE(G, U) =

√
1
n ∑i |Gi −Ui|2, (2)

where n represents the number of map pixels, Gi is the gray value of a single pixel of
the ground truth map and Ui is the gray value of a pixel from the U-Net map. NRMSE
represents the mean estimation error in a map pixel. The SSI index is expressed as [35]:

SSI(G, U) = [l(G, U)]α·[c(G, U)]β·[s(G, U)]γ, (3)

where l(G, U) is the luminance comparison function, c(G, U) is contrast comparison func-
tion, s(G, U) is the structure comparison function and α > 0, β > 0, γ > 0 denote the relative
importance of each of the metrics. We assume α = β = γ = 1 in the present study. A value of
SSI = 1 indicates the maximum similarity between the two maps.
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2.4. U-Net Implementation, Training, and Testing

The U-Net model was implemented in the Tensorflow 2.5/Keras environment. Net-
work training was performed on an Intel Core i7 5.1 MHz PC, 32 Gb RAM, equipped with
an NVIDIA RTX3090 GPU with 24 Gb RAM. Of the whole dataset of mGRE images, 80%
were used for network training (461), and the remaining 20% of images (115) were used for
the final test. Iterative train and validation were carried out performing each validation at
the end of each epoch, each epoch including 20 steps. The validation set size was set to 20%
of the training data set. Nadam optimizer (initial learning rate 10−4, β1 = 0.9, β2 = 0.999)
was used with a batch size of 8. Early stopping of the training process after 200 epochs with
no increment of validation accuracy metric was adopted. Cross-validation was applied,
consisting of performing the training five times with a different distribution of cases among
the training and validation sets. Best training and validation accuracy metric values for
each training process were recorded.

2.5. Statistical Analysis

Data were analyzed using MedCalc version 20.015 (MedCalc Software Ltd., Ostend,
Belgium) statistical package. Continuous variables were described as mean ± standard
deviation (SD). For continuous values with normal distribution, comparisons between
groups were made by a paired t-test (for two groups) or a one-way ANOVA (for more
than two groups). Normality was assessed by the Kolmogorov–Smirnov test. CoV was
obtained as the ratio of the SD of the half mean square of the differences between the
repeated values, to the general mean. The intraclass correlation coefficient (ICC) was
obtained from a two-way random effects model with measures of absolute agreement. The
Bland–Altman (BA) technique was used to plot the absolute difference versus the ground
truth values. Bias was the mean of the difference between the two methods, and agreement
was the mean ±1.96 SDs. In all tests, a 2-tailed probability value of 0.05 was considered
statistically significant.

3. Results
3.1. Ground Truth

The mean R2* values in the ground truth data were 44.80 ± 24.71 s−1 in the head,
43.52 ± 23.79 s−1 in the body, and 43.77 ± 24.03 s−1 in the tail. The mean FF values were
26.35 ± 15.37% in the head, 26.70 ± 16.91% in the body, and 27.85 ± 17.09% in the tail,
respectively. No significant difference was found in R2* and FF data between the three
pancreatic regions. R2* values ranged from 6 to 136 s−1, covering the range from absent to
severe iron overload.

The mean processing time for the generation of R2*/FF maps was 490 ± 140 ms.

3.2. U-Net Results

In the network training and testing, the assessed accuracy was 5.02 ± 0.26 and
5.69 ± 0.99 for the validation and test set, respectively. The mean number of iterations
needed to reach convergency was 1679 ± 321.

The mean NRMSE values for the test set were 5.41 ± 0.64 s−1 and 5.12 ± 0.47% for
the R2* and FF maps, respectively (p = 0.4544). The mean SSI values were 0.95 ± 0.01 and
0.88 ± 0.02 for R2* and FF maps, respectively. A significant difference (p = 0.0034) was
found between SSI values for R2* and FF maps. No significant difference was found in
NRMSE and SSI values among the three pancreatic regions. Figure 3 compares the ground
truth and the estimated R2* and FF maps for a patient in the test set (body, patient #40).
The estimation error was low in both R2* and FF maps in the clinical target.
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Limiting the analysis to the pancreatic region, the mean NRMSE values were
3.75 ± 0.38 s−1 and 4.07 ± 0.62% for the R2* and FF maps, respectively (p = 0.3832).

