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Abstract: In this paper, we investigate the problem of cross-corpus speech emotion recognition (SER),
in which the training (source) and testing (target) speech samples belong to different corpora. This
case thus leads to a feature distribution mismatch between the source and target speech samples.
Hence, the performance of most existing SER methods drops sharply. To solve this problem, we
propose a simple yet effective transfer subspace learning method called joint distribution implicitly
aligned subspace learning (JIASL). The basic idea of JIASL is very straightforward, i.e., building an
emotion discriminative and corpus invariant linear regression model under an implicit distribution
alignment strategy. Following this idea, we first make use of the source speech features and emotion
labels to endow such a regression model with emotion-discriminative ability. Then, a well-designed
reconstruction regularization term, jointly considering the marginal and conditional distribution
alignments between the speech samples in both corpora, is adopted to implicitly enable the regression
model to predict the emotion labels of target speech samples. To evaluate the performance of our
proposed JIASL, extensive cross-corpus SER experiments are carried out, and the results demonstrate
the promising performance of the proposed JIASL in coping with the tasks of cross-corpus SER.

Keywords: cross-corpus speech emotion recognition; domain adaptation; transfer subspace learning;
marginal distribution; conditional distribution

1. Introduction

The research of speech emotion recognition (SER) aims at enabling the computer to au-
tomatically understand the emotional states of speech signals [1–3], which provides a more
natural interaction between the human and computer. Due to this reason, SER research has
attracted the wide attention of researchers from the communities of speech signal process-
ing, affective computing, pattern recognition, and human-computer interaction [1–4]. Over
the past several decades, many well-performing SER methods have been proposed and
achieved promising performance on widely used speech emotion corpora [3,5,6]. However,
it is noted that these SER methods do not consider real-world scenarios [7–10], e.g., the
training and testing speech samples may be recorded by different microphones, under
different environments, expressed by diverse speakers, or belong to different languages.
In this case, the training and testing speech samples possibly have inconsistent feature
distributions, which remarkably degrades the performance of the SER methods when the
model trained on training data cope with the new testing data. Hence, it is meaningful to
investigate a more challenging but interesting SER task, in which the SER model is trained
on one (or several) dataset(s) and tested on other datasets, i.e., cross-corpus SER.

Different from the ordinary SER, the labeled training data (source domain) and unla-
beled testing data (target domain) in cross-corpus SER come from different speech corpora,
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following the definitions of transfer learning (TL) and domain adaptation (DA) [9,11–14].
Consequently, corpus bias [9] has widely existed between the source and target domains,
caused by the inconsistent feature distribution of speech samples. To deal with the bias
issue in cross-corpus SER tasks, researchers have made great efforts in recent years. For
example, in [10], which may be the earliest work to formalize the cross-corpus SER stan-
dardly, Schuller et al. systematically defined the setting of cross-corpus SER tasks and
investigated how to solve this problem from the elimination of the distribution gap be-
tween the source and target speech samples. Additionally, they proposed to use a set of
normalization schemes including speaker normalization (SC), corpus normalization (CN),
and speaker-corpus normalization (SCN) to investigate the cross-corpus SER.

Subsequently, the methods based on TL and DA gradually began to be applied to cope
with cross-corpus SER [9,12,15]. In the work of [12], Zong et al. proposed a domain-adaptive
least square regression (DaLSR) model guided by a regularization term consisting of one-
and second-order moments to learn a corpus-independent regression matrix. Furthermore,
Liu et al. [15] presented a simple yet effective transfer subspace learning method called
domain-adaptive subspace learning (DoSL) by only considering the one-order moment
(i.e., mean value) to measure the distribution gap between the source and target speech
samples. More recently, Song et al. [9] investigated a straightforward transfer subspace
learning (TSL) model to bridge the feature distribution gap across corpora by resorting to
the maximum mean discrepancy (MMD) [16,17].

In addition to traditional subspace learning-based methods, deep learning-based
methods [18–22], e.g., convolution neural networks (CNN) and recurrent Neural networks
(RNN), have achieved promising performance in cross-corpus SER, taking advantage of
their powerful representation capability. Parray et al. [22] investigated the generalization
of several deep learning architectures, e.g., CNN, long short-term Memory(LSTM), and
CNN-LSTM, on different cross-corpus SER tasks. In the work of [18,19], deep neural
networks were embedded into DA to learn the corpus-invariant features for emotional
speech. Moreover, the works of [20,21] utilized domain adversarial learning to reduce the
domain shift between training and testing data.

