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Abstract: Diabetes is a widespread disease in the world and can lead to diabetic retinopathy, macular
edema, and other obvious microvascular complications in the retina of the human eye. This study
attempts to detect diabetic retinopathy (DR), which has been the main reason behind the blindness of
people in the last decade. Timely or early treatment is necessary to prevent some DR complications
and control blood glucose. DR is very difficult to detect in time-consuming manual diagnosis because
of its diversity and complexity. This work utilizes a deep learning application, a convolutional neural
network (CNN), in fundus photography to distinguish the stages of DR. The images dataset in this
study is obtained from Xiangya No. 2 Hospital Ophthalmology (XHO), Changsha, China, which is
very large, little and the labels are unbalanced. Thus, this study first solves the problem of the existing
dataset by proposing a method that uses preprocessing, regularization, and augmentation steps to
increase and prepare the image dataset of XHO for training and improve performance. Then, it takes
the advantages of the power of CNN with different residual neural network (ResNet) structures,
namely, ResNet-101, ResNet-50, and VggNet-16, to detect DR on XHO datasets. ResNet-101 achieved
the maximum level of accuracy, 0.9888, with a training loss of 0.3499 and a testing loss of 0.9882.
ResNet-101 is then assessed on 1787 photos from the HRF, STARE, DIARETDB0, and XHO databases,
achieving an average accuracy of 0.97, which is greater than prior efforts. Results prove that the CNN
model (ResNet-101) has better accuracy than ResNet-50 and VggNet-16 in DR image classification.

Keywords: classification; diabetic retinopathy; deep learning; CNN; ResNet; VggNet

1. Introduction

Diabetic retinopathy (DR) is a microvascular entanglement of type 1 and 2 diabetes.
DR causes retinal irregularities and is one of the main causes of visual impairment around
the world. Approximately 33% of individuals with diabetes have DR, and practically
all diabetics will foster it after some time. By 2030, DR is predicted to afflict 191 million
individuals [1,2]. Though the visual weakness and deficiency brought about by DR can
be prevented [3], early discovery is critical [4]. To guarantee early discovery and brief
treatment, current rules propose that individuals with inadequately controlled diabetes
ought to be evaluated for DR once a year. Patients previously determined to have DR ought
to be checked frequently. Evaluating for DR mainly includes catching a fundus picture
of the retina, which is then assessed by expert ophthalmologists. If not treated, diabetic
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retinopathy progresses through four clinical stages of mild nonproliferative, moderate
nonproliferative, and severe nonproliferative, as shown in Figure 1.
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The number of retina photographs generated via the screening program will rise
with the number of diabetic patients, challenging the provision of specialized eye care for
everyone, thereby imposing a huge labor-intensive burden on medical experts and costs
for medical services; these issues and the growing waiting list for ophthalmic consultations
are the main problems facing public health systems [5–7]. These problems can be alleviated
by an automated system, which can be used as a support tool for medical experts or a
complete diagnostic tool. Many studies have reported on the application of deep learning
(DL) algorithms in the automatic detection of DR. These techniques demonstrate the
great sensitivity and specificity of automatic detection systems based on deep learning
artificial neural networks to the reference DR. In addition, new eye problems such as
age-related macular degeneration, glaucoma, and diabetic macular edema have recently
been discovered [8–11].

The automated system must be able to arrange retinal photographs in accordance with
the severity of clinical practice, such as the suggested international clinical levels of diabetic
macular edema and DR, which are also used in some countries, for it to be practically
practicable. According to previous studies, the latest experimental results of the former
DR scale can be obtained, but the latter is not used for the experimental classification of
maculopathy. The enormous amount of annotated images needed for model learning is a
significant barrier to the widespread and successful usage of deep learning systems [12–14].

