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Abstract: As the device feature size shrinks, the dissipation of power increases and further raises the
carrier and lattice temperature, which finally affects device performance. In this paper, we analyze
the comprehensive influence of the self-heating effect and hot carrier injection (HCI) using TCAD
simulations. Based on the hydrodynamic and thermodynamic models, it is demonstrated that the
thermal surface resistance had a positive impact on the carrier and lattice temperature and that
the drain saturation current is reduced dramatically due to the self-heating effect. Moreover, the
impact of HCI on device performance is discussed. Finally, it is concluded that the self-heating effect
exacerbates the influence of HCI on device characteristics.

Keywords: self-heating; hot carrier injection; surface resistance

1. Introduction

With the continuous shrinking of the device feature size, the self-heating effect becomes
more important [1]. The self-heating effect is mainly due to the fact that the carriers are
accelerated to obtain higher energy under a high electric field at the drain region, and part
of the energy of the carriers is transferred to the lattice by phonon scattering, which finally
results in a local lattice temperature higher than the ambient temperature [2]. Because of
the scattering, the carrier mobility decreases, and thus the saturation current reduces [3],
which affects the performance and reliability of the device [4]. Therefore, a recent popular
issue is the investigation of the influence of the self-heating effect on device performance
using different device structures and new materials [5–15].

The energy gained by the carriers exceeds the energy delivered to the lattice, which
causes the carriers to become hot carriers and the channel region to become filled with hot
carriers [12]. The hot carriers with energy higher than the barrier of the Si/SiO2 interface are
injected into the gate oxide, and thereby trapped charges are generated. Furthermore, the
increasing lattice temperature raises the probability of energy bond breakage at the Si/SiO2
interface and further increases the number of trapped charges. Through the analysis of
trapped charges [16–22], the impact of hot carrier injection (HCI) on device performance is
typically discussed. However, the self-heating effect is not considered in these studies.

In this paper, the impact of the self-heating effect for different devices are analyzed.
Simultaneously, we also investigate the comprehensive influence of the self-heating effect
and HCI on the performance of a 22 nm n-channel bulk FinFET (NFinFET). The self-heating
characteristics, including carrier mobility, lattice temperature, heat generation and thermal
surface resistance (SR), are discussed. Moreover, the characteristic variations under HCI
are revealed. Based on the above analysis, we disclose the impact of the self-heating effect
and HCI on the device output characteristics.

The remainder of our work is organized as follows. Section 2 introduces the device
parameters and the simulation setup. Section 3 reports the simulation results and discussion,
and Section 4 provides a conclusion.
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2. Experimental Setup

Since the self-heating effect has become increasingly important in small-scale devices,
in our experiment, the 65 nm planar NMOS was used as a reference device to investigate
the impact of self-heating on device performance by 2D electrothermal simulation. In order
to better illustrate the self-heating effect, we compared the performance of 65 nm with
22 nm planar NMOS and 22 nm three-dimensional NFinFET under self-heating. These
devices are available in the Sentaurus TCAD application library [23]. Compared with
the structures of the other two planar NMOSs, the channel region of the NFinFET is a
fin-shaped semiconductor surrounded by a gate, which increases the control area of the
gate to the channel and greatly enhances the gate control capability, thereby effectively
suppressing the short-channel effect and reducing the subthreshold leakage current. The
physical parameters of the NMOS and the NFinFET are listed in Tables 1 and 2, respectively.
To simulate the characteristics of the devices, we adopted the Lombardi piezoresistance
and high-field saturation models to simulate carrier mobility. The hydrodynamic and
thermodynamic transport models were also coupled with the carrier transport model.
Specially, the hydrodynamic model estimated the carrier temperature, and the lattice
temperature was calculated by the thermodynamic model. To solve the lattice temperature,
the ambient temperature was set to 300 K for the thermal boundary condition, and the
thermal conductivity parameters used for the thermodynamic simulation are listed in
Table 3. In addition, in order to simulate the self-heating effect, the temperature model
was also coupled to the solver. With respect to HCI, the trap degradation model and lucky
electron injection model were adopted to calculate the performance when the initial trapped
charge concentration in the Si/SiO2 interface was assumed to be 1 × 108 cm−3. The trap
degradation model describes the process of depassivation of the dangling silicon bonds at
the Si-SiO2 interface based on the reaction–diffusion with hydrogen atom transport in the
gate oxide [23]. The lucky electron injection model was used to calculate the lucky electron
current from an interface to a gate contact [23] (Figure 1).
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Figure 1. The device structures. (a) The structure of planar NMOS; (b) the cross-section view of
NFinFET.