Basically, these methods mainly aim to learn a common emotion feature subspace
in which the marginal feature distributions of source and target domains are as close
as possible. In the cross-database SER, however, this common subspace is incomplete
as the emotion features of speech samples are susceptible to background noise, speaker
identity information, and language information, leading to feature confusion [8–10]. To
maintain the discriminativeness of emotion features, adapting both marginal and condi-
tional distribution (i.e., joint distribution adaptation (JDA), which has achieved success in
image classification [14,23,24]) provides a promising method to deal with cross-corpus SER.
Zhang et al. [25] proposed a joint distribution adaptive regression (JDAR) to integrate the
conditional distribution into MMD for the fine-gained domain shift alignment. Even so,
the JDAR is weak in dealing with outlier samples, leading to large domain discrepancies
between the training and testing data.

Inspired by the success of the above TL- and DA-based methods, in this paper, we pro-
pose a novel method called joint distribution implicitly aligned subspace learning (JIASL)
for the cross-corpus SER problem. Unlike these aforementioned methods, the proposed
JIASL has three advantages as follows. (1) It absorbs the idea of recent widely-used ap-
proach (i.e., JDA) for the distribution gap alignment [14,23,25], which jointly considers the
marginal feature distribution and class-aware conditional distribution. (2) More impor-
tantly, it adopts a strategy of reconstructing target speech features by the source features to
implicitly remove the feature distribution match between the original source and target
speech feature sets instead of directly minimizing statistical moments. (3) Meanwhile, it
can also restrict the influence of outlier source features for the reconstruction of the target
domain by sparse constraints in joint distribution alignment. Guided by the above advan-
tages, JIASL can learn a corpus invariant projection matrix to predict the emotion labels of
target speech samples, although it is merely given the source emotion label information. To
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evaluate the proposed JIASL, we design the cross-corpus SER tasks based on three publicly
available speech emotion corpora, including EmoDB (Berlin) [26], eNTERFACE [27], and
CASIA [28], and conduct extensive experiments. Experimental results showed that com-
pared with current state-of-the-art transfer subspace learning methods, the proposed JIASL
achieved more promising performance in coping with the cross-corpus SER tasks.

2. The Proposed Method

In this section, we describe the proposed JIASL in detail and provide its optimization
algorithm. Then, we also illustrate its application for cross-corpus SER.

2.1. Notations

Herein, we give some important notations that are needed in formulating JIASL for
convenient illustration. According to the task setting of cross-corpus SER [9,12], the speech
samples and their emotion labels of source domain are provided, while the ones of the
target domain have no labels. Therefore, we denoted the feature matrix of source data as
Xs = [xs

1, · · · , xs
i , · · · , xs

ns ] ∈ Rd×ns and its label matrix as Ls = [l1, · · · , li, · · · , lns ] ∈ Rc×ns ,
where xs

i ∈ Rd×1 is the acoustic feature vector of the ith speech sample. Note that we adopt
one-hot labels to represent li (i.e., the ith column of Ls), and li = [li,1, · · · , li,k, · · · , li,c]T is a
one-hot vector. The value of its kth entry li,k is set as 1 if its corresponding speech sample
belongs to the kth emotion, while the resting entries are all set as 0. Similarly, the feature
matrix of target speech samples can be denoted as Xt = [xt

1, · · · , xt
j, · · · , xt

nt ] ∈ Rd×nt ,

where xt
j ∈ Rd×1 is the feature vector of the jth speech sample in the target domain.

2.2. Formulation of JIASL

The basic idea of the proposed JIASL is very straightforward, i.e., building a subspace
learning model to learn an emotion-discriminative and corpus-invariant projection matrix
for cross-corpus SER. Following this idea, we design the optimization problem for JIASL
as follows:

min
U,W,W(i)

( f1(U) + µ f2(U, W, W(k))), (1)

where U is a such projection matrix that the proposed JIASL model aims to learn, W and
W(k) are the reconstruction coefficients, whose detail will be given as follows, and i ∈ [1, ns]
and k ∈ [1, c] represent the indexes of speech sample and emotion, respectively. µ is the
trade-off parameter to control the balance between two terms.