This study aims to use fundus image classification technology to automatically diag-
nose DR, classify fundus images according to the severity of DR, and realize end-to-end
real-time classification from fundus photographs to the patient’s condition. The automatic
diagnosis system has a high degree of automation and precision, thereby reducing the pres-
sure on DR diagnosis and treatment. This task uses different image preprocessing methods
to extract numerous significant features and then classifies them. Therefore, this work uses
three types of CNN architecture (residual neural network (ResNet)-101, ResNet-50, and
VggNet-16) to detect the DR of two datasets and evaluates the training accuracy, training
loss, and test accuracy of the model.
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This paper introduces a CNN method based on deep learning to solve the problem
of DR classification. The motivations for employing different CNN-based deep neural
networks evolved and obtained a substantial result on ImageNet Challenger, the most
important image classification and segmentation challenge in the image-analyzing area. In
medical categorization, a CNN-based deep neural system is commonly utilized. Because
CNN is such a good feature extractor, using it to identify medical pictures may save
time and money on feature engineering. The key benefits of CNN are a low reliance on
preprocessing and a reduction in the amount of human labor required to create its features.
It is simple to comprehend and apply. Among all picture prediction algorithms, it has the
greatest accuracy. It finds the relevant traits without the need for human intervention. In
addition, CNN is computationally efficient. Finally, CNN has shown to be quite effective in
resolving picture categorization issues. Many image databases’ top performance has been
greatly enhanced thanks to research based on CNN.

To the best of our knowledge, this is the first article to discuss the two categories of DR
(symptomatic and asymptomatic) using different kinds of CNN architecture (ResNet-101,
ResNet-50, and VggNet-16) on our laboratory dataset (obtained from the Xiangya Second
Ophthalmic Hospital, Changsha, China, from March 2016 to October 2016). Recently,
several new methods were introduced to adapt the CNN to large datasets. Then, we
analyzed the performance and function of the different kinds of CNN architecture and used
deep CNNs (ResNet-101, ResNet-50, and VggNet-16) to detect DR, ultimately achieving
automatic and precise detection to minimize optical impairment. Compared with prior
techniques, this work applied enhancements in terms of the convergence time of large-scale
experimental datasets and classification performance. The main contributions of this paper
are as follows:

• This work’s laboratory database has a very large size, is little, and has some noise, and
deep networks are slightly difficult to train. Thus, this study uses some preprocessing
methodologies on the laboratory datasets to increase the training dataset and improve
the performance of using a deep training network, such as resizing of input images,
augmentation, and data normalization.

• This study demonstrates that CNN-based approaches could achieve state-of-the-art
performance in DR detection. In addition, this work uses CNN methods to find the
fundamental picture features relevant to disease grade prediction. Later on, it justifies
those aspects in light of expert expertise. Furthermore, this study evaluates different
CNNs rigorously, taking into consideration what factors were used to determine illness
state, and justifies their clinical utility.

• Exploiting the advantages of CNN and ResNet with images, this work utilizes ResNet-
101, ResNet-50, and VggNet-16 to recognize the slight differences and classify DR images.

• This study also compares these three networks to determine the best for this kind
of image.

The rest of this paper is organized as follows. Section 2 introduces the related work
of this study, while Section 3 highlights the suggested methods. Section 4 establishes the
experiments and highlights the performance evaluation of the CNN architectures, and
Section 5 finally concludes this work.

2. Related Work

The primary research on DR detection essentially divides DR problems into different
components, such as vascular, microaneurysm, fovea, exudate, hemorrhage, and optic
disc, to analyze the severity of DR. In [15], a multidirectional two-dimensional Gaussian-
matched filter is proposed to detect blood vessels. In [16], sinthanayothin attempts are made
to localize the disc by discovering the area with the biggest local average gray variance.
Baudoin finds microaneurysms in fluoroscopic photographs of the fundus according to
morphological methods in [17]. Although these methods can locate the components of
the retina well, they usually operate on high-quality images and cannot directly detect the
severity of the DR.
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For DR harshness classification, many traditional machine learning methods are used
to detect DR automatically. Most traditional machine learning methods first extract features
by hand, then classify images through traditional classifiers. In [18], a model of different
types of retinopathy is developed based on scale-invariant feature transform in [19,20] to
generate an image local descriptor. In [21,22], the BoVW scheme is based on the detection of
low-level sparse features with an accelerated enhanced features (i.e., SURF) local descriptor
and midlevel features in semisoft encoding with the maximum combination. The best
representation of BoVW for retinal image classification is area under the receiver operating
characteristics curves of 97.8% (exudates) and 93.5% (red lesions), applying a set of data
cross-validation protocols. In [23,24], Seoud first generates the injury probability map and
then combines its position, size, and probability information to represent the characteristics.
The proposed approach achieves an overall FROC curve score of 0.393, while a previous
work with images of similar resolution reports a score of 0.233. In [25], by extracting
the features of the vascular and exudate areas and the texture features, a support vector
machine (SVM) is provided for DR detection using fundus images. In [26], a random forest
is used as a basic classifier. In [27], SVM is used; although the SVM and random forest
methods can detect DR automatically, they are sensitive to the quality of fundus images
and are inappropriate for large-scale datasets. In [28,29], the optic disc is detected using
morphological filtering and watershed transformation techniques, The algorithm is tested
on a small image database, obtaining a mean sensitivity of 92.8% and a mean predictive
value of 92.4%, and compared with a human evaluator in terms of performance.

