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Abstract: Detecting and counting on road vehicles is a key task in intelligent transport management
and surveillance systems. The applicability lies both in urban and highway traffic monitoring
and control, particularly in difficult weather and traffic conditions. In the past, the task has been
performed through data acquired from sensors and conventional image processing toolbox. However,
with the advent of emerging deep learning based smart computer vision systems the task has become
computationally efficient and reliable. The data acquired from road mounted surveillance cameras
can be used to train models which can detect and track on road vehicles for smart traffic analysis and
handling problems such as traffic congestion particularly in harsh weather conditions where there are
poor visibility issues because of low illumination and blurring. Different vehicle detection algorithms
focusing the same issue deal only with on or two specific conditions. In this research, we address
detecting vehicles in a scene in multiple weather scenarios including haze, dust and sandstorms,
snowy and rainy weather both in day and nighttime. The proposed architecture uses CSPDarknet53
as baseline architecture modified with spatial pyramid pooling (SPP-NET) layer and reduced Batch
Normalization layers. We also augment the DAWN Dataset with different techniques including Hue,
Saturation, Exposure, Brightness, Darkness, Blur and Noise. This not only increases the size of the
dataset but also make the detection more challenging. The model obtained mean average precision of
81% during training and detected smallest vehicle present in the image

Keywords: traffic surveillance; intelligent traffic monitoring; urban and highway traffic analysis;
artificial intelligence; deep learning; vehicle detection

1. Introduction

Over the last decade, deep neural networks have greatly influenced our way of
working and processing information. Particularly, their ability to perceive, understand and
analyze the visual information accurately and quickly has made them an important part of
computer vision applications such as image classification [1–7], semantic segmentation [8–13],
object detection [14–19] and object segmentation [20–26].

The task of object detection aims to detect instances of different objects for example
humans [27–30], animals [31–33], trees [34–37], vehicles [38–41] or other items present
in digital media such as images and video frames. To automate this task machine and
deep learning involves developing computational models which are trained by learning
class-specific features using huge amount of annotated data and then localizing and
generating bounding boxes around each instance and label them. This makes object
detection a super task of many other smaller tasks such as image captioning [42–45], object
tracking [46–49], instance segmentation [50–52] and instance counting [53–56].
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2. Approaches to Object Detection

Object detection methods can be mainly classified into classical methods which relies
on manual feature extraction algorithms with a machine learning classifier and the recent
more robust methods which depends on deep learning models for automatic feature
extraction.

2.1. Object Detection Using Machine Learning

Classical methods of detecting objects within a media involves feature extraction
algorithms such as HOG [57–63], HAAR [64–74] and SIFT [75–81] to manually craft
features. Secondly, using a classifier such as support vector machine [8,82–86] and K
Nearest Neighbor [84,87,88] to classify multiple objects within an image. The general
processing pipeline is shown in Figure 1.

Figure 1. General processing pipeline of object detection with machine learning classifier.

2.2. Object Detection Using Deep Learning

Deep Learning based algorithms provide a more robust and accurate solution to the
problem of object detection. There is no need for a separate feature description part, rather
the model is trained using images with bounding boxes and class labels. Thus the model
learns automatically the visual attributes present in the underlying image. In the past
few years, the task of object detection using deep learning is performed by a number
of algorithms including RCNN, Fast RCNN, Faster RCNN, YOLO, YOLOv2, YOLOv3,
YOLOv4 and RetinaNet.

2.2.1. RCNN Family

The algorithms belonging to this family are called “Classification Based Algorithms”.
The first variant based on AlexNet as CNN backbone, known as Region based Convolution
Neural Network or R-CNN was proposed by [89] in 2015. The network works by first
identifying the regions with the probability of having objects. The rectangular boundaries
are drawn using a selective search algorithm containing many ROI (Region of Interest). All
these candidate b ounding boxes are passed into the layers of convolution neural network.
The CNN extract individual features from each bounding box. The output vector from the
CNN representing the feature map is passed on to the classifier which then classifies each
one of them into object and not object. The Fast RCNN [90] is inspired by Spatial Pyramid
Pooling Network [91], The limitation of multi staged pipeline architecture which was the
reason for slow training was overcome by the same author by applying CNN over whole
image only once. The architecture of RCNN and Fast RCNN fron the papers are shown in
Figure 2a,b.
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(a) RCNN

(b) Fast RCNN

Figure 2. Architecture of RCNN and fast RCNN.

The more refined and improved algorithms proposed under this family includes [92–95].

2.2.2. YOLO Family

YOLO is an abbreviation of “You Only Look Once” which is a regression based algorithm.
It is a class of Convolution Neural Network which is meant for fast and accurate object
detection in a single go. Soon after it was released in 2015 by [96], it gained world
wide attention and many papers have been published on the topic from 2015 till now
including [93,97–101]. The basic architecture of YOLO contains DarkNet as a backbone.
DarkNet is an open source framework to implement neural networks written in C language
and CUDA. It supports CPU and GPU computing, is quick, and is simple to install. The
YOLO comprises of CNN layers, where vanilla YOLO by [96] contains 24 conv layers and
2 fully connected layers, whereas Fast Yolo [102] contains 9 convolutional layers.

The algorithm works by dividing an input image into grids of size SXS. Each grid is
responsible for predicting a number of bounding boxes for an object. Each bounding box
is represented by five parameters as represented in Equation (1). Out of many bounding
boxes the one with highest confidence score is selected. This is conducted by applying Non
Maximum suppression (NMS) over all bounding boxes.