From Equation (1), it can be found that the objective function of our JIASL has two
major terms. Both terms actually correspond to the expectative abilities described in the
basic idea of JIASL, i.e., emotion discriminative and corpus invariant. To this end, f1(U)
is designed as a simple group sparse linear regression loss associated with emotion-
discriminative ability according to [12,15], which can be formulated as follows:

f1(U) = ‖Ls −UTXs‖2
F + λ‖UT‖2,1, (2)

where λ is the trade-off parameter for the balance across terms. The projection matrix
U aims to regress the source features Xs to the label space Ls to preserve the emotion
discrimination in feature learning. Meanwhile, the `2,1 norm on UT seeks the features on
some specific dimensions contributed to emotion feature learning through group sparse of
the whole row elements.
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As for the second term, f2(U, W, W(k)), it corresponds to the corpus-invariant ability
in emotion feature learning. To achieve this goal, we make efforts from two aspects:

First, instead of directly minimizing their statistical moments such as mean value,
covariance, and MMD, we raise the idea of implicitly alleviating the feature distribution
mismatch between the source and target speech corpora. The advantage of this method
is that the estimation of domain shift is not restricted by the discrepancy measurement
function but can be obtained gradually through parameter optimization.

Specifically, inspired by the common subspace learning works [12,29], we adopt a
strategy of reconstructing the target speech samples by a part of the source samples to
enforce the projection matrix learning in JIASL from the sample-level view, which can be
formulated as the following sparse optimization problem:

min
U,wj

(‖UTxt
j −UTXswj‖2 + τ‖wj‖1), (3)

where τ is the trade-off parameter, and wj ∈ Rns×1 denotes the jth column of W =

[w1, · · · , wnt ] ∈ Rns×nt and is the reconstruction coefficient vector corresponding to the jth

target speech sample xt
j. The reconstruction strategy aims to narrow the bias between the

source and target domains in the common emotion feature subspace. Meanwhile, in order
to avoid the interference of outlier samples in the source domain for the reconstruction, the
`1 norm is embedded into wj to achieve the sparseness of redundant samples in the source
domain. Furthermore, extending the reconstruction to all the target speech samples, we
arrive at the total reconstruction optimization problem, as follows:

min
U,W

(‖UTXt −UTXsW‖2
F + τ‖W‖1), (4)

where ‖W‖1 = ∑nt
i=1 ‖wj‖1.

Second, our JIASL also absorbs the idea of jointly aligning the marginal and class-aware
conditional feature distributions (i.e., JDA) to pursue the fine-gained domain alignment,
in which the effectiveness of JDA has been demonstrated in dealing with other domain
adaptation tasks [23,25]. By incorporating the JDA idea into Equation (4), the objective
function of the above designed reconstruction can be extended to the following formulation
according to [23,25], which is eventually served as the f2(U, W, W(k)) for JIASL:

f2(U, W, W(k)) = ‖UTXt −UTXsW‖2
F + τ‖W‖1

+
c

∑
k=1
‖UTXt(k) −UTXs(k)W(k)‖2

F + τ
c

∑
k=1
‖W(k)‖1, (5)

where W(k) ∈ Rn(k)
s ×n(k)

t is the kth emotion class-aware reconstruction coefficient matrix,
Xs(k) ∈ Rd×n(k)

t and Xt(k) ∈ Rd×n(k)
t , and n(k)

s and n(k)
t denote the numbers of speech sample

from the kth emotion class satisfying n(1)
s + · · · + n(c)

s = ns and n(1)
t + · · · + n(c)

t = nt.