In recent years, deep learning technology has brought about an extraordinary revolu-
tion in the field of computer vision. The use of CNN for image classification has especially
attracted the attention of many investigators in this area, including the segmentation of
these features and blood vessels, as mentioned in [30,31]. The deep CNN structure was
initially proposed to solve the problem of natural image classification. In [32], a CNN model
(LeNet-5) is used to extract image features to solve the vascular segmentation problem.
These technologies have some limitations. First, given the manual extraction of dataset
features by experts, their accuracy cannot be ensured. Second, the dataset is limited and of
poor quality, usually consisting of just a few hundred or even hundreds of fundus images,
and the acquisition setting is rather simple, making it impossible to compare the algo-
rithms’ performance in the experiment. Since Alex et al. [33,34] won in the 2012 ILSVRC
competition, a remarkable improvement in the AlexNet architecture has been proposed,
and the CNN’s deep-field computer vision has been extensively applied. Several excellent
CNN architectures have also been recommended to further improve CNN’s performance,
such as VggNet [35,36], GoogleNet [37], and ResNet [38]; the latest is one of the most
important network classification models proposed in 2015. CNN models (AlexNet, VggNet,
GoogleNet, and ResNet) are employed in [39] to distinguish the minor changes across
image classes for DR detection, with the best classification accuracy of 95.68%. In [40], two
models of deep learning are adopted. The first model (CNN512) uses the full image as the
input to the CNN model for classification in one of the five DR classes, obtaining 84.1% and
88.6% accuracies on the APTOS and DDR Kaggle 2019 public datasets, respectively, and the
second model uses an adopted YOLOv3 model to detect and locate DR lesions, reaching
0.216 mAP in locating lesions in all of the DR detection data.

According to [41], the SVM is suggested to predict DR in three separate classifications,
including diabetic normal, nonproliferative retinopathy (non-PDR), and diabetic PDR,
based on the features contained in a picture of the entry retinal fundus. In addition, the
CNN technique can be applied to DR images. In [42], a four-layer DCNN is used to divide
DR into normal, mild, and severe DR. In [43], a universal representational model, which
enables the effective CNN classification of target objects inside images at any scale, is
presented. The efficacy of this method is proven in a real-world application of detecting
lesions in retinal pictures for classes that differ significantly in scale. Recently, Ref. [44]
used a CNN based on Vgg16 on the Kaggle DR database [45] and achieved a sensitivity of
0.95 and an accuracy of 0.75 on 5000 verification images. These techniques essentially focus
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on classification without the capability to locate distinctive areas. Ref. [46] proposes class
activation mapping (CAM), which is used to describe the weighted activation mapping
after the global average pool [47], to locate different image areas. Inspired by CAM, [30]
extended the method [35] from classification to a regression locale and shed light on the
DR detection difficulty, which is based on VGG16 without fully connected layers.

According to Ref. [48], an embedded system based on image processing might be used
to identify conditions that lead to blindness, such as glaucoma and diabetic retinopathy.
For low-cost automated glaucoma and retinopathy diagnosis, a hybrid feature extraction
technique is described. The datasets are classified using an artificial neural network
classifier. In Ref. [49], initially, the RGB retina image is transformed to grayscale. On this
grayscale image, contrast-limited adaptive histogram equalization (CLAHE) is used to
adapt the varied intensity variances to a uniform intensity. Then, to reduce background
noise and improve blood arteries, morphological opening surgery is performed. Later,
using canny edge detection, the perimeter is recovered from the morphing image. After that,
gray thresholding is used to remove the region from the morphing image. The retinopathy
is then visible in the resulting image.