Bounding_Box =
{

Pcon f idence, x, y, w, h
}

(1)
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Here, x and y represents the centre coordinates of the bounding box, w is the Width
of the Bounding Box, h is the Height of the Bounding Box and, P_con f idence represents
the Probability in terms of Score from 0 to 1 that the Bounding Box contains an object. In
addition, all YOLO models share the same architecture, which is broken down into the
following components.

1. BackBone: It consists of a convolutional neural network that gathers and generates
visual features of various sizes and shapes. The feature extractors employed are
classification models such as ResNet, VGG, and EfficientNet.

2. Neck: A group of layers that combine and mix traits before sending them to the
prediction layer.

3. Head: Combines the predictions from the bounding box with features from the
neck. The features and bounding box coordinates are subjected to classification and
regression in order to complete the detection procedure. normally produces 4 values,
including width, height, and x, y coordinates.

The other versions of YOLO include;

• YOLOv2: [96] overcomes the limitations in the previous version by replacing the
backbone architecture with DarkNet19 which results in faster detection with mAP of
78.6% on 544 × 544 resolution images from PASCAL VOC 2007 dataset. Moreover,
out of the some improvements in this version compared to the predecessor, the first
one is the addition of batch normalization layer for enhanced stability in the network.
Secondly, the replacement of grid boxes with anchor box which allows the prediction
of multiple objects. The ratio of overlap over union IoU between the predetermined
anchor box and the anticipated bounding box is calculated. The IoU value is a threshold
used to determine whether or not the likelihood of the identified object is high enough
to make a forecast.

IOU =
area_o f _overlap
area_o f _union

(2)

• YOLOv3: The same authors published their updated algorithm [103] in 2018. The
Darknet-53 architecture served as its foundation. Newer version introduced the idea
of Feature Pyramid Network (FPN) for multiple feature extraction for an image.

• YOLOv4: The bag of freebies and bag of specials concepts were introduced in
YOLOv4 [104] as methods for improving model performance without raising the
cost of inference. However, the author of YOLOv4 did experiment on three different
backbone architectures including, CSPDarknet533, CSPResNext50 and EfficientNet-B3.
The bag of specials allows the selection of additional modules in the neck such as
Special Attention Module (SAM), Special Pyramid Pooling (SPP) and Path Aggregation
Network (PAN).

2.2.3. RetinaNet

Introduced by [105], this is one of the best one-stage object detection models and has
demonstrated success with dense and small-scale objects.

3. Literature Review

The task of vehicle detection and tracking systems is addressed by many researchers.
The research can be classified based on three different criteria as illustrated in Figure 3.

1. Classification based on type of input:

(a) surveillance cameras acquired images and videos;
(b) UAV acquired images and videos;
(c) sensors acquired data (e.g., Lidar and Radar).

2. Classification based on object detection techniques:

(a) detection using Image processing with machine learning;
(b) deep learning-based systems.
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i. Two Stage Detector;
ii. One Stage Detector;
iii. Hybrid Models.

3. Classification based on purpose

(a) Autonomous Vehicles and Self driving vehicles
(b) Traffic Surveillance

Figure 3. Classification of vehicle detection systems.

The process of recognising moving cars on the road can be conducted by using motion
based or appearance based methods and is used for vehicle monitoring [106], counts, the
average speed of each vehicle, movement analysis, and vehicle classification purposes. One
of the potential application is self driving cars and autonomous vehicles [107]. Because
of our page limit we restrict our focus only to research relating to images acquired from
road surveillance or UAV mounted cameras. In addition, we will more focus on deep
learning-based techniques conducted for the purpose of traffic surveillance monitoring and
control.

We start our discussion with simple machine learning based vehicle detection systems.
Ref. [108] examined three different classifiers for vehicle recognition including KNN, Neural
Network, and Decision Tree. After extracting features using Canny Edge Detector.

Ref. [109] presented a cascade of boosted classifiers based on the characteristics of
the vehicle images for detecting vehicles in on-road scene images. In their work, the
classifier for vehicle detection was constructed utilising Haar-like features and an AdaBoost
technique. The closest neighbourhood of the Euclidean distance was then used for the final
classification.

Ref. [110] proposed a new vehicle identification model based on YOLOv2 with
enhanced speed, accuracy, and predictive ability. To make the predictions over vehicles
of varying sizes in the same image the loss function is normalized. In addition, to reduce
the model’s complexity the repeated convolutional layers in the final part of the model
were removed as they normally deal with multi class in same image, whereas, the vehicle
detection task only involves single class.
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The idea of hybridizing manual feature extraction with deep learning framework is
presented in a work by [111]. In this work, foreground feature detector is used along with
morphological segmentation operations as pre-processing step. Kalman filter is used to
hand craft position vector. In the last stage R-CNN is used to label the vehicles in the
images. In an another research conducted b [112] a three layer architecture is used to detect
vehicles in video frames. The first layer draws feature maps from the input video frames.
After that, a Region Proposed Network (RPN) is placed which slides over the feature maps
and makes bounding boxes containing vehicles. At the final stage a R-CNN based detection
network is used to assign class label to each ROI (Region of Interest) [113] supplies input
images to an auto encoder layer before passing it to the deep learning framework. The AE
neural network rather works as a pre-processing step and extracts more fine-grained robust
features. In addition, they add different noise and vary illumination and contrast levels to
make it suitable for training under varying weather conditions. After AE, fast RCNN and
YOLO v3 was used for training and results comparison. Some other works where filters
are applied as preprocessing the images before they are passed to deep learning model
include dehazing, masking and thresholding [114], (automatic white balance combined
with Laplacian pyramids) AWBLP [115,116]. Motivated by the idea of saving processing
through transfer learning [117] applied frozen weights of SqueezNet [118], ResNet50 [93]
and EfficientNet [14] to train on DAWN dataset to detect vehicles under six different
weather conditions. Ref. [119] uses YOLOv3 pretrained model on custom acquired images
taken at nighttime. To enhance the visibility of the images, Multi Scale Retinex algorithm
was applied before the convolution operation. This increases the contrast and removes the
uneven brightness values in the images. The method obtained 93.66% average precision
value which is higher than the single shot detector and Faster RCNN on the same image
dataset. Ref. [120] presented a method to detect on road vehicle by modifying the faster
RCNN architecture with multiple Region Proposed Networks (RPN). The reason for this is
to capture the features of varying sizes vehicles from smaller to very larger, by setting each
RPN with different aspect ratio and scale. The average precision of the proposed method
with four RPNs is 89.48% on DAWN and 98.20% on CDNet 2014.