Estimated and ground truth mean R2* values evaluated in the three pancreatic regions
were not significantly different (R2*: 43.65± 21.89 vs. 43.77± 19.81, p = 0.692, ICC = 0.9938,
CoV = 5.3%). A significant difference was found in FF values (27.8± 16.87 vs. 25.67 ± 15.43,
p < 0.0001, ICC = 0.986, CoV = 10.1%). No significant difference was found in estimated
R2* and FF values among the three pancreatic regions (Figure 4). Figure 5 shows the
Bland–Altmann plots comparing estimated and ground truth R2* (Figure 5a) and FF values
(Figure 5b). A good correspondence was found between ground truth and estimated R2*
values, with a negligible bias (−0.12) and a 95% confidence interval for the difference of
[−6.55:6.31]. The developed U-Net slightly underestimated the FF value (−2.13%) with
a 95% confidence interval [−4.08:8.35]. The mean processing time for the generation of
R2*/FF maps by the trained U-Net was 21.9 ± 2.46 ms.
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4. Discussion

A robust and noninvasive evaluation of pancreatic iron by MRI is strongly desir-
able to prevent diabetes and preserve pancreatic reserve [36,37]. Moreover, several MRI
studies demonstrated that pancreatic iron overload is a prospective marker of cardiac
iron risk [38,39]. The accurate estimate of pancreatic iron overload may be confounded
by the fat infiltration, causing an incorrect estimate of the R2* value. Hence, the spread
of fat-corrected relaxometry in clinical practice is desirable. Deep learning represents a
promising technique to improve MR relaxometry in terms of speed, efficiency, and quality,
although this field is less explored than others [40]. Several studies proposed using a deep
learning approach for T1 [41] and T2 [42] relaxometry, but in our knowledge, there are no
studies about the use of CNN for fat-correction relaxometry. U-Net architectures similar to
the one presented in our study were proposed to address the water/fat separation problem,
with different anatomical targets [25–28]. Our approach is similar to the one proposed
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by Goldfarb et al. [28], that used a cardiac dark blood real/imaginary 12-TEs sequence
as the input of a U-Net network, while the output was represented by four channels
(water, fat, R2*, and off-resonance maps). In respect to the Goldfarb solution that employed
a classic U-Net architecture with four encoded layers, we used three encoder layers to
compensate for the smaller input image size. Differently from the Goldfarb approach,
our U-Net network processed magnitude mGRE images, as usually acquired in a clinical
practice in iron overload studies. This approach could represent an advantage as an FF
dedicated MR sequence is not needed and retrospective studies could be conducted on
magnitude images acquired for R2*-only measurements. Moreover, the pancreas represents
a complex structure affected by a high chemical shift effect due to infiltrating fat. The FF
value reached 30% in thalassemia patients [20]. Hence, the population involved in the
present study represents a challenging test for the development of an efficient FF/R2* map
generation method.

Ground truth data collected in the study represents a typical well-treated thalassemia
major patient population, with a mean R2* value of about 44 s−1 (T2* = 22 ms), slightly
lower in comparison with the lower limit of the normal T2* value (26 ms) [43]. As expected
from previous studies, no significant difference in the R2* value was found among the tree
pancreatic regions [17,20,43,44]. The FF value was about 26%, confirming the higher fat
content in thalassemia patients with respect to the normal population [20,44].

The developed network was able to generate R2* and FF maps with a low NRMSE error
with a 20-fold reduction of the processing time. The time required by the trained network
for R2*/FF maps generation (about 20 ms) is compatible with the use into interactive
software, where the used can explore different pancreatic regions with a near real-time
feedback. The develop U-Net also mimics the ability of the GT fitting algorithm to minimize
the estimation error in the R2*/FF range of clinical interest. The high SSIM value (0.95)
assessed in the R2* map comparison confirms the quality of R2* map generation by the
developed CNN, while a lower SSIM value was found for FF maps.

