
Citation: Gao, Y.; Yang, H.; Wang, X.;

Chen, Y.; Li, C.; Zhang, X. A

Fuzzy-Logic-Based Load Balancing

Scheme for a Satellite–Terrestrial

Integrated Network. Electronics 2022,

11, 2752. https://doi.org/10.3390/

electronics11172752

Academic Editor: Dimitris

Kanellopoulos

Received: 27 July 2022

Accepted: 29 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Fuzzy-Logic-Based Load Balancing Scheme for a
Satellite–Terrestrial Integrated Network
Yuehong Gao, Haotian Yang *, Xiaoqi Wang, Yihao Chen, Chenyang Li and Xin Zhang

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,
Beijing 100876, China
* Correspondence: haotiany@bupt.edu.cn

Abstract: With the development of communication systems, users are becoming more widely dis-
tributed and require higher speed networks. A satellite–terrestrial integrated network could provide
seamless coverage for these users. In previous studies of load balancing, initial access and load
balancing are decided on based on signal reception and are performed reactively after the overloading
occurs, which may not work well in satellite–terrestrial integrated networks. Therefore, this paper
proposes a fuzzy-logic-based load balancing scheme. In this scheme, a fuzzy evaluation metric to
pre-evaluate the user’s impact on overload is presented. The fuzzy logic system is constructed based
on adaptive neuro fuzzy system, which takes the user’s signal reception, speed and data requirement
as inputs. Then, the fuzzy-logic- and reinforcement-learning-based access is proposed to give an
access decision for all users in the network to prevent overloading. Due to the large dimensions of
action space, the reinforcement learning model is trained by the proposed fuzzy, deep, deterministic
policy gradient. Next, the fuzzy-logic-based offloading algorithm is proposed to balance load after
overloading. A simulation platform is established to evaluate the performance. Simulation results
indicate that the proposed scheme can ensure load balance for a longer time than base line schemes
while ensuring data rate of users.

Keywords: load balancing; fuzzy logic; reinforcement learning; satellite–terrestrial network

1. Introduction

Coinciding with the development of 5th generation (5G) technology, users have higher
data requirements and are widely distributed [1]. Due to the uneven distribution of
data requirements, the frequency resource utilization in any system will be also unevenly
distributed. Cells with high resource utilization are called overloaded cells. These cells
have less available resources, which may affect the quality of service (QoS) for users. Load
balancing means to transfer some traffic from overloaded cells to other available cells to
balance the frequency resources among cells. It is an important method to optimize resource
utilization and improve QoS. Reference [2] reviews the historical developments of load
balancing and provides guidance and a roadmap for developing load balancing. However,
there is a growing demand for high-rate communication in remote areas with sparsely
deployed terrestrial cells. In these areas, the frequency resources are insufficient, such that
the cells are more likely to overload. What is more, neighboring cells found by traditional
load balancing schemes may not suit being the offloading target cells due to the limitation
of coverage. Since neighboring cells are not always available, reference [3] suggests using
cells with high coverage to achieve load balancing. According to the architecture of the
future network [4], non-terrestrial cells will provide coverage for these suburban, rural
and island areas. Therefore, this paper studies an effective scheme for a satellite–terrestrial
integrated network (STIN) to solve the overloading problem.

According to the different radio access technologies (RAT) in networks, load balancing
is divided into intra-RAT load balancing and inter-RAT load balancing. Some work has
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focused on intra-RAT load balancing: In [5], a load assignment policy and a target selection
policy are proposed, which utilize the matching theory. In [6], traffic was transferred from
overloaded cells to the neighboring cells with less load to guarantee seamless handover
in 5G systems. In [7], for giant low-Earth-orbit satellite networks, the authors designed
two different handover methods for users with predictable handover times and users
with unpredictable handover times to ensure load balance. In [8], the authors used fuzzy
logic to adjust the cell individual offset (CIO) parameter in the handover process, so that
overloaded cells were more likely to trigger handover and the neighboring cells were more
likely to accept handover users. In [9], the authors also focused on CIO, but they introduced
reinforcement learning to suit dynamically changing environments. These schemes focus
on the optimization of handover events. Without considering the characteristics of satellite
coverage, these schemes may not be suitable for the STIN [10].

For inter-RAT load balancing, a heterogeneous network consisting of small cells and
traditional macro cells is one of the typical research scenarios. The authors of [11] proposed
a two-step mechanism based on two biases for RAT selection. The authors of [12] proposed
an algorithm that adapts handover margins and time to trigger. Reference [13] proposes
two different versions of simulated annealing to improve load balancing and spectral
performance. On the other hand, STIN, which is expected to achieve seamless coverage
and transmission, has also introduced many new challenges for current systems [14].
The authors of [15] used a content popularity and Stakelberg game model to propose an
effective scheme for load balancing between unmanned aerial vehicle cells and macro
cells. Reference [16] proposes an efficient scheme for load balancing by using Knapsack
and Zipf. Reference [17] formulates the problem as a constrained, multi-objective linear
programming problem to maximize the utilization efficiency between satellites. The authors
of [18] analyzed the transmission characteristics of terrestrial and back-haul links to propose
a greedy-based user association algorithm and a matching algorithm with user grouping
for balancing the load by performing multiple iterations between users and cells. In [19],
the authors noted that the current methods adopt the greedy strategy, which leads to the
load imbalance problem in cells. Thus, they defined a load coefficient and added it to
the reward function to make handover decisions while balancing loads. Reference [20]
proposes a load balancing scheme based on a load measurement metric for both a terrestrial
network (TN) and a non-terrestrial network (NTN). However, the metric ignores the impact
of user changes in the future, which may result in poor performance over a long period
of time.