Similar to W, ‖W(k)‖1 can also be rewritten as ‖W(k)‖1 = ∑
n(k)

t
j=1 ‖w

(k)
j ‖1, where w(k)

j are the

jth column in W(k).
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Finally, by substituting Equations (2) and (5) into Equation (1), the total optimization
function of the proposed JIASL can be rewritten as follows:

min
U,W,W(k)

(‖Ls −UTXs‖2
F + λ‖UT‖2,1

+µ[(‖UTXt −UTXsW‖2
F + τ‖W‖1)

+(
c

∑
k=1
‖UTXt(k) −UTXs(k)W(k)‖2

F + τ
c

∑
k=1
‖W(k)‖1)]), (6)

where λ, τ, and µ are all trade-off coefficients to balance the different regularization terms,
and the details are illustrated in the experiment section.

2.3. JIASL for Cross-Corpus SER

After constructing the JIASL model, we implement it to the cross-corpus SER task; the
details are described as follows. Given the speech features of labeled source and unlabeled
target domains, we firstly optimize Equation (6) to achieve the optimal projection matrix Ũ
corresponding to U. Once the Ũ is learned, we can conveniently predict the target emotion
labels. Specifically, suppose we have a speech feature vector denoted by xte

t from target
corpora. Then, its emotion label is determined according to the following criterion:

emotion_label = arg min
k
{y(k)t } (k = 1, · · · , c), (7)

where y(k)t is the kth entry of label vector yte
t = ŨTxte

t .

2.4. Optimization of JIASL

Since the optimization function, Equation (6), contains several complex regularization
terms, e.g., the `1 norm and `2,1 norm, its closed-form solution can not be solved directly.
Hence, we adopt the alternating direction method (ADM) [30] to optimize the proposed
JIASL according to [12,31]. In detail, as the target label information is unknown, we
firstly need to initialize the projection matrix U to help compute the reconstruction term
corresponding to emotion class aware conditional distribution alignment. Then, we repeat
the following two major steps until convergence:

(1) Predict the target emotion labels using Equation (7) based on U, and then confirm
X(i)

t and X(i)
s according to the predicted target emotion labels;

(2) Solve the optimization problem in Equation (6), whose detailed solving procedures
are summarized in Algorithm 1.
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Algorithm 1 Detailed procedures for solving the optimization problem in Equation (6).
Repeat the following steps until convergence:

1. Fix W and W(i), and update U: the optimization problem reduces to the following:

min
U

(‖L−UTX‖2
F + λ‖UT‖2,1),

where X = [Xs,
√

µ∆(0),
√

µ∆(1), · · · ,
√

µ∆(c)] (∆(0) = Xt(0) −Xs(0)W and ∆(i) = Xt(i) −
Xs(i)W(i)), and L = [Ls, 0(0), 0(1), · · · , 0(c)] (0(0) and 0(i) are the matrices whose entries
are all 0 and have the same size as ∆(0) and ∆(i)).
The above optimization problem is a group sparse linear regression problem proposed
by Zheng et al. [31]. We can utilize the ALM method to solve it by rewriting the above
objective function as:

‖L− PX‖2
F + λ‖Q‖2,1, s.t. P = Q.

Thus, its corresponding augmented Lagrangian function can be represented as:

‖L− PX‖2
F + tr(MT(P−Q)) +

η

2
‖P−Q‖2

F + λ‖Q‖2,1,

where M and η are the Lagrangian multiplier matrix and a regularization coefficient,
respectively. The following optimization of this step can be referred to the work of [31]
for more details.

2. Fix U, and update W and W(i): in this step, the optimization problem is divided to
the following two types of independent problemss:

min
W

(‖UTXt −UTXsW‖2
F + τ‖W‖1),

min
W(i)

(‖UTXt(i) −UTXs(i)W(i)‖2
F + τ‖W(i)‖1).

For the jth column of W and W(i) denoted by wj and w(i)
j , their optimal solutions

are obtained by solving the following two typical LASSO problem with the SLEP
package [32]:

min
wj

(‖zt
j − Zswj‖2

F + τ‖wj‖1),

min
w(i)

j

(‖zt(i)
j − Zs(i)w(i)

j ‖
2
F + τ‖w(i)

j ‖1),

where zt
j = UTxt

j, Zs = UTXs, z
t(i)
j = UTx

t(i)
j and Zs(i) = UTXs(i) .

3. Check convergence: Reaching maximal iterations.

3. Experiments

In this section, we conduct extensive experiments to evaluate the proposed JIASL
method and discuss its results compared with the state-of-the-art methods under the
cross-corpus SER tasks.