None of the above studies attempt to fully solve the issue of detecting different
scales of vehicles appearing in a single image under a variety of weather conditions.
However, to some extent the task of multi-scale vehicle detection was addressed by [121]
using YOLOv3 as backbone architecture. The work suggest an encoding and decoding-based
feature pyramid module. Through a straightforward U-shaped structure, this module may
produce a high-order multi-scale feature MAP.

Keeping in mind all the above discussed studies, we propose a smart vehicle detection
system using YOLOv4 to detect vehicles of varying sizes in images under varying weather
conditions. The main contributions of our work in the domain of smart and intelligent
vehicle detection are as follows:

1. We address the problem of vehicle detection in varying and harsh weather condition
where the problem of low visibility is addressed by using a image restoration module.

2. We use YOLOv4 as backbone architecture for the detection of vehicles in six difficult
weather conditions including haze, sandstorm, snowstorm, fog, dust, rain both in day
and night.

3. We address the problem of detection far away and small size vehicles through the
addition of double Spatial Pyramid Pooling Network after the last convolution
layer [122].

4. For capturing vehicle’s fine grained information we add an extra attention module
before the convolution layer in the backbone architecture.

4. Materials and Methods

In this section, we discuss in detail the main key processes involved in our research.
Figure 4 shows the overall flow of our proposed methodology.
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Figure 4. Flowchart of our proposed methodology.

4.1. Dataset

For the research, we chose to train our model with DAWN dataset which contains a
collection of 1000 photos from actual traffic scenarios including highways and urban road
traffic in varying weather conditions.

4.2. Data Annotation

For the task of object detection, the labeling of images was conducted in YOLO_Darknet
format using a free and open source tool ‘LabelImg’ [123]. The labeling was conducted
using polygon bounding box. After labeling a text file is placed in the same folder where
images are located. The text file contains the {class_label, x, y, w, h} for each image. Here, x
and y represents the coordinates of the bounding box (anchor point) and w and h represents
the width and height of the bounding box. In our research, we are only detecting cars, so
class label is ‘car’. A set of image with assigned bounding boxes and associated text file is
shown in Figure 5a,b.

(a)

Figure 5. Cont.
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(b)

Figure 5. An example image annotated in LabelImg software. (a) Shows sample image with bounding
boxes on vehicle instances; (b) Shows text file with {classlabel, x, y, w, h} for each vehicle instance.

4.3. Data Augmentation

One of the challenging issue in vehicle detection research is the scarcity of available
road side data, particularly if we are interested in detecting them in harsh and severe
weather situations. Although, the DAWN dataset contains 1000 images from actual traffic
scenarios under four weather categories, i.e., fog, sand, rain and snow. However, as the
neural network’s model receives increasingly more input, it’s performance can continue
to advance. One strategy to overcome this challenge is data augmentation, that allows
researchers to greatly broaden the variety of environmental conditions on the road. The
dataset was augmented with following techniques.

4.3.1. Hue

This augmentation techniques changes the colour levels in an image randomly so as
the model will take into account different colour schemes for objects and scenes in input
images. For our dataset images the hue level was chosen between −8° to +82°.

4.3.2. Saturation

Similar to hue augmentation, saturation augmentation modifies how vivid and vibrant
the image looks. we augmented the dataset with 50% saturation.

4.3.3. Brightness

To help your model be more resistant to variations in lighting and camera settings, we
added variability to the image brightness up to 75%.

4.3.4. Exposure

While generally speaking, the brightness and exposure options both act the same.
However, exposure favours highlight tones more than brightness, which has no bias and
influences all tones equally. We add exposure in the range −30 to +30.

4.3.5. Blur

To make our model more camera focus-resistant, we added random Gaussian blur
upto 10 px. With this the image appears to be completely out of focus due.

4.3.6. Noise

All these augmentation techniques were added to extend the number of training
examples set under conditions so as to give an impression of difficult and varying weather
conditions such as noise gives the effect of heavy rain and blur gives an impression of haze
or fog in the environment. All these augmentation techniques along with original image
are shown in Figure 6a–h.
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(a) Original

(b) Hue

(c) Saturation

Figure 6. Cont.



Electronics 2022, 11, 2748 10 of 29

(d) Brightness

(e) Darkness

(f) Exposure

Figure 6. Cont.
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(g) Blur

(h) Noise

Figure 6. Image augmentation techniques applied.

The augmentation techniques are related with the corresponding weather conditions
in Table 1.

Table 1. Relation between augmentation techniques and weather conditions.

Hue Saturation Brightness Exposure Blur Noise

Foggy
- low saturation

to create
artificial fog

- high blur to
show extreeme

foggy day

Sunny
- high brightness

to show more day
time light

- high gamma
exposure to create

clear visibility

Windy
- adjust gaussian

blur to show
wind storm
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Table 1. Cont.