Since most existing load-balancing methods are usually performed reactively after the
overload occurs [21], it would be worthwhile to design a method of active load balancing
that acts before overloading occurs. Fuzzy logic is an effective pre-evaluation method [22].
Thus, in this paper, the fuzzy evaluation metric (FEM) is proposed to evaluate the impact
of users on overloading for both TN and NTN. Then, we propose a joint load balancing
scheme to solve the problem of overloading in STIN. The joint scheme consists of two parts.
To reduce the tendency of overload before it occurs, an access algorithm is proposed: deep
reinforcement learning (DRL) is a widely utilized tool to make selection decisions in a
dynamic environment [23]. However, the neural network will not learn effectively with
too many states and actions to be explored. Therefore, the fuzzy-logic- and reinforcement-
learning-based access algorithm (FLRL-AC) is proposed. Then, to further ensure load
balance, an offloading algorithm is proposed to offload users after overloading occurs:
Existing studies on offloading usually only take the received signal as a single metric. To
take into account the impact of dynamic changes of users, a fuzzy-logic-based offloading
algorithm (FL-OL) is proposed. Finally, the fuzzy-logic-based load balancing scheme
(FL-LB) is proposed, which is the combination of FLRL-AC and FL-OL.

The rest is organized as follows. Section 2 describes the considered network structure
and the problems and solutions discussed in this paper. Numerical and simulation results,
which demonstrate and verify the analysis, are presented in Section 3. Section 4 describes
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advantages and future research areas of this study. Finally, our concluding remarks are
made in Section 5.

2. Materials and Methods

This section firstly describes the structure and problems to be solved in STIN. Then
the proposed solutions are described: The FEM is proposed to pre-evaluate the impact of
users on overloading. In the proposed FL-LB, the access algorithm runs in a centralized
control cell and determines initial access in order to prevent overloading before it occurs.
The offloading algorithm runs in each cell and determines how to offload users in the
overloaded cells. The proposed metric and algorithms are described in detail in the
following subsections.

2.1. Network Structure

We consider an L× L area in the STIN network. There are in total N, cells including
N− 1 terrestrial cells, and one satellite hanging overhead. Terrestrial cells are modeled with
reference to [24] and distributed sparsely in hexagonal cellular cell mode with the inter site
distance (ISD) D. The satellite is modeled as a geostationary Earth orbit (GEO) satellite [25].
The coverage diameter of a single beam of the satellite is usually 50 to 250 km, which is very
large compared with TN coverage. Therefore, in the system we assume the central beam of
the satellite covers the whole TN area. TN and NTN cells differ in bandwidth, defined as
Bg and Bs. M users are randomly distributed, requiring data transfer at a random rate with
an average of Ravg. Users move at a fixed speed v and with random angles.

TN channel is modeled as a downlink channel with additive white Gaussian noise
and Rayleigh fading. The maximum achievable rate is expressed as

Cm,n = B
nRB
NRB

log2

(
1 +

ps|h|2

Γ(ε)d2
m,nN0

)
, (1)

where Cm,n is bit rate between user m and cell n, nRB is the number of assigned resource
blocks (RB), B is the maximum usable bandwidth of the cell, NRB is the total number of
RB, ps is the transmission power and ε is the target block error rate (BLER).

Γ(ε) = −2 lg (5ε)

3
(2)

represents the signal to noise ratio (SNR) margin to meet the desired target BLER with the
QAM constellation [26].

h =
1√
2
(N(µ0, σ0) + j · N(µ0, σ0)) (3)

is the channel fading coefficient where N(µ, σ) means a Gaussian random number in
Equation (4). dm,n is the distance between user m and cell n. N0 is the noise power.

X ∼ N(µ, σ) : f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (4)

The altitude of GEO is 35,536 km. It has a typical reflector antenna with a circular
aperture [25]. We consider the simulation area is in the coverage area of the central beam
and that the elevation angle of the beam’s center is 90◦. The NTN channel is modeled with
reference to [27], and the inter-beam interference is modeled with reference to [28], and
they are not described in detail due to our being limited in space.