A methodical investigation of the significance of image processing for diabetic eye
disease (DED) categorization is presented in Ref. [50]. Picture quality enhancement, im-
age segmentation (area of interest), image augmentation (geometric transformation), and
classification are all steps in the proposed automated classification framework for DED.
Traditional image processing methods are combined with a novel built convolution neural
network (CNN) architecture to produce the best results. For DED classification tasks, the
novel designed CNN paired with the old image processing approach provides the best
result in terms of accuracy. In [51], the input image is collected from the Indian Diabetic
Retinopathy Image Dataset database, and 13 filters are used to enhance the photos, includ-
ing smoothing and sharpening filters. Then, using performance measures, the quality of
the enhancement algorithms is compared, and superior results are obtained for the Median,
Gaussian, Bilateral, Wiener, and partial differential equation filters, which are integrated to
improve picture enhancement. The convolutional neural network input is supplied to all
of the enhanced filters’ output images, and the results are compared to discover the best
enhancement approach.

Researchers working on the retinopathy detection problem ran into a few issues, many
of which are unavoidable and for which there is no immediate solution. This is because
the field of deep learning is still relatively new to many people, and data collection is
always problematic. Data are sparse, and much of what is accessible is unusable for one
reason or another. Using CNN to separate the lesions, Figure 2 shows the research gaps
in retinopathy. The following are the key drawbacks of traditional approaches and DL
architectures, as determined by the preceding study of the existing literature: 1. Dataset
is limited, 2. Images that are twisted and blurred, 3. Models that are overfitting, and
4. Limited computing power.
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3. Methods

First, some augmenting and preprocessing methods were used to increase the amount
of training data and improve the classification effect and performance of the deep learning
network used in the laboratory dataset. For example, the input images were resized and
augmented, and the data was normalized. Then, the three most advanced CNN models
were used to detect DR, and the accuracy of these models in image classification was tested.

3.1. Proposed Solution for Solving the Dataset Issues
3.1.1. Data Preprocessing

Given that low-quality images will produce inaccurate results, preprocessing is an
essential operation to improve image quality. The results of preprocessing are regarded
as the original input for data training, which divides the images into two categories. The
dataset also contains images from patients of different races, age groups, and lighting
levels in fundus photography, which will affect the pixel intensity values in the image and
produce unnecessary changes independent of the classification level. To solve this problem,
this work used the OpenCV library to preprocess the images. The OpenCV library provides
two transform functions, cv2.warpAffine and cv2.warpPerspective, and noise. This library
is necessary for image processing, as it comprises rich built-in features for quick processing.

The preprocessing consisted of image cropping followed by resizing. Each image
was cropped to a square shape, which included the most tightly contained circular area
of the fundus. The procedure removed most of the black borders and all of the patient-
related annotations from the image data. Each of the cropped images was then resized
to 300 × 300 pixels. Here, the creation of multiple resolutions was for the purposes of
analyzing the effect of the input image resolution on the classification performance

• Original fundus image dataset and retinal image grading systems

The research of the present study was conducted in collaboration with Xiangya No. 2
Hospital Ophthalmology (XHO), Changsha, China, a certified provider of diabetic retinopa-
thy screening and monitoring services in China (obtained from the Xiangya Second Oph-
thalmic Hospital, Changsha, China, from March 2016 to October 2016). The output images
were of variable resolutions of 1956 × 1934 pixels.

Each of the retinal images was graded with respect to three different criteria: (i) diabetic
retinopathy, (ii) macular edema, and (iii) gradability, and a number of images were not
graded to any criteria. Images are graded with the proposed international clinical diabetic
retinopathy and macular edema disease severity scales, denoted later as symptomatic and
asymptomatic, respectively. Image gradability is a two-stage system, which considers an
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image to be either gradable or not. All personnel participating in retinopathy assessment
had over 10 years’ experience in diabetic retinopathy grading. All images with symptomatic
and asymptomatic were graded by two ophthalmologists, both with more than 10 years
of experience in grading fundus images. If there was a disagreement in grading, such an
image was not included in this study.

Finally, all the images classified into (symptoms 607 and nonsymptoms 1000) images
from the training set were used to develop and validate the model. The model was tested
on (symptoms 200 and nonsymptoms 122), images as explained in Table 1.