3.1. Speech Emotion Database

The experiments were designed for extensive cross-corpus SER tasks on three widely
used speech emotion corpora, i.e., EmoDB (Berlin) [26], eNTERFACE [27], and CASIA [28].

EmoDB is a German emotional speech database consisting of 535 speech samples
from seven emotions, i.e., happiness (HA), sadness (SA), disgust (DI), anger (AN), boredom
(BO), fear (FE), and neutral (NE). Ten German volunteers were induced to express their
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emotions with some prepared texts. Each speech sample is recorded with a sample rate of
16 kHz.

eNTERFACE is an English bi-modal emotion database, and we extract its audio in the
experiments. There are 1257 samples (without the data of the 6th speaker) in eNTERFACE,
and each sample is labeled as one of six types of emotions, i.e., happiness (HA), sadness (SA),
disgust (DI), fear (FE), anger (AN), and surprise (SU). The speech sentences are recorded by
43 English speakers with a sample rate of 44 kHz.

CASIA is a Chinese speech emotion corpus and includes 1200 samples with six
emotions, e.g., happiness (HA), sadness (SA), neutral (NE), fear (FE), anger (AN), and
surprise (SU). The speech utterances are generated by four Chinese volunteers expressing
emotions under specific scripts with a sample rate of 16 kHz.

3.2. Experimental Setup

Task Setup and Protocol: The task setting of a cross-corpus SER is that one dataset (or
several datasets) is regarded as training data and another dataset is set as target data. Note
that we only obtain the data of the target domain without labels in practical cases; thus,
the current practice is to use the training samples and their labels in the source domain
and the testing samples in the target domain for domain adaptation. By alternatively using
either two of the above speech corpora, we were able to design six cross-corpus SER tasks
denoted by B→E, E→B, B→C, C→B, E→C, and C→E. B, E, and C are the abbreviations of
EmoDB, eNTERFACE, and CASIA, respectively, and the left side of the arrow is the source
speech corpus, while the other corresponds to the target one. Noting that, since these three
speech corpora have inconsistent label information, we selected the speech samples sharing
the same emotion labels in each task. We summarize the sample statistical information in
all six cross-corpus SER tasks in Table 1.

Table 1. The sample statistical information in all six cross-corpus SER tasks.

Tasks Speech Corpus (# Samples from Each Emotion) # Total

B→E
E→B

E (AN: 211, SA: 211, FE: 211, HA: 208, DI: 211) 1052

B (AN: 127, SA: 62, FE: 69, HA: 71, DI: 46) 375

B→C
C→B

C (AN: 200, SA: 200, FE: 200, HA: 200, NE: 200) 1000

B (AN: 127, SA: 62, FE: 69, HA: 71, NE: 79) 408

C→E
E→C

E (AN: 211, SA: 211, FE: 211, HA: 208, SU: 211) 1052

C (AN: 200, SA: 200, FE: 200, HA: 200, SU: 200) 1000

Input Feature: In the experiments, we chose the INTERSPEECH 2009 Emotion Chal-
lenge (IS09) official feature set [33] and INTERSPEECH 2010 Paralinguistic Challenge
feature set (IS10) [34] to describe the speech signals. The IS09 feature set consists of 384 el-
ements, including 32 acoustic low-level descriptors (LLDs) and their 12 corresponding
functions, which can be extracted by the openSMILE toolkit [35]. The IS10 feature set
consists of 1582 elements with 34 LLDs and their 21 corresponding functions in the openS-
MILE toolkit.

Parameter Setup: We set the trade-off parameters for all the comparison methods by
searching from a preset parameter interval and then reported the best evaluation metrics
(i.e., WAR and UAR), which correspond to the best parameters. As for our JIASL, we
searched for λ, µ, and τ from [0.001:0.001:0.009, 0.01:0.01:0.09, 0.1:0.1:0.9, 1:1:9], where
START:STEP:END represents the loop from the start value to the end value with a step.