Electronics 2022, 11, 2753 3 of 11

Table 1. The physical parameters of NMOS used for TCAD simulations.

Parameter Symbol Value

Channel length (nm) L 65, 22
Gate oxide thickness (nm) Tox 0.6

High-k oxide thickness (nm) THf 20
Souce/Drain junction depth (nm) Xj 40

Souce/Drain extension junction depth (nm) Xjs 8
Halo pocket depth (nm) XjHalo 50

Halo pocket concentration (cm−3) NHalo 4 × 1018

Souce/Drain concentration (cm−3) NS/D 1.5 × 1020

Souce/Drain extension concentration (cm−3) NExtension 1 × 1019

Substrate concentration (cm−3) Nsub 5 × 1015

Surface Resistance (cm2 KW−1) SR 1 × 10−5–1 × 10−4

Drain to source voltage (V) Vds 0–1
Gate to source voltage (V) Vgs 0–1

Table 2. The physical parameters of NFinFET used for TCAD simulations.

Parameter Symbol Value

Channel length (nm) L 22
Gate oxide thickness (nm) Tox 1

High-k oxide thickness (nm) THf 2
Fin Height (nm) HFin 40
Fin Width (nm) WFin 17

Souce/Drain concentration (cm−3) NS/D 5 × 1015

Substrate concentration (cm−3) Nsub 1 × 1015

Surface Resistance (cm2 KW−1) SR 1 × 10−5–1 × 10−4

Drain to source voltage (V) Vds 0–1
Gate to source voltage (V) Vgs 0–1

Table 3. The thermal parameters used for self-heating simulations.

Material Thermal Conductivity (WK−1 cm−1)

SiO2 0.014
Si (bulk) 1.48
Si (Fin) 0.13
Poly Si 1.5
HfO2 0.023
Si3N4 0.185
TiN 0.192

3. Simulation Results and Discussion

To investigate the impact of self-heating, the thermal performances of different devices were
compared. We took the lattice temperature and heat profiles under SR = 5 × 10−5 cm2 KW−1

as an example to illustrate that self-heating becomes increasingly serious in small-scale
devices, as shown in Figure 2. This is because the shrinking of voltage is not proportional
to the device size [24], leading to an enhancement of the electric field in the channel, which
further results in an increase in the thermal energy, as shown in Figure 3. In particular,
the heat generation of the NFinFET was higher than the 65 nm and 22 nm NMOS. This
is because the narrow fin-shaped channel region results in enhanced phonon-boundary
scattering, which significantly affects thermal conductivity and increases thermal resistance.
In addition, since the thermal conductivities of SiO2 and HfO2 surrounding the channel in
the FinFET are 0.014 WK−1 cm−1 and 0.023 WK−1 cm−1, respectively, which is less than the
thermal conductivity of the silicon substrate in the NMOSs, the heat accumulates. Therefore,
we adopted the NFinFET for further investigation of the impact of the self-heating effect
and HCI.
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3.1. Performance Characteristics under the Self-Heating Effect

Figure 4 lists the variations of the maximum electron temperature and electron mobility
against the drain voltage when SR = 5 × 10−5 cm2 KW−1. It can be inferred from Figure 4
that the electron temperature increases slowly when Vds is less than 0.1 V. Conversely, it
increases dramatically when Vds is greater than 0.1 V.
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This happens because the electrons are in low field transport in the linear region
where the kinetic energy is lower, which leads to a lower electron temperature. On the
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contrary, in the saturation region, the electrons are in high field transport and absorb higher
kinetic energy, which leads to an increase in the electron temperature. In this case, there are
collisions between electrons and phonons. Because of the short relaxation of the electron
and phonon scattering, the phonons accumulate, resulting in the enhancement of scattering,
which further leads to a decrease in electron mobility. Through the collisions, the electron
energy is delivered to the lattice, leading to an increase in the lattice temperature, as shown
in Figure 5. It should be noticed that the maximum lattice temperature is near the drain
region. This is because electrons are scattered with a large number of phonons near the
drain, thereby transferring the electron energy to the lattice. Thus, the heat generation near
the drain is much larger than that in the channel and source, which indicates that the heat
distribution is non-uniform.
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Figure 6 illustrates the effect of self-heating on the device output characteristics.
Compared with the drain current of an NFinFET without the self-heating effect and that of
an NFinFET under the self-heating effect, the drain current in the linear region is almost
unchanged, while the drain saturation current is reduced under the self-heating effect. The
essential reason is that the carrier mobility decreases due to phonons scattering.
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In addition, SR plays an important role in thermal characteristics. It can be inferred from
Figure 7 that under the same operating voltage, as SR increases from 1 × 10−5 cm2 KW−1 to
1 × 10−4 cm2 KW−1, the drain saturation current decreases. This is because the increasing
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SR leads to a reduction in electron mobility from 790.254 cm2 V−1s−1 to 705.194 cm2 V−1s−1.
Moreover, the increasing SR raises the maximum lattice temperature from 314.37 K to
360.76 K, as illustrated in Figure 8. This is because the increasing SR offers a low-speed
thermal conduction path for heat flow from the source and drain contacts [3]. The higher
lattice temperature further increases the probability of the phonons scattering and decreases
the carrier mobility, which finally reduces the saturation current.
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3.2. Performance Characteristics under HCI