2.2. Problem Description

The process of load balancing in STIN with sparsely deployed TN cells is shown in
Figure 1. Some users are on the edge of the area, having poor signal reception and requiring
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more bandwidth. Some users cannot find a better cell to handover. These make TN cells
likely to overload in this network. An example is shown in Figure 1. The solid arrows
point to cells that users are currently accessing. The dashed arrows point to cells that
users previously accessed. User a and user b are users on the edge of the area that initially
accesses the NTN cell. When the TN cell A suffers overloading, user c is selected to be
offloaded to the NTN cell, and user d is selected to be offloaded to the adjacent TN cell
B for relatively better QoS. Thus, the problem is split into two sub-problems: the access
algorithm decides which cell users initially access, and the offloading algorithm decides
which users are offloaded and how to offload them.

Figure 1. Diagram of load balancing in a satellite–terrestrial integrated network.

For the access algorithm, according to the link budget, in a scenario where cells are
sparsely deployed, such as the rural scenario in 3GPP [24], the average SNR is 9.21 dB. In
the coverage range of the central beam of a GEO satellite, the average SNR is only 2.95 dB.
If the received signal quality is used to determine initial access, only a few users will access
the NTN cell. As a result, NTN resources are not effectively utilized and TN cells are more
likely to overload. To limit access to the NTN to suitable users, we aim to consider not only
received signal, but also the impact of users on cell overloading. Therefore, fuzzy logic is
utilized to propose an overload evaluation metric. Then, to deal with dynamic changes
in the environment and determine the appropriate number of users allowed to access the
NTN, the FLRL-AC is proposed.

For the offloading algorithm, even if the initial access is optimized, overloading may
still occur after a certain period of time due to users’ movements, especially when the user
density in the environment is large. Additionally, if the FLRL-AC is utilized to make a
global re-access decision at this time, the QoS of users in the cells which are not overload is
affected. Therefore, the FL-OL is proposed for those overloaded cells. The FL-OL offloads
the most suitable users to the most suitable cells by utilizing FEM.

2.3. The Fuzzy Evaluation Metric

Existing load balancing methods are usually performed reactively after the overload-
ing occurs. Active load balancing adapts the network in advance to prevent overloading
and improve performance. Therefore, this paper firstly proposes a metric to pre-evaluate
the impact of users on overloading, which helps the networks to make further decisions.
Considering the differences in carrier frequency and bandwidth between TN and NTN, and
the difficulty of explicitly evaluating overload tendency, fuzzy control is utilized [29] for the
metric. It provides a unified measurement to evaluate the impact of users on overloading
in STIN. An adaptive neuro fuzzy network (ANFN) is utilized to build the fuzzy system.
The training network is shown in Figure 2. In the following, the structure of each layer of
the network is described.
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Figure 2. Adaptive neuro fuzzy network structure.

In the input layer, SNR, relative speed and data rate are selected as the inputs by
considering the Shannon formula C = B log2(1 + SNR): SNR and the target rate. Channel
with low SNR needs more bandwidth to transmit data at the same target rate, which is
more likely to cause overload. In addition, if the user is getting closer to the cell, SNR
between them will get better, otherwise it will get worse. Additionally, if the SNR is the
same, users with higher data rates will require more bandwidth. Measurements of SNR
and data rate requirements are in the same way in both RAT. The movement of user could
be expressed by the relative speed between user and cell. Since the satellite is far from the
Earth, the moved distance of the user in a short period of time can be ignored relative to the
satellite height. Thus, the speed relative to the satellite is considered to be 0 in this paper.
It is difficult to directly judge whether SNR, relative speed and data rate are high or not.
Therefore, we take them as the three inputs in the “input” layer.

The “inputmf” layer uses membership functions to convert input values into fuzzy
values. Commonly utilized membership functions are triangular, trapezoidal, Gaussian and
bell-shaped. Since the relationship between inputs and output is not linear, the Gaussian
membership function was selected.

f (x, c, σ) = e−
(x−c)2

2σ2 , (5)

where c determines the center position of the function. σ determines the width of the
function. Both c and σ are trained by the ANFN. The fuzzy system has three inputs, and
there are P, Q and R fuzzy concepts for each input, respectively. The membership degrees
of inputs to different fuzzy concepts could be calculated via the membership functions. In
this paper, both P, Q and R are set to 5, based on five fuzzy concepts: very bad (VB), bad
(B), medium (M), good (G) and very good (VG). For each input, there are five membership
functions subjecting to the same distribution with different parameters.

The “rule” layer pairs P fuzzy concepts of the first input, Q fuzzy concepts of the
second input and R fuzzy concepts of the third input to obtain P × Q × R fuzzy rules.
T-S fuzzy reasoning is utilized in the proposed fuzzy system. For the lth rule, the first
input x is Xi, the second input y is Yj and the third input z is Zk. The mapping result ul is
calculated by

ul = pl xi + qlyj + rlzk + cl , (6)
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where l = (i− 1)QR + (j− 1)R + k; i ∈ [1, P], j ∈ [1, Q], k ∈ [1, R]. pl , ql , rl and cl are
parameters of the lth rule trained by ANFN; Xi, Yj and Zk are the ith, jth and kth fuzzy
concepts of the three inputs; xi, yj and zk are the membership degree values calculated by
the corresponding membership functions.