The clinical R2* value estimation within the three main pancreatic regions revealed
no significant bias between GT and CCN (Figure 4a). BA limits are comparable with inter-
operator reproducibility in the clinical setting [17]. Higher estimation errors were found in
patients with a severe iron overload where, due to the fast signal decay, the signal could be
masked by MR noise at longer TEs. The assessed ICC value (0.9938) is comparable with the
one obtained from a multicentre comparison (0.995) [6]. Hence, GT and CNN approaches
appear to be interchangeable in the clinical setting for the R2* value evaluation. As far as
the FF values evaluation is concerned, the concordance between GT and CNN approaches
was lower, with a significant difference between the measurements. CNN’s approach
slightly underestimated the FF value. Although the GT technique is well validated for
contemporary R2* and FF evaluation in the liver [45,46], few reports are available for the
pancreas [20], so a comparison of the obtained results with the reproducibility in the clinical
setting is difficult. FF value estimation in the pancreas was reported to be challenging,
with an estimated CoV among observers of about 11% [47], similar to the one assessed in
the study.

Some limitations should be recognized in the present study. The study was limited to
a single U-Net architecture and a single MR protocol. Training and testing were performed
on a high-quality, homogeneous data set obtained from a national network [6,34]. Although
the MR sequence design employed in the study is of common use in the clinical setting, an
external verification using datasets from other clinical centers could confirm the clinical
generalization. It is expected that transfer learning could be used to minimize future CNN
training for different acquisition sequences.

In conclusion, deep learning utilizing a U-Net is a feasible method for MR fat-corrected
relaxometry. A trained U-Net can be efficiently used for MR fat-corrected relaxometry,
providing results comparable to conventional model-based methods.



Electronics 2022, 11, 2829 10 of 12

Author Contributions: Conceptualization, M.F.S. and A.M.; methodology, M.F.S.; software, S.J.;
validation, S.J., A.M. and V.P.; data curation, L.P. and A.M.; data collection, T.C., F.M., P.P.B. and M.A.;
writing—original draft preparation, M.F.S. and S.J.; writing—review and editing, V.P.; supervision,
F.C.; project administration, F.C.; funding acquisition, F.C. All authors have read and agreed to the
published version of the manuscript.

Funding: The MIOT project received “no-profit support” from industrial sponsorships (Chiesi
Farmaceutici S.p.A.). The E-MIOT project receives “no-profit support” from industrial sponsorships
(Chiesi Farmaceutici S.p.A. and Bayer).

Data Availability Statement: The image data are not publicly available due to ethical restrictions. The
developed code is publicly available at https://github.com/vincenzopositano/Hippo-Net-Pancreas
(accessed on 16 June 2022).

Acknowledgments: We thank Diego Hernando for allowing us to use his code to generate R2*/FF
maps. We also want to thank all the colleagues involved in the MIOT and EMIOT projects (https:
//emiot.ftgm.it, accessed on 16 June 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

References
1. Shander, A.; Cappellini, M.D.; Goodnough, L.T. Iron overload and toxicity: The hidden risk of multiple blood transfusions. Vox

Sang. 2009, 97, 185–197. [CrossRef] [PubMed]
2. Borgna-Pignatti, C.; Cappellini, M.D.; De Stefano, P.; Del Vecchio, G.C.; Forni, G.L.; Gamberini, M.R.; Ghilardi, R.; Origa, R.;

Piga, A.; Romeo, M.A.; et al. Survival and complications in thalassemia. Ann. N. Y. Acad. Sci. 2005, 1054, 40–47. [CrossRef]
3. Weatherall, D.J.; Clegg, J.B. Thalassemia—A global public health problem. Nat. Med. 1996, 2, 847–849. [CrossRef]
4. Aslan, E.; Luo, J.W.; Lesage, A.; Paquin, P.; Cerny, M.; Chin, A.S.-L.; Olivié, D.; Gilbert, G.; Soulières, D.; Tang, A. MRI-Based R2*

Mapping in patients with suspected or known iron overload. Abdom. Radiol. 2021, 46, 2505–2515. [CrossRef] [PubMed]
5. Positano, V.; Pepe, A.; Santarelli, M.F.; Scattini, B.; De Marchi, D.; Ramazzotti, A.; Forni, G.; Borgna-Pignatti, C.; Lai, M.E.;

Midiri, M.; et al. Standardized T2* map of normal human heart in vivo to correct T2* segmental artefacts. NMR Biomed. 2007, 20,
578–590. [CrossRef]

6. Meloni, A.; De Marchi, D.; Pistoia, L.; Grassedonio, E.; Peritore, G.; Preziosi, P.; Restaino, G.; Righi, R.; Riva, A.; Renne, S.; et al.
Multicenter validation of the magnetic resonance t2* technique for quantification of pancreatic iron. Eur. Radiol. 2019, 29, 2246–2252.
[CrossRef] [PubMed]