Hue Saturation Brightness Exposure Blur Noise

Rainy
- adding Blur
to show low

visibility during
rain

- adding line
noise to show

falling
rain effect

Snowy
- very high

brightness to
create synthetic
snow on road

-adding dot
noise

to show snow
flakes or

rain drops

Dusty
- adjust color

changes to show
dust storm

- low saturation
to show poor

visibility
in dust storm by
changing color

more vivid

Shady/
Dark

- low brightness
to show shade, e.g.,
underpass, another

vehicle shadow

- low gamma
exposure to
show less

visibility at night

Cloudy
-low brightness
to show cloudy

day

color
change

- sunrise
- sunset

- road illumination
and reflection

- lowest values
to show night

time

4.4. Customized Yolov4 Detector

In the section below, we outline our approach which uses YOLOv4 as our baseline
architecture. The reason being, high processing frame rate and state-of-the-art accuracy
offered by the model as depicted in Figure 7. For the MS COCO, it obtains an accuracy
of 43.5% AP (65.7% AP50) with an approximate inference speed of 65 FPS on the Tesla
V100 [104].

Figure 7. The suggested YOLOv4 is compared to various cutting-edge object detectors. YOLOv4
performs equally well as EfficientDet while operating twice as quickly, increases the AP and FPS of
YOLOv3 by 10% and 12%, respectively.
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4.4.1. Overall Model Design

There are a number of parts that make up tour model architecture, but in general
they are as follows: The network will be fed a set of training images, which makes up the
input, which comes first. These photos are processed by the GPU in concurrent batches.
Following the Neck and Backbone, which carry out feature extraction and aggregation,
respectively. Our model contains eight convolution layers with 16, 32, 64, 128, 256 and
three 512 filters. The object detector is the collective name for the detection head and
detection neck. Finally, the head is responsible for detection and prediction. The primary
responsibility for detection rests with the head (both localization and classification).

4.4.2. CSPDarknet53 as Backbone Network

To detect multi scale vehicle requires a focused and increased recognition accuracy of
a detector. Therefore, we selected CSPDarknet53as as backbone network. The YOLO series
deep learning models’ most notable benefit is their ability to swiftly and accurately recognise
and classify targets. Figure 8 shows the complete structure of YOLOv4 CSPDarknet.

Figure 8. The architecture of CSPDarknet53 from Baseline paper.

Figure 9 shows our modified architecture of the network with layered approach.
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Figure 9. Architecture of our custom YOLOv4-SPP detector.
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4.4.3. Adding Spatial Pyramid Pooling Block

From the Bag of specials we add double special pyramid pooling blocks. A pooling
layer called spatial pyramid pooling (SPP) frees the network’s fixed-size constraint, meaning
a CNN no longer needs a fixed-size input image. In spatial pyramid pooling fine grained
features are pooled from any arbitrary sections (sub-images) to create fixed-length
representations for training the detectors by computing the feature maps from the complete
image just once. By doing this the spatial information in an image is preserved. Hence,
the SPP module may significantly expand the receptive field, enhance local and global
vehicle recognition accuracy in a complicated environment, and hence enhance detection
effectiveness. Figure 10 illustrates the placement of SPP net layer in the overall network.

Figure 10. The role of spatial pyramid pooling network: 256 represents the last convolution layer
filter size.

4.4.4. Removing Batch Normalization

The camera is frequently set up in a specific spot for traffic surveillance purposes.
As a result, since the background of photographs is fixed, little preliminary processing and
normalisation is required. Hence, by removing the batch normalization layers we are able
to reduce model complexity by minimizing the number of required model parameters.

5. Experimental Analysis
5.1. Training Setup

The training of the vehicle detector model was conducted on Google Colab using
TensorFlow framework. The reason for this adoption was free availability of GPU back-end.
Additionally, adopting a Python code here is simple as most of the required packages are
built in.

5.2. Evaluation of the Detector

To evaluate the accuracy of our object detector we took mAP (mean Average Precision)
as our main measurement metric. To fully understand mAP we must first comprehend
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certain fundamental terms such as confidence score, IoU (Intersection over union), precision,
recall with respect to our study.

• Confidence Score: It displays the likelihood that bounding box holds a vehicle. It is
predicted by the last layer of the detector, i.e., a classifier.

• Intersection over Union (IoU): This metric counts the area encompassed by Actual
bounding box (Ba) and predicted bounding box (Bp), We used a predefined threshold
value of 0.5 for single class to classify if the prediction is false or true positive.

IoU =
area_o f _intersection

area_o f _union
(3)

=
area_o f _Ba ∩ Bp

area_o f _Ba ∪ Bp
(4)

• Precision: is the ratio of total true positive and sum of true positive and false positive.

precision =
Tp

Tp + Fp
(5)

• Recall: is the ratio of true positives and sum of true positive and false negative.

recall =
Tp

Tp + Fn
(6)

• Minimum Average Precision (mAP@0.5):

5.2.1. Results

Table 2 shows the split of images into training, validation and testing set. The split
was conducted using the ratio 70% for training, 15% for validation set and 15% for testing.

Table 2. Number of images and car instances in our Augmented DAWN Dataset.

Training Set Validation Set Testing Set

Number of images 1500 424 213

Percentage 70 20 10

Number of car
instances 2048 235 101

One of the main objective of this research was to detect not only clear, large and visible
vehicles but also to detect unclear, small size or occluded vehicles. The images in data set
contains vehicles of variable sizes. Figure 11a represents the distribution of vehicles with
respect to size in the complete dataset using a pie chart. In addition, Figure 11b shows the
histogram of vehicle instances per image. As seen in the bar graph, most of the images
contains two to three vehicles per image. Around 2000 images contains single vehicle.
There were very less images which contains more than six or seven vehicles.
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(a) Histogram of Vehicle Count By Image

(b) Distribution of images with respect to size

Figure 11. The vehicle distribution and count of vehicles per image.