Table 1. Classification dataset.

Class Name Degree of DR Number of Labels For Training For Testing

Class 0 Nonsymptoms 1000 800 200
Class 1 Symptoms 607 485 122

Images from the training dataset (samples in Figure 3) are read using the Tensorflow-
GPU library. This library is important for image processing, as it contains rich built-in
features for rapid processing. The result of this can be seen in Figure 4b; therefore, prepro-
cessing is the reshaping of input data. The images acquired are of size 1956 × 1934 pixels
and occupy a large area of memory space. This demands too much RAM usage, resulting
in slower computation. Hence, they are downscaled to 300 × 300 dimensions. The result of
an image augmentation can be seen in Figure 4c.
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3.1.2. Data Augmentation

The deep learning (DL) model has always been a data requirement due to data noise
and dataset limitations. Thus, the data expander is used to generate more data without
actually collecting more data to expand the dataset. This operation can be performed using
the Keras library’s built-in capabilities. Image rotation (to induce rotation invariance),
horizontal flipping, scaling, clipping, and translation for preprocessing are some of the
augmentation techniques. To generate new data, a recent work [52] used the most advanced
generative adversarial networks (i.e., GAN). Additionally, to eliminate extraneous parts,
the fundus photos are cropped to a lesser size.

3.1.3. Utilizing CNN Models

This paper is focused on the use of CNNs in the diagnosis of DR. Automatic feature
extraction and efficient computation are hallmarks of CNN and any deep learning paradigm.

The convolution, pool, and activation layers make up the CNN model. Different
filters combine the data fed into the network. These filters are similar to traditional image
processing filters. However, instead of being explicitly defined, they are self-learning.
The convolution layer extracts local features of various positions from the original input
or intermediate feature maps with various kernel sizes. The weight-sharing mechanism,
local connectivity, and target position invariance are the advantages of the convolution
layer. The pooling layer shrinks the feature maps and network parameters while keeping
critical information. The most commonly used methods are average pool and maximum
pool. The convolution layer is usually followed by the pooling layer. The fully connected
layer resembles a traditional neural network and is added to the final pool layer for
classification [52].

• VggNet-16

VggNet-16 is a CNN structure, which won the 2014 ILSVRC (Imagenet) competition.
VggNet-16 is regarded as one of the most advanced visualization model architectures to
date. The 16 in VggNet-16 means that it has 16 layers of weight. This network is a fairly
large network with approximately 138 million parameters. Figure 5c shows the VggNet-16
network structure, the number of parameters for each level, and the detailed performance
test for all layers of the network [35,37,39].

VGG16 is a proposed model that compresses the previously successful VGG16 network
and improves on the following aspects: (1) smaller model size, (2) quicker speed, (3)
leverages residual learning for faster convergence, better generalization, and degradation
resolution, and (4) equals the recognition accuracy of the noncompressed model on the
very large-scale grand challenge MIT Places 365-Standard image dataset. The suggested
model is 88.4% less in size and 23.86% faster in training time than VGG16.

This backs up our contention that the proposed model takes the best features of VGG16
and improves on them.

This work trains deep models of VGGNet-16 to screen DR as deep models achieve
great success in many tasks. VGGNet exhibits excellent performance but is not better than
ResNet-101 and ResNet-50.

• ResNet (50 and 101)