7. Grassedonio, E.; Meloni, A.; Positano, V.; De Marchi, D.; Toia, P.; Midiri, M.; Pepe, A. Quantitative T2* magnetic resonance
imaging for renal iron overload assessment: Normal values by age and sex. Abdom. Imaging 2015, 40, 1700–1704. [CrossRef]

8. Bonny, J.-M.; Zanca, M.; Boire, J.-Y.; Veyre, A. T2 Maximum likelihood estimation from multiple spin-echo magnitude images.
Magn. Reson. Med. 1996, 36, 287–293. [CrossRef]

9. Wood, J.C.; Ghugre, N. Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron
overload diseases. Hemoglobin 2008, 32, 85–96. [CrossRef]

10. Feng, Y.; He, T.; Gatehouse, P.D.; Li, X.; Harith Alam, M.; Pennell, D.J.; Chen, W.; Firmin, D.N. Improved MRI R2* relaxometry of
iron-loaded liver with noise correction. Magn. Reson. Med. 2013, 70, 1765–1774. [CrossRef]

11. Hernando, D.; Liang, Z.-P.; Kellman, P. Chemical shift-based water/fat separation: A comparison of signal models. Magn. Reson.
Med. 2010, 64, 811–822. [CrossRef] [PubMed]

12. Ramazzotti, A.; Pepe, A.; Positano, V.; Rossi, G.; De Marchi, D.; Brizi, M.G.; Luciani, A.; Midiri, M.; Sallustio, G.; Valeri, G.;
et al. Multicenter validation of the magnetic resonance T2* technique for segmental and global quantification of myocardial iron.
J. Magn. Reson. Imaging 2009, 30, 62–68. [CrossRef] [PubMed]

13. Westwood, M.A.; Firmin, D.N.; Gildo, M.; Renzo, G.; Stathis, G.; Markissia, K.; Vasili, B.; Pennell, D.J. Intercentre reproducibility
of magnetic resonance T2* measurements of myocardial iron in thalassaemia. Int. J. Cardiovasc. Imaging 2005, 21, 531–538.
[CrossRef] [PubMed]

14. Lingvay, I.; Esser, V.; Legendre, J.L.; Price, A.L.; Wertz, K.M.; Adams-Huet, B.; Zhang, S.; Unger, R.H.; Szczepaniak, L.S.
Noninvasive quantification of pancreatic fat in humans. J. Clin. Endocrinol. Metab. 2009, 94, 4070–4076. [CrossRef]

15. Hernando, D.; Kramer, J.H.; Reeder, S.B. Multipeak fat-corrected complex R2* relaxometry: Theory, optimization, and clinical
validation. Magn. Reson. Med. 2013, 70, 1319–1331. [CrossRef] [PubMed]

16. Schwenzer, N.F.; Machann, J.; Martirosian, P.; Stefan, N.; Schraml, C.; Fritsche, A.; Claussen, C.D.; Schick, F. Quantification of
pancreatic lipomatosis and liver steatosis by MRI: Comparison of in/opposed-phase and spectral-spatial excitation techniques.
Investig. Radiol. 2008, 43, 330–337. [CrossRef] [PubMed]

17. Meloni, A.; De Marchi, D.; Positano, V.; Neri, M.G.; Mangione, M.; Keilberg, P.; Lendini, M.; Cirotto, C.; Pepe, A. Accurate
estimate of pancreatic T2* Values: How to deal with fat infiltration. Abdom. Imaging 2015, 40, 3129–3136. [CrossRef]