Figure 12 displays the training loss and mean average precision in 2000 epochs with
our augmented DAWN Dataset.
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Figure 12. mAP and training Loss graph of first 2000 epochs.

Figure 13 shows the comparison of training and validation loss. During experiment
it was observed that the training loss of un-augmented DAWN data set was quite high.
However, the loss curve was decreased by the data set size through augmentation and fine
tuning the hyper = parameter values.

Figure 13. Comparison training vs. validation Loss with and without augmentation.
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Table 3 shows the hyper parameter values of our model used during the training.

Table 3. Model Hyper parameters set during training.

Name Value

batch 64
subdivisions 24

momentum = 0.949 0.949
decay = 0.0005 0.005

learning_rate = 0.001 0.001
max_batches = 2000 2000

steps 1600.0, 1800.0

Figure 14 shows the precision and recall curve of training.

Figure 14. Precision and recall curves.

IoU is calculated for each prediction with regard to each ground truth box in the image.
Table 4 shows the average intersection over union values calculated after taking 10 random
sample images from each four categories, i.e., snow, fog, dust and rain and then taking
their mean. The results show that almost for each weather condition the average IoU is
much greater than >0.5 which is considered as excellent prediction.

Table 4. Average IoU values calculated by taking 10 random images from each weather condition.

Fog Snow Rain Sand

Average IoU 0.892 0.914 0.966 0.972

5.2.2. Result Comparison and Discussion

The total training time with 2000 images using YOLOv2 detector was 6 h. The Tiny Yolo
v3 on the same data set took around 1 and a half hour in training which was comparatively
faster than any other detector. The training time with our customized Yolov4 detector
was 2.5 h, which was half less than the baseline Yolov4 detector without Spatial pyramid
pooling layer. Table 5 shows the comparison of the training time in hours. and also the
mAp (mean average precision) of our model compared with three other variants belonging
to same family.
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Table 5. Comparison of mAP of our customized Yolo v4 with three other variants of same family
including Yolov2, Tiny Yolov3, baseline Yolov4 and customized Yolo v4.

Yolo v2
Hour

Tiny Yolov3 Yolov4 Customized
Yolo v4

Training Time
hours

6 1.5 4 2.5

mAP@0.5 (%) 79 64 89 82

It is evident from the table that our model has optimized training time with good
mean average precision of the detector. The Table 5 shows the progression of average
precision of our model compared with four other baseline variants. The Figure 15 shows
the associated line chart. It is cear that our model reaches the average precision of 82%
on the same DAWN Dataset, the YOLOv2, YOLOv3, Tiny YOLOv3 and basic YOLOv4
achieves 57%, 74%, 66% and 80% respectively. Table 6 shows the average precision score
of vehicle detection under the four weather conditions. It can be inferred from the values
that large size vehicles have a high precision score, whereas the smallest vehicles have
comparatively low precision values still, although these scores are still good.

Table 6. Detection of vehicles under different weather conditions with their average precision values.

Small Vehicles Medium Size
Vehicles Large Size Vehicles

Fog 78.43 76.45 78.32
Sand 76.35 77.62 79.81
Rain 75.88 76.61 77.34
Snow 77.51 77.23 78.32

When we see the testing results as shown in Figure 15a–f, we observe that the
prediction scores are quite good and high. Figure 15a shows the far away vehicles in
rainy condition have confidence score of 74–81% and a nearby vehicle but occluded
with fog have score of 51%. The same fog and low illumination testing accuracy can
be observed in Figure 15b, where the bounding box has accuracy of 81%. Figure 15c shows
our augmented image with high added noise to make visibility very challenging. However,
it can be observed that almost all the vehicles present in the image have been detected with
prediction score above 50%. Figure 15d–f shows nighttime images with low illumination,
fog and glare respectively. All the vehicles in the images were detected with 60% to 70%
prediction score. The last two test images show detection in snow-storm and dust-storm
conditions with prediction score of almost 70 to 74%.
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(a) Rainy

(b) Fog

(c) Poor Visibility

Figure 15. Cont.
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(d) Low Illumination

(e) Fog and Darkness

(f) Night and Poor Visibility

Figure 15. Cont.
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(g) Snow and poor visibility

(h) Dust storm

Figure 15. Sample images tested with confidence score.

6. Conclusions

Based on Yolov4 CSPDarknet53 with SPP-NET, we propose a modified vehicle detector
architecture which can detect vehicles in extremely challenging situations. We augmented
DAWN Dataset with added noise, blur and varying hue, saturation, brightness and
darkness to make the situation more worse. However, it is evident that our detector is able
to predict the vehicles which are almost non detectable with the other baseline detectors.
Our model achieve the mAP of 81%, which is higher than four other variants of YOLO
family including YOLOv2, Yolov3, Tiny Yolo and Yolov4. In addition, the findings indicate
that practically every meteorological condition has an average IoU that is significantly
greater than >0.5, which is regarded as an excellent forecast. Lastly, we optimized the
training time by removing the batch normalization layers since our model was using
static background and we added a spatial pyramid pooling layer between the eigth and
ninth convolution layer before the first YOLO detector layer. In future, we plan to use
generative neural networks for data augmentation and create more realistic synthetic scenes
representing challenging on road scenarios and then public the data set. Moreover, we
decide to extend the vehicle detection algorithm for vehicle trajectory analysis where using
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vehicle location, speed, acceleration and jerk, as time functions, normal and abnormal
vehicle motion patterns can be detected using video dataset.
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Drbohlav, O.; et al. The eighth visual object tracking VOT2020 challenge results. In Proceedings of the European Conference on
Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 547–601.