Ref. [34] proposes ResNet, which was utilized to successfully train 152 deep neural net-
works to win the ILSVRC 2015 championship and obtain a 3.57% error rate classification for
the top 5 classes using the residual unit, which is extremely good considering the number of
parameters is smaller than that in VggNet. HighWay Nets, the ResNet core, uses the skip con-
nection to let some input into (skip) the layer to integrate the information flow indiscriminately,
preventing information loss and gradient vanishing (which also suppresses the generation
of some noise). Furthermore, noise suppression entails averaging the model, ensuring that
the model maintains a balance in training accuracy and generalization. Ultra-deep neural
network training and model accuracy can be greatly improved using the ResNet structure.
ResNet solves the degradation problem by increasing the CNN depth. The accuracy initially
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increases, reaches the limit, and then decreases as the depth increases. This phenomenon
is not an overfitting issue because the error increases not only in the test samples but also
in the training samples. When a shallow medium network satisfies the saturation accuracy
and contains several congruence mappings layers, the errors will not accumulate when the
network is at its smallest, and the deeper the network is, the fewer the training example errors
will be. ResNet was inspired by the idea of employing a congruent mapping to send the
previous output directly to the next layer. If a CNN’s input is x and the expected output is
H(x), our learning goal is F(x) = H(x) − x when input x is directly transferred to the output.
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A deep convolutional neural network with 50 layers is called ResNet-50. The ImageNet
database contains a pretrained version of the network that can be loaded. This network
has been trained on more than a million images. As a result, the network has acquired
knowledge about several rich feature representations for numerous photos. ResNet-101 is
a deep convolutional neural network with 101 layers. The ImageNet database, which has
been trained on more than a million images, allows you to import a pretrained version of
the network. In order to classify photos into 1000 different object categories, the network
has already been trained. The network has learnt a range of rich feature representations for
a variety of pictures as a consequence.

This study trained deep models VggNet-16, ResNet-50, and ResNet-101 to screen DR
as deep models achieve great success in many tasks. For example, these methods have
been cited for their good performance in image classification [39]. Figure 5a–c shows the
ResNet-101, ResNet-50, and VggNet-16, respectively, network structures used to train our
lab dataset for classifying DR images. ResNet-101 provides better results than ResNet-50
and VggNet-16.

3.1.4. Training Process

This work chose the latest CNN models (ResNet-101, ResNet-V1-50, and VGG-16) to
train and classify our lab dataset because they are very popular for their effectiveness and
robustness. They are designed in such a way that the input retinal image of size 300 × 300
can be fed into the network, which has alternate convolution and pooling layers activated
using the ReLU activation function. The latest CNN models have been implemented in
Python using Tensorflow. The parameters of the hyperparameter-tuning method are not
initialized by the network itself; it is necessary to tune and optimize these parameters
according to the results of training the DR image in enhancing performance. In addition,
some of these parameters used in the proposed methods are mentioned in Table 2.

Table 2. Parameter tuning in the latest CNN models.

Description Output Shape

weight_decay 0.00001
num_classes 2

batch_size 8
val_batch_size 32
image_height 300
image_width 300

image_channels 3
num_iters 4000

lr [0.0001, 0.001]
momentum 0.9

batch_norm_scale True
batch_norm_epsilon 1 × 10−5

batch_norm_decay 0.997

In this work, 1607 images from the Xiangya No. 2 Hospital Ophthalmology Changsha
China dataset and 1000 images from this dataset are healthy and 607 images are defective.
Out of 1000 healthy images, 800 images are used for training, and the remaining 200 images
are used for testing; out of the 607 defective images, 485 images are used for training
and 122 for testing. The images are fed into the network as tensors, and the network is
trained iteratively. The hyperparameters of the proposed models are fine-tuned to achieve
better performance. The number of iterations for every retinal image is set as 4000, and
the learning rate is chosen as 0.0005. Parameter tuning for the proposed models is given in
Table 2.
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4. Experiment

This work started by using some preprocessing methods. The input image was resized
and augmented and the data normalized to increase the amount of training data and
improve the performance of using a deep training network for this work’s laboratory
dataset. Then, the three state-of-the-art CNN models were used to detect DR, and the
accuracy of these models was tested to classify the images. In addition to measuring
the number of correctly and incorrectly classified test images, the images must also be
evaluated according to the categories of error classification and discipline the accuracy
scores accordingly.

4.1. Dataset and Preprocessing

The images were obtained from Xiangya No. 2 Hospital Ophthalmology (XHO),
Changsha, China, for the study of two causes or classes of diabetic patients with and
without symptoms. Initially, the datasets were indivisible, unmodified, and dirty due to
many datasets covering many diseases, which are not diabetes. We then modified, arranged,
and divided them into two appropriate categories of diabetes with and without symptoms.
Second, all the images used were preprocessed to avoid noise and poor illumination. Before
training the collected dataset, this study used many preprocessing methods to prepare the
input images. The preprocessing included cropping and scaling the images. Each image
was cropped to a square form, which includes the circular section of the fun-dust that is
most securely enclosed. The images acquired are of size 1956 × 1934 pixels and occupy a
large space. This requires higher RAM usage, which leads to low computation. Hence, they
are downscaled to 300 × 300 dimensions before feeding them into the framework. This
helps speed up the performance.