https://github.com/vincenzopositano/Hippo-Net-Pancreas
https://emiot.ftgm.it
https://emiot.ftgm.it
http://doi.org/10.1111/j.1423-0410.2009.01207.x
http://www.ncbi.nlm.nih.gov/pubmed/19663936
http://doi.org/10.1196/annals.1345.006
http://doi.org/10.1038/nm0896-847
http://doi.org/10.1007/s00261-020-02912-w
http://www.ncbi.nlm.nih.gov/pubmed/33388804
http://doi.org/10.1002/nbm.1121
http://doi.org/10.1007/s00330-018-5783-6
http://www.ncbi.nlm.nih.gov/pubmed/30338366
http://doi.org/10.1007/s00261-015-0395-y
http://doi.org/10.1002/mrm.1910360216
http://doi.org/10.1080/03630260701699912
http://doi.org/10.1002/mrm.24607
http://doi.org/10.1002/mrm.22455
http://www.ncbi.nlm.nih.gov/pubmed/20593375
http://doi.org/10.1002/jmri.21781
http://www.ncbi.nlm.nih.gov/pubmed/19557847
http://doi.org/10.1007/s10554-005-0651-2
http://www.ncbi.nlm.nih.gov/pubmed/16175443
http://doi.org/10.1210/jc.2009-0584
http://doi.org/10.1002/mrm.24593
http://www.ncbi.nlm.nih.gov/pubmed/23359327
http://doi.org/10.1097/RLI.0b013e31816a88c6
http://www.ncbi.nlm.nih.gov/pubmed/18424954
http://doi.org/10.1007/s00261-015-0522-9


Electronics 2022, 11, 2829 11 of 12

18. Hernando, D.; Levin, Y.S.; Sirlin, C.B.; Reeder, S.B. Quantification of liver iron with MRI: State of the art and remaining challenges.
J. Magn. Reson. Imaging 2014, 40, 1003–1021. [CrossRef] [PubMed]

19. Santarelli, M.F.; Meloni, A.; De Marchi, D.; Pistoia, L.; Quarta, A.; Spasiano, A.; Landini, L.; Pepe, A.; Positano, V. Estimation of
pancreatic R2* for iron overload assessment in the presence of fat: A comparison of different approaches. Magn. Reson. Mater.
Phys. Biol. Med. 2018, 31, 757–769. [CrossRef]

20. Pfeifer, C.D.; Schoennagel, B.P.; Grosse, R.; Wang, Z.J.; Graessner, J.; Nielsen, P.; Adam, G.; Fischer, R.; Yamamura, J. Pancreatic
iron and fat assessment by MRI-R2* in Patients with Iron Overload Diseases. J. Magn. Reson. Imaging 2015, 42, 196–203. [CrossRef]

21. Positano, V.; Meloni, A.; Santarelli, M.F.; Gerardi, C.; Bitti, P.P.; Cirotto, C.; De Marchi, D.; Salvatori, C.; Landini, L.; Pepe, A. Fast
generation of T2* maps in the entire range of clinical interest: Application to thalassemia major patients. Comput. Biol. Med. 2015,
56, 200–210. [CrossRef]

22. Meloni, A.; Zmyewski, H.; Rienhoff, H.Y., Jr.; Jones, A.; Pepe, A.; Lombardi, M.; Wood, J.C. Fast approximation to pixelwise
relaxivity maps: Validation in iron overloaded subjects. Magn. Reson. Imaging 2013, 31, 1074–1080. [CrossRef] [PubMed]

23. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv 2015,
arXiv:1505.04597.

24. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. arXiv 2018,
arXiv:1611.07004.

25. Andersson, J.; Ahlström, H.; Kullberg, J. Separation of water and fat signal in whole-body gradient echo scans using convolutional
neural networks. Magn. Reson. Med. 2019, 82, 1177–1186. [CrossRef] [PubMed]

26. Cho, J.; Park, H. Robust water-fat separation for multi-echo gradient-recalled echo sequence using convolutional neural network.
Magn. Reson. Med. 2019, 82, 476–484. [CrossRef]

27. Liu, K.; Li, X.; Li, Z.; Chen, Y.; Xiong, H.; Chen, F.; Bao, Q.; Liu, C. Robust water-fat separation based on deep learning model
exploring multi-echo nature of MGRE. Magn. Reson. Med. 2021, 85, 2828–2841. [CrossRef]

28. Goldfarb, J.W.; Craft, J.; Cao, J.J. Water-fat separation and parameter mapping in cardiac mri via deep learning with a convolutional
neural network. J. Magn. Reson. Imaging 2019, 50, 655–665. [CrossRef]

29. Hamilton, G.; Yokoo, T.; Bydder, M.; Cruite, I.; Schroeder, M.E.; Sirlin, C.B.; Middleton, M.S. In vivo characterization of the liver
fat 1H MR spectrum. NMR Biomed. 2011, 24, 784–790. [CrossRef]