50. Wang, Y.; Xu, Z.; Wang, X.; Shen, C.; Cheng, B.; Shen, H.; Xia, H. End-to-end video instance segmentation with transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 8741–8750.

51. Tian, Z.; Shen, C.; Chen, H. Conditional convolutions for instance segmentation. In Proceedings of the European Conference on
Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 282–298.

52. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9157–9166.

53. Yang, Y.; Li, G.; Wu, Z.; Su, L.; Huang, Q.; Sebe, N. Reverse perspective network for perspective-aware object counting.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 4374–4383.

54. Rahutomo, R.; Perbangsa, A.S.; Lie, Y.; Cenggoro, T.W.; Pardamean, B. Artificial intelligence model implementation in web-based
application for pineapple object counting. In Proceedings of the 2019 International Conference on Information Management and
Technology (ICIMTech), Jakarta, Indonesia, 19–20 August 2019; Volume 1, pp. 525–530.

55. Zhang, S.; Li, H.; Kong, W. Object counting method based on dual attention network. IET Image Process. 2020, 14, 1621–1627.
[CrossRef]

56. Dirir, A.; Ignatious, H.; Elsayed, H.; Khan, M.; Adib, M.; Mahmoud, A.; Al-Gunaid, M. An Advanced Deep Learning Approach
for Multi-Object Counting in Urban Vehicular Environments. Future Internet 2021, 13, 306. [CrossRef]

57. Chayeb, A.; Ouadah, N.; Tobal, Z.; Lakrouf, M.; Azouaoui, O. HOG based multi-object detection for urban navigation.
In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11
October 2014; pp. 2962–2967. [CrossRef]

58. Yamauchi, Y.; Matsushima, C.; Yamashita, T.; Fujiyoshi, H. Relational HOG feature with wild-card for object detection.
In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshop (ICCV Workshops), Venice, Italy, 22–29
October 2011; pp. 1785–1792. [CrossRef]

59. Dong, L.; Yu, X.; Li, L.; Hoe, J.K.E. HOG based multi-stage object detection and pose recognition for service robot. In Proceedings
of the 2010 11th International Conference on Control Automation Robotics & Vision, Singapore, 7–10 December 2010; pp.
2495–2500.

60. Cheng, G.; Zhou, P.; Yao, X.; Yao, C.; Zhang, Y.; Han, J. Object detection in VHR optical remote sensing images via learning
rotation-invariant HOG feature. In Proceedings of the 2016 4th International Workshop on Earth Observation and Remote
Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 433–436. [CrossRef]

61. Ren, H.; Li, Z.N. Object detection using edge histogram of oriented gradient. In Proceedings of the 2014 IEEE International
Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4057–4061.

62. Han, F.; Shan, Y.; Cekander, R.; Sawhney, H.S.; Kumar, R. A two-stage approach to people and vehicle detection with hog-based
svm. In Proceedings of the Performance Metrics for Intelligent Systems 2006 Workshop, Washington, DC, USA, 11–13 October
2006; pp. 133–140.

63. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection, 2005. In Proceedings of the IEEE Computer Vision
and Pattern Recognition, San Diego, CA, USA, 21–23 September 2005.

64. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1,
p. 1.

65. Li, Y.L.; Wang, S. HAR-Net: Joint learning of hybrid attention for single-stage object detection. arXiv 2019, arXiv:1904.11141.

http://dx.doi.org/10.3233/JIFS-189415
http://dx.doi.org/10.1109/ACCESS.2021.3110203
http://dx.doi.org/10.1049/iet-ipr.2019.0465
http://dx.doi.org/10.3390/fi13120306
http://dx.doi.org/10.1109/ITSC.2014.6958165
http://dx.doi.org/10.1109/ICCVW.2011.6130465
http://dx.doi.org/10.1109/EORSA.2016.7552845


Electronics 2022, 11, 2748 27 of 29

66. Soo, S. Object Detection Using Haar-Cascade Classifier; Institute of Computer Science, University of Tartu: Tartu, Estonia, 2014;
Volume 2, pp. 1–12.

67. Jalled, F.; Voronkov, I. Object detection using image processing. arXiv 2016, arXiv:1611.07791.
68. Cuimei, L.; Zhiliang, Q.; Nan, J.; Jianhua, W. Human face detection algorithm via Haar cascade classifier combined with three

additional classifiers. In Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement & Instruments
(ICEMI), Yangzhou, China, 20–23 October 2017; pp. 483–487.

69. Pawełczyk, M.; Wojtyra, M. Real world object detection dataset for quadcopter unmanned aerial vehicle detection. IEEE Access
2020, 8, 174394–174409. [CrossRef]

70. Whitehill, J.; Omlin, C.W. Haar features for FACS AU recognition. In Proceedings of the 7th International Conference on
Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 10–12 April 2006; p. 5.

71. Haselhoff, A.; Kummert, A. A vehicle detection system based on haar and triangle features. In Proceedings of the 2009 IEEE
Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; pp. 261–266.

72. Chen, D.S.; Liu, Z.K. Generalized Haar-like features for fast face detection. In Proceedings of the 2007 International Conference
on Machine Learning and Cybernetics, Cincinnati, OH, USA, 13–15 December 2007; Volume 4, pp. 2131–2135.

73. Yun, L.; Peng, Z. An automatic hand gesture recognition system based on Viola-Jones method and SVMs. In Proceedings of the
2009 Second International Workshop on Computer Science and Engineering, Qingdao, China, 28–30 October 2009; Volume 2, pp.
72–76.