The “outputmf” layer uses weighted average method to consider the influence of each
fuzzy rule comprehensively. The output fuzzy evaluation metric f is calculated by

f =
∑ wlul

∑ wl
=

∑ xiyjzkul

∑ xiyjzk
, (7)

where l = (i− 1)QR + (j− 1)R + k, i ∈ [1, P], j ∈ [1, Q], k ∈ [1, R]. wl is the weight of the
lth rule calculated by the product method.

In order to train the ANFN, multiple groups of user trajectories; SNR; relative speeds
and data rate requirements at each time and location; and the average required bandwidth
for a period of time, were generated via simulation. The ANFN was trained with these
simulation data. The smaller the value is, the greater the impact is.

2.4. The Fuzzy-Logic- and Reinforcement-Learning-Based Access Algorithm

Traditionally, users access the cell with the best reference signal receiving power
(RSRP) [30]. According to the link budget, this may not work well in the STIN studied in
this paper. In order to reduce the occurrence of overloading, to reduce the frequency of
calling offloading algorithms and ensure QoS, the intelligence of reinforcement learning is
introduced to make access decisions. In the following, the proposed FLRL-AC is described.

Reinforcement learning is a common method for intelligent decision. It obtains learn-
ing information and updates model parameters by calculating the rewards for actions in
the current state of the environment. Reinforcement learning is divided into two categories:
One is value learning, which uses a neural network to approximate the optimal action value
function, such as Q-Learning or a deep Q-network. The other is policy learning, which uses
a neural network to approximate the policy function, such as the actor–critic method. In
this paper, reinforcement learning is used to select the initial access cell for each user so
that the action dimensions are NM. Due to exponential expansion and large dimensions of
action space, a deep deterministic policy gradient (DDPG) [31] which is compatible with a
large dimension state and actions is utilized in the proposed algorithm. FEM is utilized in
DDPG in order to further reduce the difficulty of training and enable the decision to have a
better impact on the future state, which is called fuzzy deep deterministic policy gradient
(FDDPG) in this paper. In the following, we will describe the Markov decision process of
the problem and the FDDPG training process.

(1) State space: The sate space describes the environment. It reflects the relative
positions, relative motions and channel states between cells and users. Thus, the state at
time t is defined as

st =
(

f t(1, 1), f t(1, 2), · · · , f t(M, N)
)
, (8)

where f t(m, n) means the FEM between user m and cell n at time t.
(2) Action space: To make better access decisions, the index of cell is set as the action.

In Equation (9), ACt(m) ∈ [0, N] means the index of cell which user m accesses at time t.

at =
(

ACt(1), ACt(2), · · · , ACt(M)
)
. (9)

(3) Reward function: The proposed access decision method aims at maximizing the
total reward of the access selections for all users. The discounted total reward is

Rt =
∞

∑
T=0

γT · rt+T = γT
(

a1 · rt+T
1 + a2 · rt+T

2 + a3 · rt+T
3

)
, (10)
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where γ is the reward discount and rt is the per-time reward. In this paper, the per-time
reward is composed of three parts, rt

1, rt
2 and rt

3. For the first part,

rt
1 =

∑M
m=1 f t(m, ACt(m)

)
M

, (11)

the design goal is to reduce the overloading tendency in the future. Thus, rt
1 equals the

average value of the FEM of all users. At meanwhile, for the second part,

rt
2 =

N

∑
n=1

Ot(n), (12)

we hope to keep load balanced at the current time by minimizing the number of overloaded
cells. rt

2 equals the overload penalty for all cells, where

Ot(n) =

{
1, i f ηt

n ≥ Θ

0, otherwise
(13)

indicates whether cell n is overloaded at time t. ηt
n = Bt

n
BC

is the radio resource utilization
ratio (RRUR) of cell n at time t, where Bt

n is the occupied portion of the bandwidth of cell
n and BC is the total bandwidth resources of the cell. For terrestrial cells, BC is equal to
Bg. Additionally, for the satellite, BC is equal to Bs. Θ is the overload threshold. For TN
cells, the threshold is Θg. Additionally, for the NTN cell, the threshold is Θs. In order to
minimize the resource utilization ratio and balance the resource utilization, the third part
of the reward is defined as

rt
3 =

N−1

∑
n=1

ηt
n + ws · ηt

N +
∑N

n=1

(
ηt

n −
∑N

n=1 ηt
n

N

)2

N
, (14)

where the weighted value of the sum and the variance of RRUR is included in rt
3. Due

to the large bandwidth, the NTN resources are enough to load many users. If there is no
additional limit on accessing NTN, the agent will tend to let as many users as possible
access the NTN to avoid overloading in TN cells. In order to prevent the transmission
delay of users from being affected, we use the additional weight ws to increase the impact
of resource utilization of the NTN cell.