Evaluation Metric: Two widely used evaluation metrics, i.e., weighted average recall
(WAR) and unweighted average recall (UAR) [10], were adopted to serve as the per-
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formance measurement for cross-corpus SER. WAR is known as the standard accuracy,
denoted as

WAR =
ncorrect

nall
,

where ncorrect and nall are the numbers of correctly predicted samples and all testing samples,
respectively. UAR is defined as the class-wise accuracy, which can be represented as

UAR =
c

∑
i=1

(
ni

correct/ni
all

c

)
,

where ni
correct and ni

all represent the numbers of correctly predicted samples and total
samples for the ith emotion class, respectively.

3.3. Comparison Methods

We compare our JIASL with recent well-performing state-of-the-art methods for cross-
corpus SER tasks. These comparison methods are illustrated as follows.

• Baseline method:
IS09 or IS10 feature sets with the classifier of SVM [5];

• Transfer subspace learning-based methods:
Transfer component analysis (TCA) [36];
Geodesic flow kernel (GFK) [37];
Subspace alignment (SA) [38];
Transfer kernel learning (TKL) [13];
Domain-adaptive subspace learning method (DoSL) [15];
Joint distribution adaptive regression (JDAR) [25].

3.4. Results and Discussions

Experimental results in terms of WAR are depicted in Table 2. As Table 2 shows,
several interesting observations can be found. (1) Based on the IS09 feature set, it is clear
to see that the proposed JIASL achieved the best average accuracy of all six cross-corpus
SER tasks, reaching 40.19%, which has a remarkable increase of 3.98% compared with the
second-highest WAR obtained by GFK [37]. In detail, among all the six cross-corpus SER
tasks, it can also be observed that our JIASL achieved the highest WAR in five tasks, i.e.,
B → C, E → B, B → C, C → B, and C → E. (2) The results based on the IS10 feature
set reveal that our proposed JIASL obtained more competitive performance than other
comparison methods. Furthermore, the JIASL performed best in five cross-corpus SER
tasks, i.e., B→ C, E→ B, C → B, E→ C, and C → E. Both observations demonstrate the
superior performance of the proposed JIASL over recent state-of-the-art transfer subspace
learning methods in coping with cross-corpus SER tasks. In addition, we also find that
the WAR results based on the IS10 feature set are better than the those based on the
IS09 feature set, both in average accuracy and in most subtasks. This is due to the fact
that the feature dimension of IS10 is higher than the feature of IS09, containing more
emotional information.

Since both the eNTERFACE and Emo-DB datasets used in the experiments are class-
imbalanced, we also report the results in terms of UAR for cross-corpus SER tasks to
evaluate the performance of our proposed JIASL and the state-of-the-art methods more
comprehensively, as shown in Table 3. For Table 3, it is clear that: (1) based on two feature
sets, our proposed JIASL obtained the highest average accuracies, in which it reached
the 38.42% UAR based on the IS09 feature set (improving by 2.09% compared with the
second-highest WAR obtained by DoSL [15]) and 41.98% UAR based on IS10 feature set
(increasing by 0.21% compared with the second-highest WAR obtained by JDAR [25])a
(2) Among all the six cross-corpus SER tasks, the proposed JIASL based on the IS09 feature
set obtained the highest UAR in five tasks, i.e., B→ C, E→ B, B→ C, C → B, and C → E.
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It also performed the best in the other five tasks, i.e., B → C, E → B, C → B, E → C,
and C → E. These findings indicate that our proposed method can also achieve the best
results in the class-imbalance case. This demonstrates that the joint regularization terms of
marginal distribution and class-aware conditional distribution in our JIASL can effectively
deal with class-imbalanced datasets.

Table 2. The experimental results in terms of WAR (%) for six designed cross-corpus SER tasks. The
best result in each task is highlighted in bold.

Feature Method B → E E → B B → C C → B C → E E → C Average

IS09 Feature Set

SVM 28.90 18.93 29.60 34.07 25.10 26.10 27.12
TCA 30.51 45.07 33.40 42.65 32.32 31.10 35.84
GFK 32.13 44.53 33.10 46.57 28.14 32.80 36.21
SA 36.06 38.93 34.40 42.16 31.65 30.40 35.60