Figure 9 shows the variation of the threshold voltage against time under HCI. It can
be concluded from Figure 9 that with an increase in operating time, the threshold voltage
increases, which is consistent with the threshold voltage variation trend shown in [25]. This
is because the carriers in the channel are continuously accelerated under the high electric
field at the drain, the carriers acquire higher kinetic energy and thus become hot carriers.
The hot carriers with high enough energy can cross the barrier of the Si/SiO2 interface and
be injected into the gate oxide layer, then break the covalent bond, which finally generates
the trapped charges. Due to the fact that the trapped charges cancel out part of the gate
voltage, the threshold voltage increases.
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According to the drain saturation current formula [26]:

Idsat =
WµnCox

L
(
Vgs − Vth

)
νsat, (1)

the saturation current and threshold voltage are negatively related. Therefore, with the
increase in operating time, the saturation current gradually decreases, as illustrated in
Figure 10.
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3.3. Performance Characteristics under the Self-Heating Effect and HCI

Figure 11 illustrates the saturation current variation under HCI and HCI with the
self-heating effect when SR is 5 × 10−5 cm2 KW−1. The red curve denotes the variation of
the saturation current under HCI against time, and the black curve represents the output
characteristic variation under HCI with the self-heating effect. It can be seen from Figure 11
that the saturation current variation under HCI with the self-heating effect is greater than
that under HCI as the operating time increases.

This is because as the operating time increases, the dissipation power increases, and
so does the carrier temperature. Consequently, the carrier temperature exceeds the lattice
temperature. Moreover, the hot carriers transfer energy to the lattice by phonon emission,
which increases the lattice temperature. An increase in the lattice temperature promotes the
probability of energy bond breakage at the Si/SiO2 interface and the probability of trapped
charges in the oxide layer. Because the trapped charges cancel out part of the gate voltage,
the saturation current at the drain decreases. From the above analysis, we can conclude that
the self-heating effect exacerbates the influence of HCI on the device saturation current.
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Moreover, we also investigate the impact of HCI with the self-heating effect on the satu-
ration current of the NFinFET under different SRs at different times. It should be noted that
the saturation current decreases gradually with an increase in SR, as shown in Figure 12. We
took electric field and electron mobility under different SRs at a time of 1000 s as an example
to illustrate the reason for the decreasing saturation current. As SR increases, the effective
electric field decreases from 1.01 × 109 Vcm−1 to 7.30869 × 108 Vcm−1, which results in a
reduction in electron mobility from 790.254 cm2 V−1s−1 to 705.826 cm2 V−1s−1 [27]. More-
over, the increasing SR hinders the thermal conduction speed from the source to the drain
contacts [3], and the thermal conductivity of SiO2 and HfO2 is relatively low, which makes
the heat dissipation slow, resulting in an increase in the maximum lattice temperature
from 314.367 K to 360.3 K. The high lattice temperature enhances the phonon scattering
and increases the probability of the Si-H bond breakage in the gate oxide, resulting in
an increase in interface trapped charges, as shown in Figure 13, which finally leads to a
reduction in the saturation current. In addition, the dissipated heat of NFinFET is less than
the electrical power, as shown in Table 4. The reason for this phenomenon is that the SR
provides resistance to the heat generation of the NFinFET, and the heat of the NFinFET is
generated by electrons colliding with phonons in the drain, ignoring the heat caused by the
collision of the electrons and phonons in other regions, which is consistent with [28].
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Table 4. Comparison of results between heat and electric power under different SRs at different times.