(4) The training process of the FDDPG algorithm: As in DDPG, FDDPG has two
components, actor and critic. The actor network defined as µ

(
st) takes st as input and

returns action at. The critic network defined as Q
(
st, at) returns long-term reward based

on states and actions. Q
(
st, at) can be expressed as

Q
(
st, at) = E[rt|st, at] ≈ E[rt + γQ

(
st+1, µ

(
st+1

))
] (15)

according to the Bellman equation, where E[·] means expectation and γ means the re-
ward discount.

DDPG combines actor–critic and DQN, so there are four networks in total. The
actor network µ

(
st) and actor target network µ′

(
st) have the same structure, but different

parameters θµ and θµ′ and different update frequencies. The critic network Q
(
st, at) and

critic target network Q′
(
st, at) have the same structure, but different parameters θQ and

θQ′ and different update frequencies. For the activation function, the linear rectification
function (ReLU) is utilized in hidden layers and the hyperbolic tangent function is utilized
in output layers.
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Figure 3 shows the training structure of the proposed fuzzy reinforcement learning. In
each episode during the training process, users’ positions and velocities are randomly reset
to reset the environment. In each training step, the three fuzzy inputs are obtained from
the environment and the state st is obtained based on Equation (8). In order to speed up
training, st is normalized to get

ŝt =
(
st(m, n)−mod

(
st(m, n), β

))
(16)

with the normalization coefficient β, where m ∈ [1, M], n ∈ [1, N].

Figure 3. The fuzzy deep deterministic policy gradient training structure.

To explore new states, the output of the actor network is added by random noise. The
action at is obtained by

at = µ
(
ŝt|θµ

)
+ N(0, var), (17)

in which the noise is a Gaussian random number with mean value of 0 and variance of var.
After performing at on the environment, rt and the next state ŝt+1 can be obtained from the
output of the environment. To break the association between data,

(
ŝt, at, rt, ŝt+1) is stored

in a replay buffer. θµ, θµ′ , θQ and θQ′ are updated by sampling a mini-batch with size K
from the replay buffer. The loss function of the critic network is defined as

L
(

θQ
)
= Eµ′ [

(
yt −Q

(
ŝt, at|θQ

))2
],

yt = rt + γQ′
(

ŝt+1, µ′
(

ŝt+1
)
|θQ′

)
,

(18)

which is the temporal difference error between the outputs of θQ and θQ′ . Thus, the gradient
of critic network is calculated by

5a Q
(

s, a|θQ
)
|s=ŝt ,a=µ(ŝt |θµ). (19)

By applying the chain rule to the expected return from the start distribution J with
respect to the actor parameters [31], the actor is updated by Equation (20). θQ and θµ can
be updated via gradient descent method.

5θµ J ≈ 1
K ∑

t
[5aQ

(
s, a|θQ

)
|s=ŝt ,a=µ(ŝt |θµ)5θµ µ(s|θµ)|s=ŝt ]. (20)

The weights of target networks θQ′ and θµ′ are updated based on the weights of θQ

and θµ, as in Equations (21) and (22). The detailed training process is shown in Algorithm 1.

θQ′ ← θQ + (1− τ)θQ′ . (21)
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θµ′ ← θµ + (1− τ)θµ′ . (22)

Algorithm 1. Fuzzy reinforcement learning training algorithm.

Require: Training episodes Emax, training steps for each episode Tmax, learning rate of actor
network αA, learning rate of critic network αC, initial exploration rate vinit, exploration
discount vdis, minimum exploration rate vmin, replay buffer size G, mini-batch size K,
reward discount γ, update rate τ.

1: Randomly initialize the weights of actor network and critic network as θµ and θQ, the
initial weight of actor target network θµ′ is same as θµ and the initial weight of critic
target network θQ′ is same as actor network θQ

2: Initialize the empty replay buffer, initialize exploration rate var as vinit
3: for each episode ep in range (1, Emax) do
4: Randomly set users’ positions and speeds and data requirements to reset environment
5: for each step t in range (1, Tmax) do
6: Get fuzzy inputs from the environment, get st and ŝt from Equations (8) and (16)
7: Get at from Equation (17)
8: Perform at to the environment and get rt from Equations (11)–(14)
9: Get st+1 and ŝt+1 from Equations (8) and (16)

10: Store
(
ŝt, at, rt, ŝt+1) in replay buffer

11: if the replay buffer is full then
12: Replace a data randomly by

(
ŝt, at, rt, ŝt+1)

13: Update exploration rate, var = max(var · vdis, vmin)
14: Sample a mini-batch of size K from the replay buffer
15: Update θQ by Equation (19)
16: Update θµ by Equation (20)
17: Update target networks by Equations (21) and (22)
18: end if
19: end for
20: end for
21: Training completed, save the actor network

2.5. The Fuzzy-Logic-Based Offloading Algorithm

The algorithm above provides the access policy for all users to prevent cells from
overloading. However, with the irregular movements of users, some cells could still
overload after a long enough period of time. At this moment, to ensure the service quality
both at the time of offloading and in the future, FL-OL is proposed to select appropriate
users to be offloaded. In the following, the proposed FL-OL is described.