DoSL 33.56 40.53 35.80 45.10 28.04 32.60 35.94
JDAR 36.41 40.27 31.10 43.63 31.56 32.40 35.90

JIASL (Ours) 36.88 50.40 36.50 53.68 33.17 30.50 40.19

IS10 Feature Set

SVM 34.54 24.53 35.30 35.29 26.79 24.30 30.13
TCA 32.64 46.78 40.50 54.56 29.75 33.20 39.57
GFK 36.03 38.67 40.00 47.55 29.09 33.00 37.39
SA 36.88 41.87 36.80 49.75 33.94 35.60 39.14

DoSL 35.63 45.00 37.50 48.31 30.52 32.10 38.18
JDAR 38.02 48.80 42.70 52.21 37.64 35.60 42.50

JIASL (Ours) 38.12 49.60 38.10 54.66 37.83 36.00 42.39

Table 3. The experimental results in terms of UAR (%) for six designed cross-corpus SER tasks. The
best result in each task is highlighted in bold.

Feature Method B → E E → B B → C C → B C → E E → C Average

IS09 Feature Set

SVM 28.93 23.58 29.60 35.01 25.14 26.10 28.06
TCA 30.52 44.03 33.40 45.07 32.32 31.10 36.07
GFK 32.11 42.48 33.10 48.08 28.13 32.80 36.17
SA 36.12 38.95 34.40 45.75 31.59 30.40 36.20

DoSL 33.50 43.89 35.80 49.03 28.17 32.60 36.33
JDAR 36.33 39.97 31.10 46.29 31.50 32.40 36.27

JIASL (Ours) 36.87 44.11 36.50 49.30 33.19 30.50 38.42

IS10 Feature Set

SVM 34.50 28.13 35.30 35.29 26.81 24.30 30.73
TCA 32.60 44.53 40.50 51.47 29.77 33.20 38.68
GFK 36.01 40.11 40.00 45.93 29.09 33.00 37.35
SA 36.82 43.33 36.80 48.45 33.91 35.60 39.15

DoSL 35.65 43.92 37.50 47.06 30.61 32.10 37.80
JDAR 37.95 47.80 42.70 48.97 37.58 35.60 41.77

JIASL (Ours) 38.05 48.35 38.10 53.64 37.76 36.00 41.98

Furthermore, comparing the results in Tables 2 and 3, we also have some interesting
findings. For instance, in the results of JIASL and JDAR, it is clear to see that both of these
two methods promisingly outperformed other comparison methods. This provides evident
support to show the better effectiveness of jointly considering marginal and class-aware
conditional distribution alignments adopted by JIASL and JDAR than simply considering
the marginal one in bridging the distribution gap between two different feature sets. It
is also worth mentioning that our JIASL performed better than JDAR, which shows that



Electronics 2022, 11, 2745 10 of 13

for a joint marginal and conditional distribution alignment strategy, our designed implicit
method (reconstruction) is more advantageous than the statistical moment-based strategy.

In addition, to evaluate the influence of the proposed optimization terms f1 and w/o
f2 for cross-corpus SER tasks, we also calculated the cumulative distribution function
(CDF) [39] with respect to WAR on the B→ E task, shown in Figure 1, in which each point
represents the WAR results of the specific iteration step, and w/o f2 and w/o f1 represent
the proposed JIASL without the terms f2 and f1, respectively. Figure 1 reveals two main
advantages of our proposed JIASL. The first point is that our JIASL with the optimization
terms of f1 and f2 can achieve the highest WAR result compared to the models of JIASL
without f2 and f1. The second point is that when the WAR is in the range of [20–26%],
the CDF of JIASL is higher than JIASL without f2 and f1. This case demonstrates that the
proposed JIASL converges faster and has more rounds to reach a high WAR in all iterations.

Figure 1. The cumulative distribution function (CDF) with respect to WAR for the cross-corpus SER
task of B→ E, in which w/o f2 and w/o f1 represent the proposed JIASL without the terms f2 and
f1, respectively.