SR (cm2 KW−1) Time (s) Total Heat (W) Electric Power (W)

1 × 10−5

10 5.46388 × 10−5 5.71516813464 × 10−5

100 5.463616 × 10−5 5.71481694648 × 10−5

1000 5.463014 × 10−5 5.71384276547 × 10−5

10,000 5.46018 × 10−5 5.71127985774 × 10−5

100,000 5.455764 × 10−5 5.70695061607 × 10−5

1,000,000 5.454896 × 10−5 5.70600452826 × 10−5

2 × 10−5

10 5.466508 × 10−5 5.70651366756 × 10−5

100 5.466068 × 10−5 5.70593219536 × 10−5

1000 5.464068 × 10−5 5.70432883455 × 10−5

10,000 5.461038 × 10−5 5.70012833352 × 10−5

100,000 5.453421 × 10−5 5.69307354766 × 10−5

1,000,000 5.452013 × 10−5 5.69155432188 × 10−5

3 × 10−5

10 5.466111 × 10−5 5.69675211279 × 10−5

100 5.465413 × 10−5 5.6958350135 × 10−5

1000 5.46283 × 10−5 5.69331548613 × 10−5

10,000 5.45705 × 10−5 5.68673603157 × 10−5

100,000 5.446274 × 10−5 5.67580419574 × 10−5

1,000,000 5.443128 × 10−5 5.67351230947 × 10−5

4 × 10−5

10 5.463975 × 10−5 5.68634327628 × 10−5

100 5.461902 × 10−5 5.6849418515 × 10−5

1000 5.459479 × 10−5 5.68110640842 × 10−5

10,000 5.450186 × 10−5 5.67114134919 × 10−5

100,000 5.432998 × 10−5 5.6548435426 × 10−5

1,000,000 5.429868 × 10−5 5.65152385571 × 10−5

5 × 10−5

10 5.459634 × 10−5 5.6753961365 × 10−5

100 5.460443 × 10−5 5.67330566528 × 10−5

1000 5.453399 × 10−5 5.6676030086 × 10−5

10,000 5.439573 × 10−5 5.65291425804 × 10−5

100,000 5.415387 × 10−5 5.62936626834 × 10−5

1,000,000 5.410054 × 10−5 5.62481972882 × 10−5

6 × 10−5

10 5.455347 × 10−5 5.66394452119 × 10−5

100 5.451982 × 10−5 5.66088826268 × 10−5

1000 5.444668 × 10−5 5.65258175509 × 10−5

10,000 5.424986 × 10−5 5.63144653359 × 10−5

100,000 5.391934 × 10−5 5.59850969861 × 10−5

1,000,000 5.385224 × 10−5 5.59258497826 × 10−5
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Table 4. Cont.

SR (cm2 KW−1) Time (s) Total Heat (W) Electric Power (W)

7 × 10−5

10 5.449223 × 10−5 5.65197687632 × 10−5

100 5.444807 × 10−5 5.64758360032 × 10−5

1000 5.435171 × 10−5 5.63571430317 × 10−5

10,000 5.40695 × 10−5 5.6059792514 × 10−5

100,000 5.362063 × 10−5 5.56146013132 × 10−5

1,000,000 5.353012 × 10−5 5.55423612409 × 10−5

8 × 10−5

10 5.4423 × 10−5 5.63945236534 × 10−5

100 5.436438 × 10−5 5.63323025709 × 10−5

1000 5.422656 × 10−5 5.61657278472 × 10−5

10,000 5.383865 × 10−5 5.57567909814 × 10−5

100,000 5.324494 × 10−5 5.51782929022 × 10−5

1,000,000 5.315336 × 10−5 5.509621932 × 10−5

9 × 10−5

10 5.434621 × 10−5 5.62629974705 × 10−5

100 5.425804 × 10−5 5.61761841972 × 10−5

1000 5.406845 × 10−5 5.59465483844 × 10−5

10,000 5.355166 × 10−5 5.53977980035 × 10−5

100,000 5.281394 × 10−5 5.46793156284 × 10−5

1,000,000 5.270793 × 10−5 5.45942119901 × 10−5

1 × 10−4

10 5.426152 × 10−5 5.61241803495 × 10−5

100 5.414727 × 10−5 5.60047540938 × 10−5

1000 5.388327 × 10−5 5.56935774279 × 10−5

10,000 5.320421 × 10−5 5.49777477636 × 10−5

100,000 5.231724 × 10−5 5.412926789 × 10−5

1,000,000 5.222591 × 10−5 5.40506290857 × 10−5

4. Conclusions

Based on TCAD simulation results, we revealed that the self-heating effect is more
pronounced in NFinFET by comparing the thermal characteristics of different devices.
According to the thermal simulation of NFinFET, we demonstrated that the self-heating
effect increases the local lattice temperature and decreases the carrier mobility, which led
to a reduction in the saturation current. Finally, we revealed that the self-heating effect
exacerbates the impact of HCI on the drain saturation current.
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