30. Hamilton, G.; Schlein, A.N.; Middleton, M.S.; Hooker, C.A.; Wolfson, T.; Gamst, A.C.; Loomba, R.; Sirlin, C.B. In vivo triglyceride
composition of abdominal adipose tissue measured by 1 h mrs at 3T. J. Magn. Reson. Imaging 2017, 45, 1455–1463. [CrossRef]

31. Hernando, D.; Kellman, P.; Haldar, J.P.; Liang, Z.-P. Robust water/fat separation in the presence of large field inhomogeneities
using a graph cut algorithm. Magn. Reson. Med. 2010, 63, 79–90. [CrossRef]

32. Bydder, M.; Yokoo, T.; Hamilton, G.; Middleton, M.S.; Chavez, A.D.; Schwimmer, J.B.; Lavine, J.E.; Sirlin, C.B. Relaxation effects
in the quantification of fat using gradient echo imaging. Magn. Reson. Imaging 2008, 26, 347–359. [CrossRef] [PubMed]

33. Meloni, A.; Ramazzotti, A.; Positano, V.; Salvatori, C.; Mangione, M.; Marcheschi, P.; Favilli, B.; De Marchi, D.; Prato, S.; Pepe, A.; et al.
Evaluation of a web-based network for reproducible t2* mri assessment of iron overload in thalassemia. Int. J. Med. Inf. 2009, 78,
503–512. [CrossRef] [PubMed]

34. Pepe, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Lisi, R.; Cecinati, V.; Maggio, A.; Sorrentino, F.; Filosa, A.; Rosso, R.; et al.
National networking in rare diseases and reduction of cardiac burden in thalassemia major. Eur. Heart J. 2022, 43, 2482–2492.
[CrossRef]

35. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

36. Meloni, A.; Pistoia, L.; Gamberini, M.R.; Ricchi, P.; Cecinati, V.; Sorrentino, F.; Cuccia, L.; Allò, M.; Righi, R.; Fina, P.; et al. The link
of pancreatic iron with glucose metabolism and cardiac iron in thalassemia intermedia: A large, multicenter observational study.
J. Clin. Med. 2021, 10, 5561. [CrossRef]

37. Pepe, A.; Pistoia, L.; Gamberini, M.R.; Cuccia, L.; Peluso, A.; Messina, G.; Spasiano, A.; Allò, M.; Bisconte, M.G.; Putti, M.C.; et al. The
close link of pancreatic iron with glucose metabolism and with cardiac complications in thalassemia major: A large, multicenter
observational study. Diabetes Care 2020, 43, 2830–2839. [CrossRef]

38. Au, W.-Y.; Lam, W.W.-M.; Chu, W.; Tam, S.; Wong, W.-K.; Liang, R.; Ha, S.-Y. A T2* Magnetic resonance imaging study of
pancreatic iron overload in thalassemia major. Haematologica 2008, 93, 116–119. [CrossRef]

39. Noetzli, L.J.; Papudesi, J.; Coates, T.D.; Wood, J.C. Pancreatic iron loading predicts cardiac iron loading in thalassemia major.
Blood 2009, 114, 4021–4026. [CrossRef] [PubMed]

40. Feng, L.; Ma, D.; Liu, F. Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends.
NMR Biomed. 2020, 4, e4416. [CrossRef]

41. Jeelani, H.; Yang, Y.; Zhou, R.; Kramer, C.M.; Salerno, M.; Weller, D.S. A Myocardial T1-Mapping Framework with Recurrent and
U-Net Convolutional Neural Networks. In Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, ISBI
2020, Iowa City, IA, USA, 4 April 2020; pp. 1941–1944. [CrossRef]

42. Liu, F.; Feng, L.; Kijowski, R. MANTIS: Model-augmented neural network with incoherent k-space sampling for efficient mr
parameter mapping. Magn. Reson. Med. 2019, 82, 174–188. [CrossRef] [PubMed]