3.5. Parameter Sensitivity Analysis

In our proposed JIASL, three trade-off coefficients (i.e., λ, µ, and τ) are adopted to
balance the different loss terms. Hence, we conducted additional experiments for the
sensitivity analysis of these parameters to demonstrate the adaptation of JIASL. Figure 2
describes the results of the parameter sensitivity analysis on the cross-corpus SER task of E
→ B, in which the optimal parameters for λ, µ, and τ under this task are 8.0, 0.009, and 0.5,
respectively, and the search set of parameters was set as [0.001:0.001:0.009, 0.01:0.01:0.09,
0.1:0.1:0.9, 1:1:9]. From Figure 2a, it is obvious that the recognition accuracies of WAR and
UAR vary gently with the λ in [2, 9], demonstrating that JIASL is insensitive to λ in the
optimal parameter interval [2, 9]. Similarly, Figure 2b reveals that the proposed method is
susceptible to µ in the parameter interval [0.001, 0.4]. Moreover, from Figure 2c, we can
observe that the recognition rate is flat enough in the whole parameter interval of τ. These
results all indicate that our proposed JIASL is insensitive to three trade-off coefficients.

In addition, it is also interesting to find that the three parameters have specific sen-
sitivities in different parameter intervals. For instance, λ is insensitive in the range of
large parameter values, and µ is insensitive in the range of small parameter values. τ is
insensitive in the entire parameter search range. This situation also reflects the different
contributions of regularization terms to the performance of our JIASL model.
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(a) trade−off coefficient λ (b) trade−off coefficient µ (c) trade−off coefficient τ

Figure 2. The parameter sensitivity analysis of three trade−off parameters (i.e., λ, µ, τ) for our
proposed JIASL method on the cross-corpus SER task of E→ B.

4. Conclusions

We propose a novel transfer subspace learning method called joint distribution im-
plicitly aligned subspace learning (JIASL) for cross-corpus SER. The aim of JIASL is to
learn an emotion discriminative and corpus-invariant projection matrix to predict the
emotion labels of target speech samples. To this end, we first build a sparse linear regres-
sion model guided by the labeled source speech samples to endow the projection matrix
with the emotion-discriminative ability. Then, a reconstruction regularization term, which
implicitly bridges both marginal and emotion class aware conditional feature distribution
gaps between two speech corpora, is further designed to enhance the corpus-invariant
ability of the projection matrix. Finally, extensive cross-corpus SER experiments on EmoDB,
eNTERFACE, and CASIA are conducted to evaluate the proposed JIASL. Experimental
results demonstrated the effectiveness and superiority of the proposed JIASL in coping
with cross-corpus SER tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

Xs The features of labeled speech samples in the source domain
xs

i The feature vector of ith speech sample in the source domain
Xt The features of unlabeled speech samples in the target domain
xt

j The feature vector of jth speech sample in the target domain
Ls The emotion labels of speech samples in the source domain
li The emotion label of the ith speech sample
li,k The kth entry of one-hot vector li
U The projection matrix
W The reconstruction coefficient matrix
‖ · ‖F The Frobenius norm
‖ · ‖2,1 The `2,1 norm
‖ · ‖1 The `1 norm
ns The number of source speech samples
nt The number of target speech samples
d The dimension of the speech feature vector
c The number of emotions involved in cross-corpus SER tasks

References
1. Schuller, B.; Batliner, A. Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing; John Wiley

& Sons: Hoboken, NJ, USA, 2013.
2. Busso, C.; Bulut, M.; Narayanan, S.; Gratch, J.; Marsella, S. Toward effective automatic recognition systems of emotion in speech.

In Social Emotions in Nature and Artifact: Emotions in Human and Human-Computer Interaction; Gratch, J., Marsella, S., Eds.; Oxford
University Press: New York, NY, USA, 2013; pp. 110–127.

3. Schuller, B.W. Speech emotion recognition: Two decades in a nutshell, benchmarks, and ongoing trends. Commun. ACM 2018,
61, 90–99. [CrossRef]

4. Schuller, B.; Arsic, D.; Rigoll, G.; Wimmer, M.; Radig, B. Audiovisual behavior modeling by combined feature spaces. In
Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, Honolulu, HI,
USA, 15–20 April 2007; Volume 2, pp. 733–736.

5. Schuller, B.; Vlasenko, B.; Eyben, F.; Rigoll, G.; Wendemuth, A. Acoustic emotion recognition: A benchmark comparison of
performances. In Proceedings of the 2009 IEEE Workshop on Automatic Speech Recognition & Understanding, Moreno, Italy,
13 November–17 December 2009; pp. 552–557.
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