74. Sawas, J.; Petillot, Y.; Pailhas, Y. Cascade of boosted classifiers for rapid detection of underwater objects. In Proceedings of the
European Conference on Underwater Acoustics, Istambul, Turkey, 5 July 2010; Volume 164.

75. Nguyen, T.; Park, E.; Han, J.; Park, D.C.; Min, S.Y. Object detection using scale invariant feature transform. In Genetic and
Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 65–72.

76. Geng, C.; Jiang, X. SIFT features for face recognition. In Proceedings of the 2009 2nd IEEE International Conference on Computer
Science and Information Technology, Beijing, China, 8–11 August 2009; pp. 598–602.

77. Piccinini, P.; Prati, A.; Cucchiara, R. Real-time object detection and localization with SIFT-based clustering. Image Vis. Comput.
2012, 30, 573–587. [CrossRef]

78. Zhao, W.L.; Ngo, C.W. Flip-invariant SIFT for copy and object detection. IEEE Trans. Image Process. 2012, 22, 980–991. [CrossRef]
79. Najva, N.; Bijoy, K.E. SIFT and tensor based object detection and classification in videos using deep neural networks.

Procedia Comput. Sci. 2016, 93, 351–358. [CrossRef]
80. Sun, S.W.; Wang, Y.C.F.; Huang, F.; Liao, H.Y.M. Moving foreground object detection via robust SIFT trajectories. J. Vis. Commun.

Image Represent. 2013, 24, 232–243. [CrossRef]
81. Sakai, Y.; Oda, T.; Ikeda, M.; Barolli, L. An object tracking system based on sift and surf feature extraction methods. In Proceedings

of the 2015 18th International Conference on Network-Based Information Systems, Washington, DC, USA, 2–4 September 2015;
pp. 561–565.

82. Chen, Z.; Chen, K.; Chen, J. Vehicle and pedestrian detection using support vector machine and histogram of oriented gradients
features. In Proceedings of the 2013 International Conference on Computer Sciences and Applications, Kunming, China, 21–23
September 2013; pp. 365–368.

83. Anwar, M.A.; Tahir, S.F.; Fahad, L.G.; Kifayat, K.K. Image Forgery Detection by Transforming Local Descriptors into Deep-Derived
Features. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4134079 (accessed on 3 July 2022).

84. Patil, S.; Patil, Y. Face Expression Recognition Using SVM and KNN Classifier with HOG Features. In Proceedings of the
International Conference on Computing in Engineering & Technology, Virtual, 12–13 February 2022; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 416–424.

85. Gao, S.; Wei, Y.; Xiong, H. Pedestrian detection algorithm based on improved SLIC segmentation and SVM. In Proceedings
of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing,
China, 17–19 June 2022; Volume 10, pp. 771–775.

86. Tseng, H.H.; Yang, M.D.; Saminathan, R.; Hsu, Y.C.; Yang, C.Y.; Wu, D.H. Rice Seedling Detection in UAV Images Using Transfer
Learning and Machine Learning. Remote. Sens. 2022, 14, 2837. [CrossRef]

87. Yousef, N.; Parmar, C.; Sata, A. Intelligent inspection of surface defects in metal castings using machine learning. Mater. Today
Proc. 2022. [CrossRef]

88. Sharma, V.; Jain, M.; Jain, T.; Mishra, R. License plate detection and recognition using openCV–python. In Recent Innovations in
Computing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 251–261.

89. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [CrossRef] [PubMed]

90. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

91. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

92. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ACCESS.2020.3026192
http://dx.doi.org/10.1016/j.imavis.2012.06.004
http://dx.doi.org/10.1109/TIP.2012.2226043
http://dx.doi.org/10.1016/j.procs.2016.07.220
http://dx.doi.org/10.1016/j.jvcir.2012.12.003
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4134079
http://dx.doi.org/10.3390/rs14122837
http://dx.doi.org/10.1016/j.matpr.2022.06.474
http://dx.doi.org/10.1109/TPAMI.2015.2437384
http://www.ncbi.nlm.nih.gov/pubmed/26656583
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650


Electronics 2022, 11, 2748 28 of 29

93. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

94. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

95. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

96. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

97. Peng, Q.; Luo, W.; Hong, G.; Feng, M.; Xia, Y.; Yu, L.; Hao, X.; Wang, X.; Li, M. Pedestrian detection for transformer
substation based on gaussian mixture model and YOLO. In Proceedings of the 2016 8th International Conference on Intelligent
Human-Machine Systems and Cybernetics (IHMSC), Zhejiang, China, 11–12 September 2016; Volume 2, pp. 562–565.

98. Liu, C.; Tao, Y.; Liang, J.; Li, K.; Chen, Y. Object detection based on YOLO network. In Proceedings of the 2018 IEEE 4th
Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; pp.
799–803.

99. Fang, W.; Wang, L.; Ren, P. Tinier-YOLO: A real-time object detection method for constrained environments. IEEE Access 2019, 8,
1935–1944. [CrossRef]

100. Tao, J.; Wang, H.; Zhang, X.; Li, X.; Yang, H. An object detection system based on YOLO in traffic scene. In Proceedings of the
2017 6th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 21–22 October 2017;
pp. 315–319.

101. He, W.; Huang, Z.; Wei, Z.; Li, C.; Guo, B. TF-YOLO: An improved incremental network for real-time object detection. Appl. Sci.
2019, 9, 3225. [CrossRef]

102. Shafiee, M.J.; Chywl, B.; Li, F.; Wong, A. Fast YOLO: A fast you only look once system for real-time embedded object detection in
video. arXiv 2017, arXiv:1709.05943.

103. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
104. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
105. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
106. Liu, S.; Wang, J.; Wang, Z.; Yu, B.; Hu, W.; Liu, Y.; Tang, J.; Song, S.L.; Liu, C.; Hu, Y. Brief industry paper: The necessity of

adaptive data fusion in infrastructure-augmented autonomous driving system. In Proceedings of the 2022 IEEE 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS), Milano, Italy, 4–6 May 2022; pp. 293–296.

107. Yang, X.; Zou, Y.; Chen, L. Operation analysis of freeway mixed traffic flow based on catch-up coordination platoon. Accid. Anal.
Prev. 2022, 175, 106780. [CrossRef]

108. Munroe, D.T.; Madden, M.G. Multi-class and single-class classification approaches to vehicle model recognition from images.
Proc. AICS 2005, 1–11.

109. Tang, Y.; Zhang, C.; Gu, R.; Li, P.; Yang, B. Vehicle detection and recognition for intelligent traffic surveillance system. Multimed.
Tools Appl. 2017, 76, 5817–5832. [CrossRef]

110. Sang, J.; Wu, Z.; Guo, P.; Hu, H.; Xiang, H.; Zhang, Q.; Cai, B. An improved YOLOv2 for vehicle detection. Sensors 2018, 18, 4272.
[CrossRef]

111. Arora, N.; Kumar, Y.; Karkra, R.; Kumar, M. Automatic vehicle detection system in different environment conditions using fast
R-CNN. Multimed. Tools Appl. 2022, 81, 18715–18735. [CrossRef]

112. Othmani, M. A vehicle detection and tracking method for traffic video based on faster R-CNN. Multimed. Tools Appl. 2022, 1–19.
[CrossRef]

113. Nguyen, V.; Tran, D.; Tran, M.; Nguyen, N.; Nguyen, V. Robust vehicle detection under adverse weather conditions using
auto-encoder feature. Int. J. Mach. Learn. Comput 2020, 10, 549–555. [CrossRef]

114. Singh, A.; Kumar, D.P.; Shivaprasad, K.; Mohit, M.; Wadhawan, A. Vehicle detection and accident prediction in sand/dust storms.
In Proceedings of the 2021 International Conference on Computing Sciences (ICCS), Phagwara, India, 4–5 December 2021; pp.
107–111.

115. Hassaballah, M.; Kenk, M.A.; Muhammad, K.; Minaee, S. Vehicle detection and tracking in adverse weather using a deep learning
framework. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4230–4242. [CrossRef]

116. Kenk, M.A.; Hassaballah, M.; Hameed, M.A.; Bekhet, S. Visibility enhancer: Adaptable for distorted traffic scenes by dusty
weather. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt,
24–26 October 2020; pp. 213–218.

117. Al-Haija, Q.A.; Gharaibeh, M.; Odeh, A. Detection in Adverse Weather Conditions for Autonomous Vehicles via Deep Learning.
AI 2022, 3, 303–317. [CrossRef]

118. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360.

119. Miao, Y.; Liu, F.; Hou, T.; Liu, L.; Liu, Y. A nighttime vehicle detection method based on YOLO v3. In Proceedings of the 2020
Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 6617–6621.

http://dx.doi.org/10.1109/ACCESS.2019.2961959
http://dx.doi.org/10.3390/app9163225
http://dx.doi.org/10.1016/j.aap.2022.106780
http://dx.doi.org/10.1007/s11042-015-2520-x
http://dx.doi.org/10.3390/s18124272
http://dx.doi.org/10.1007/s11042-022-12347-8
http://dx.doi.org/10.1007/s11042-022-12715-4
http://dx.doi.org/10.18178/ijmlc.2020.10.4.971
http://dx.doi.org/10.1109/TITS.2020.3014013
http://dx.doi.org/10.3390/ai3020019


Electronics 2022, 11, 2748 29 of 29

120. Ghosh, R. On-road vehicle detection in varying weather conditions using faster R-CNN with several region proposal networks.
Multimed. Tools Appl. 2021, 80, 25985–25999. [CrossRef]

121. Hong, F.; Lu, C.H.; Liu, C.; Liu, R.R.; Wei, J. A traffic surveillance multi-scale vehicle detection object method base on
encoder-decoder. IEEE Access 2020, 8, 47664–47674. [CrossRef]

122. Du, Z.; Yin, J.; Yang, J. Expanding receptive field yolo for small object detection. J. Phys. Conf. Ser. 2019, 1314, 12202. [CrossRef]
123. Tzutalin. LabelImg, Free Software, MIT License, 2015. Available online: https://github.com/tzutalin/labelImg (accessed on 3

July 2022).

http://dx.doi.org/10.1007/s11042-021-10954-5
http://dx.doi.org/10.1109/ACCESS.2020.2979260
http://dx.doi.org/10.1088/1742-6596/1314/1/012202
https://github.com/tzutalin/labelImg

	Introduction
	Approaches to Object Detection
	Object Detection Using Machine Learning
	Object Detection Using Deep Learning
	RCNN Family
	YOLO Family
	RetinaNet


	Literature Review
	Materials and Methods
	Dataset
	Data Annotation
	Data Augmentation
	Hue
	Saturation
	Brightness
	Exposure
	Blur
	Noise

	Customized Yolov4 Detector
	Overall Model Design
	CSPDarknet53 as Backbone Network
	Adding Spatial Pyramid Pooling Block
	Removing Batch Normalization


	Experimental Analysis
	Training Setup
	Evaluation of the Detector
	Results
	Result Comparison and Discussion


	Conclusions
	References