http://doi.org/10.1002/jmri.24584
http://www.ncbi.nlm.nih.gov/pubmed/24585403
http://doi.org/10.1007/s10334-018-0695-7
http://doi.org/10.1002/jmri.24752
http://doi.org/10.1016/j.compbiomed.2014.10.020
http://doi.org/10.1016/j.mri.2013.05.005
http://www.ncbi.nlm.nih.gov/pubmed/23773621
http://doi.org/10.1002/mrm.27786
http://www.ncbi.nlm.nih.gov/pubmed/31033022
http://doi.org/10.1002/mrm.27697
http://doi.org/10.1002/mrm.28586
http://doi.org/10.1002/jmri.26658
http://doi.org/10.1002/nbm.1622
http://doi.org/10.1002/jmri.25453
http://doi.org/10.1002/mrm.22177
http://doi.org/10.1016/j.mri.2007.08.012
http://www.ncbi.nlm.nih.gov/pubmed/18093781
http://doi.org/10.1016/j.ijmedinf.2009.02.011
http://www.ncbi.nlm.nih.gov/pubmed/19345609
http://doi.org/10.1093/eurheartj/ehab851
http://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://doi.org/10.3390/jcm10235561
http://doi.org/10.2337/dc20-0908
http://doi.org/10.3324/haematol.11768
http://doi.org/10.1182/blood-2009-06-225615
http://www.ncbi.nlm.nih.gov/pubmed/19726718
http://doi.org/10.1002/nbm.4416
http://doi.org/10.1109/ISBI45749.2020.9098459
http://doi.org/10.1002/mrm.27707
http://www.ncbi.nlm.nih.gov/pubmed/30860285


Electronics 2022, 11, 2829 12 of 12

43. Restaino, G.; Meloni, A.; Positano, V.; Missere, M.; Rossi, G.; Calandriello, L.; Keilberg, P.; Mattioni, O.; Maggio, A.;
Lombardi, M.; et al. Regional and global pancreatic T*2 MRI for iron overload assessment in a large cohort of healthy subjects:
Normal values and correlation with age and gender. Magn. Reson. Med. 2011, 65, 764–769. [CrossRef] [PubMed]

44. Huang, J.; Shen, J.; Yang, Q.; Cheng, Z.; Chen, X.; Yu, T.; Zhong, J.; Su, Y.; Guo, H.; Liang, B. Quantification of pancreatic iron
overload and fat infiltration and their correlation with glucose disturbance in pediatric thalassemia major patients. Quant. Imaging
Med. Surg. 2021, 11, 665–675. [CrossRef] [PubMed]

45. Weingärtner, S.; Desmond, K.L.; Obuchowski, N.A.; Baessler, B.; Zhang, Y.; Biondetti, E.; Ma, D.; Golay, X.; Boss, M.A.; Gunter, J.L.; et al.
Development, validation, qualification, and dissemination of quantitative mr methods: Overview and recommendations by the ismrm
quantitative mr study group. Magn. Reson. Med. 2022, 87, 1184–1206. [CrossRef] [PubMed]

46. Kühn, J.-P.; Hernando, D.; Mensel, B.; Krüger, P.C.; Ittermann, T.; Mayerle, J.; Hosten, N.; Reeder, S.B. Quantitative chemical
shift-encoded mri is an accurate method to quantify hepatic steatosis. J. Magn. Reson. Imaging 2014, 39, 1494–1501. [CrossRef]
[PubMed]

47. Kato, S.; Iwasaki, A.; Kurita, Y.; Arimoto, J.; Yamamoto, T.; Hasegawa, S.; Sato, T.; Imajo, K.; Hosono, K.; Kobayashi, N.; et al.
Three-dimensional analysis of pancreatic fat by fat-water magnetic resonance imaging provides detailed characterization of
pancreatic steatosis with improved reproducibility. PLoS ONE 2019, 14, e0224921. [CrossRef]

http://doi.org/10.1002/mrm.22640
http://www.ncbi.nlm.nih.gov/pubmed/21337408
http://doi.org/10.21037/qims-20-292
http://www.ncbi.nlm.nih.gov/pubmed/33532266
http://doi.org/10.1002/mrm.29084
http://www.ncbi.nlm.nih.gov/pubmed/34825741
http://doi.org/10.1002/jmri.24289
http://www.ncbi.nlm.nih.gov/pubmed/24123655
http://doi.org/10.1371/journal.pone.0224921

	Introduction 
	Materials and Methods 
	Fat-Corrected Relaxometry 
	Ground Truth 
	U-Net Model 
	U-Net Implementation, Training, and Testing 
	Statistical Analysis 

	Results 
	Ground Truth 
	U-Net Results 

	Discussion 
	References