Consider a set of cells S = {s1, s2, · · · , sN}. Whenever the resource utilization rate ηi of
the TN cell si ∈ S, i 6= N is higher than the threshold Θg, it is considered as an overloaded
TN cell. Consider a set of users Ui = {ui

1, ui
2, · · · , ui

Mi
} which are served by cell si. Mi

is the total number of users served by the cell si. f i
j is the FEM between cell si and user

ui
j; j ∈ [1, Mi]. ui

ĵ
is the user with the minimum value of the evaluation metric fmin = f i

ĵ
.

Calculate the FEM f i′
ĵ

between cell si′ , i′ ∈ [1, N], i′ 6= i and user ui
ĵ
. Due to the long distance

between users and the GEO satellite, relative speed can be ignored for the NTN cell sN .
Thus, f N

ĵ
is only influenced by user’s position and the randomness of the channel. If there

is any f i′
ĵ

higher than fmin, select the cell sî with the maximum value of the evaluation

metric. If î 6= N, check whether ηî is higher than Θg after offloading ui
ĵ

to sî. If not, sî is

selected as the target cell. Otherwise, it means that user ui
ĵ

is at the outer edge of the area

and there is no more suitable TN cell for this user. Thus, ui
ĵ

is offloaded to the NTN cell on

the premise that ηN is not higher than Θs. The algorithm will continue to find new ui
ĵ

with
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new fmin and offload until the current cell si is no longer overloaded. The whole process is
summarized by Algorithm 2 as follows.

Algorithm 2. The fuzzy logic offloading algorithm.

Require: Resource utilization rate ηk, k ∈ [1, N] of cells in S = {s1, s2, · · · , sN}
1: while ηi ≥ Θg, i ∈ [1, N − 1] do
2: Get users Ui = {ui

1, ui
2, · · · , ui

Mi
} severed by si

3: for ui
j in Ui, j ∈ [1, Mi] do

4: Get f i
j by FEM and save in a set F

5: end for
6: Sort F in ascending order and get the first user ui

ĵ
with fmin = f i

ĵ
7: for i′ ∈ [1, N − 1], i′ 6= i do
8: Calculate ηi′ assuming ui

ĵ
is offloaded to si′

9: if f i′
ĵ
> fmin and ηi′ < Θg then

10: Save f i′
ĵ

in a set F′

11: end if
12: end for
13: if F′ is not empty then
14: Sort F′ in descending order and get the first cell sî
15: Offload ui

ĵ
to sî

16: else if ηN < Θs then
17: Offload ui

ĵ
to NTN cell

18: else
19: break;
20: end if
21: Update ηk, k ∈ [1, N]
22: end while

3. Results

In this section, the simulation scenario is presented and parameters are set to train the
networks both by the proposed scheme and several typical algorithms, including DDPG,
proximal policy optimization (PPO) [32] and the adaptive multi-RAT mobile offloading
algorithm (AMMO) [20]. Simulation results show that compared with baseline schemes,
the proposed scheme solves the overloading problem in STIN more effectively.

3.1. Simulation Environment

Referring to the rural scenario in 3GPP [24], D was set to 1732 m. We supposed there
were three TN cells in the area; thus, N = 4. The width of the area L was set to 3500 m.
To compare the performance of the proposed scheme with different user densities, 5 to
30 users per TN cell were deployed, which means M was set from 15 to 90. The TN cells
worked at 4 GHz with 30 MHz bandwidth. The GEO satellite worked in the Ka band
(20 GHz) with 400 MHz bandwidth. The threshold of TN was set to 85%. Considering
that the simulation area only accounts for a small part of the satellite coverage area, the
threshold of NTN was set to 30%. There was no signal interference between the cells of
TN and NTN. Other parameters mentioned in the previous sections were configured as in
Table 1.
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Table 1. Parameter configuration.

Parameter Value

L 3500 m
N 3
M 15∼90
D 1732 m
Bg 30 MHz
Bs 400 MHz
ε 0.1
ps 46 dBm
N0 5× 10−5 w
µ0 0
θh 1
v 10 m/s

Ravg 10 Mbps
P 5
Q 5
R 5

Θg 85%
Θs 30%

Membership functions of the three inputs trained by ANFN are shown in Figure 4. The
performances of the proposed scheme based on FEM are described in the following subsections.
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Figure 4. Input membership functions.

3.2. Performance of the Fuzzy-Logic- and Reinforcement-Learning-Based Access Algorithm

The FDDPG model utilized in FLRL-AC was trained by Algorithm 1 and the hyper-
parameters in Table 2. In order to reflect the improvements of FDDPG, two other baseline
algorithms were utilized to train the neural networks. PPO is based on an actor–critic
network similar to that of DDPG, which can solve the problem of continuous control.
It balances the difficulty of implementation, the complexity of sampling and the effort
required for debugging. For these reasons, it is widely used as a default reinforcement
learning algorithm for new problems. The other baseline algorithm was DDPG without the
ANFN, in which the state function and reward function are defined as

st =
(
ζt(1, 1), ζt(1, 2), · · · , ζt(M, N)

)
, (23)

rt
1 =

∑M
m=1 ζ

(
m, ACt(m)

)
M

, (24)

instead of Equations (8) and (11); and ζt(m, n) means SNR between user m and cell n at
time t.
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Table 2. Training parameters.

Parameter Value

Emax 10,000
Tmax 100

a1 0.1
a2 0.3
a3 0.2
ws 2
αA 0.001
αC 0.002
β 5

vinit 10
vdis 0.999997
vmin 0.01

G 5000
K 64
γ 0.001
τ 0.01

The environment was reset and users were dropped randomly in each drop. Users
accessed cells based on different algorithms at time slot 0 and moved in later time slots.
The overload ratio (OLR) is defined as

OLR =
Nol

Ntotal
, (25)

where Nol is the number of time slots in which overloading occurs and Ntotal is the total
number of the simulation slots.

Results with different access algorithms are shown in Figure 5. RAND means users
access randomly, which is considered as the lower limit. BCA [30] means users access
with the best channel state. As the number of users increases, the OLR increases for all
algorithms. The purpose of designing FDDPG and FLRL-AC was to pre-process the factors
affecting overloading by ANFN and to reduce the training difficulty of the network in a
high-dimensional state and action space. Additionally, the FEM calculated by ANFN gives
a more accurate evaluation of the impact of users on overloading. Therefore, taking the
statistics of FEM as the reward function could enable the agent to make better decisions.
The advantages brought by FDDPG are not obvious when the number of users is small and
the training dimensions are not too high. Therefore, the three curves of PPO, DDPG and
FDDPG are close. As the number of users increases, the results of BCA become unacceptable
because the resources of NTN cell are not effectively utilized, resulting in overloading of
TN cells. PPO and DDPG have similar performances to the two baseline algorithms, and
the gain brought about by FDDPG becomes more and more obvious with the increase users:
up to 29%.

Users who achieve their data requirements are called satisfied users. The satisfied
ratio (SR) is defined as

SR =
Ms

Mtotal
, (26)

where Ms is the number of satisfied users and Mtotal is the total number of users.
Results in Figure 6 show that with RAND and BCA, many users fail to achieve their

target rates. With the three access algorithms based on reinforcement learning, there are
always more than 97% of users who achieve their data rate requirements, which again
proves that active load balancing can significantly improve QoS.
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Figure 5. The overload ratio with different algorithms.
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Figure 6. The satisfied ratio with different algorithms.

3.3. Performance of the Fuzzy-Logic-Based Offloading Algorithm

In order to evaluate the performance of the offloading algorithm, a special user drop-
ping method was used. Two of the cells with more users were dropped to emulate overload-
ing. Additionally, users accessed cells based on the basic algorithm, BCA. The proposed
FL-OL is compared with AMMO. Whenever overloading occurred, the two offloading al-
gorithms were utilized, respectively, to offload users to other available cells. After a period
of time, the cell could overload again due to the dynamic changes of the environment.
The time interval of the first or second overload time is called the next overload interval.
Although the current signal reception quality of some users is poor, they may be moving
toward the current serving cell and away from adjacent cells. Such users are likely to be
selected if the offloaded users are selected only according to RSRP, which may bring a
heavy load to the adjacent cell. The rate requirement is also an important factor. Low rate
users have little impact on the overloading and should have a lower priority for being
offloaded. Unlike AMMO, FL-OL takes the above factors into account by introducing FEM
and should be able to prolong the time with a balanced load for the system.
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Figure 7 shows the next overload interval for the two algorithms and different numbers
of users. The next overload interval of both algorithms decreases with the increase in users
due to limited frequency resources. FL-OL makes the next overload interval longer by
about 17%. It proves our inference that by considering future changes, FL-OL prolongs the
time that the system maintains load balance. In the long run, it will reduce the number of
times of calling the offloading algorithm and the number of times of handover.
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Figure 7. Next overload interval with different algorithms.

With an increase in users and limited TN frequency resources, it is more difficult to
balance load when only relying on TN cells. The number of users served by each satellite
is increasing. However, there are always less users offloaded to NTN with the proposed
FL-OL due to it making more effective use of the TN’s resources. As shown in Figure 8,
FL-OL reduces users affected by the delay of long-distance transmission of satellite-user
link by up to 14% compared with the existing algorithm.
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Figure 8. Number of users served by a satellite with different algorithms.

Furthermore, to verify the effectiveness of the proposed algorithm, Figure 9 shows
the average data rate before and after offloading. With an increase in users, the limited
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resources of the overloaded cell struggle more difficult to meet users’ rate requirements so
that the average rate decreases significantly. After performing offloading, the average rates
increased by 10% to 70% with different user numbers, and users basically met their target
data rates. The results show that overloading will significantly affect QoS, and once again
verifies that the scheme of reducing the overloading through active load balancing in this
paper is meaningful.
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Figure 9. Average rate with different algorithms.

3.4. Performance of the Fuzzy-Logic-Based Loading Balancing Scheme

In previous subsections, the performances of the two parts of the FL-LB were evalu-
ated. Combining the two parts, the performance of FL-LB is evaluated in this subsection.
Different access algorithms and offloading algorithms were paired to obtain the follow-
ing four baseline joint schemes. BCA∼RSRP means to access based on BCA and offload
based on RSRP. BCA∼FL-OL means to access based on BCA and offload based on FL-OL.
FLRL-AC∼RSRP means to access based on FLRL-AC and offload based on RSRP. Finally,
FLRL-AC∼FL-OL is the FL-LB proposed in this paper, which means to access based on
FLRL-AC and offload based on FL-OL.

Results in Figures 10 and 11 show that BCA∼RSRP had the worst performance with all
user numbers because it does not consider any dynamic changes in the environment. FLRL-
AC∼RSRP performed better with smaller numbers of users, and BCA∼FL-OL performed
better with larger number of users. This is because in the two parts of the FL-LB, the access
algorithm plays a more important role when the number of users is small. No matter how
good the access decision is, overloading will occur when the number of users is too large.
Therefore, a better offloading algorithm should be used for the overloading cells in time.
This is the reason why the FL-LB proposed in this paper retains the reactive load balancing
part. Finally, FL-LB had the best performance with all user numbers. Therefore, FL-LB
can effectively reduce the occurrence of overloading in a longer term and improve QoS for
users in STIN.



Electronics 2022, 11, 2752 16 of 18

9 10 11 12 13 14 15 16

Number of Users per Terrestrial Cell

0

10

20

30

40

50

60

O
L

R
 (

%
)

BCA~RSRP

BCA~FL-OL

FLRL-AC~RSRP

FL-LB
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Figure 11. The satisfied ratio with different joint schemes.

4. Discussion

Contributions of this paper are presented in this section. Existing load balancing
schemes usually focus on the offloading algorithms, which are executed after overloading.
Note that once overloading occurs, data rates of users decrease significantly. Therefore, we
utilized FEM to learn and evaluate users’ impacts on overloading in the future, and propose
an active load balancing scheme to ensure data rates. Furthermore, the proposed FDDPG
adds an adaptive neuro fuzzy network before the original DRL network. Compared with
the widely utilized PPO and DDPG, FDDPG pre-filters the data relations that the DRL
network needs to learn, thereby reducing the training difficulty of the DRL network and
obtaining better training results. On the other hand, the proposed FL-OL makes FL-LB
retain the ability of reactive load balancing on the basis of active load balancing. When the
ANFN is trained, the complexity of calculating FEM is only related to the number of input
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variables and the number of membership functions in the ANFN. Therefore, the computa-
tional complexity of calculating FEM will not increase with increases in base stations and
users. Compared with the existing method, FL-OL maintains the same complexity O(MN)
while utilizing FEM to consider the impact of offloading selection on overload in the future
and extending the next overload interval.

However, FDDPG still needs more than 106 training steps even after pre-filtering
by FEM. This is because the proposed scheme hopes to run on the central control cell
and give the access decision for all of the users. This inevitably leads to a large state
space and action space. On the other hand, compared with the existing algorithms
that only focus on reactive load balancing, the FLRL-AC in FL-LB obviously increases
the computational complexity, even though it is thought acceptable compared with the
QoS gain. In order to solve these problems, multi-agent deep reinforcement learning
(MADRL) based load balancing is a future research area. If FLRL-AC is distributed
to each cell, the complexity of training will be greatly reduced. Additionally, in this
case, since the decision dimension is the same, the access algorithm and the offloading
algorithm can be more deeply combined so that to reduce the additional computing
overhead brought by the access algorithm.

5. Conclusions

Existing studies on load balancing in STIN only considered a single metric of signal
reception. When users move and require data randomly, the baseline schemes may not
have acceptable performance in the long term. Active load balancing methods could
obtain performance gains compared with the existing reactive methods. Considering
the randomness of users in the future and the difficulty of explicitly evaluating overload
tendency, we proposed an overload tendency evaluation metric based on fuzzy logic. Then,
the overloading problem in STIN was solved by the proposed FL-LB: An access algorithm
for all users called FLRL-AC was proposed, which prevents overloading while considering
the characteristics of NTN. An offloading algorithm for the already overloaded cells called
FL-OL was proposed, which balances load between cells. The fuzzy logic network is trained
by ANFN, and the neural network in FLRL-AC is trained by FDDPG. Results show that
FL-LB reduces the possibility of overloading before it occurs and makes cells maintain a
longer load balance after offloading to ensure QoS for users.
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