The number of images used with symptoms is 607, while 1000 did not have symptoms.
Given the insufficient number of images for training, this study increased the size of
the dataset by using the augmentation steps as shown in Table 3. Furthermore, given
the presence of noise and the limited number of datasets, increasing the data is always
preferred. Therefore, a data expander was used to generate more data without actually
collecting more data. This work used two different types of OpenCV methods to increase
the training set by rotating images and providing noisy images to improve model accuracy,
as shown in Figure 6. The XHO dataset was divided into 800 for the no symptoms class
and 485 for the symptoms class in the training dataset before the augmentation operation.
The images in the testing dataset are 322. After the augmentation, the datasets increased
to 1982 for the no symptoms class and 1204 for the symptoms class in the training dataset.
The initial learning rate was 0.001, the momentum was 0.9, the batch size was 800, and the
iterations were 3000.

Table 3. The number of images before and after the augmentation process.

Class All
Training Set

Tasting Set
Before Augmentation After Augmentation

No symptoms 1000 800 1982 200
Symptoms 607 485 1204 122

4.2. Results and Discussion

The first experiment was on 16 layers of the VGG network for classifying the input
images. The different scales of the 16 CNN layers and the max-pooling layers after each
different scale were used to avoid overfitting and speed the processing operation. VGG-16
successfully obtained the training and testing classes, as shown in Table 4. Meanwhile, the
accuracy is not very high because of the problem of vanishing gradients, which results in
an insufficient number of layers for extracting the many features of the input images.
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Table 4. Performance comparison with different approaches before augmentation.

Model Training Accuracy (%) Training Loss (%) Testing Accuracy (%)

ResNet-101 80.88 40.1 79.76
ResNet-50 79.7 37.6 71.8
VggNet-16 64.4 67.32 62.11

The second experiment used ResNet-50. This network contains different scales of
50 CNN layers with residual blocks to avoid the vanishing gradients problem. As shown
in Figure 5, each block has a particular number of CNN layers and scale, and the input of
each block is added to the output of the same block, helping enrich and increase the feature
extraction. The accuracy of this experiment is higher than that of VGG-16 because of the
ResNet properties.

To improve the model accuracy, we increased the number of layers in Resnet to 101
in the last experiment. The advantage of ResNet-101 is that it has more layers, is easier to
overfit, and has a deeper network structure than ResNet-50. ResNet-101 has 101 layers,
helping obtain more features of the input images. ResNet-101 achieved the highest accuracy
in terms of classifying the input images for both the training and testing datasets, as shown
in Tables 4 and 5. The cross-entropy loss function was used to evaluate the training
operation in all experiments to adjust the model weights during training. In addition, we
used the arithmetic average to assess the model accuracy when the model was tested with
the testing dataset.

The learning performance of the CNN models (ResNet-101, ResNet-50, and VGG-16)
are shown graphically in Figure 7a,b, Figure 8a,b and Figure 9a,b, respectively. These
figures show the plot of the number of iterations on the x-axis against the accuracy and
loss on the y-axis. The ResNet-101 model exhibited promising results and robust stability
in classifying the images as either healthy or afflicted by scanning the existence of DR.
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The designed model proves efficient in classifying the images present in the XHO datasets
because the ResNet-101 model has a higher accuracy than ResNet-50 and VggNet-16.

Table 5. Performance comparison with different approaches after augmentation.

Model Training Accuracy (%) Training Loss (%) Testing Accuracy (%)

ResNet-101 98.88 34.99 98.82
ResNet-50 93 34 91.5
VggNet-16 71.39 61.48 64.11
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The classification accuracies are shown in Tables 4 and 5. The tables indicate that
the results obtained using the CNN models with data augmentation are better than those
obtained without data augmentation because data augmentation can assist CNN models in
dealing with minor rotations or translations during data recording. Additionally, because
of the imbalanced distribution of the XHO dataset in which the number of normal images
was more than that of the DR images, we first classified the images into two DR stages and
split them into the training and testing data sets. Then, image preprocessing was performed
to improve the quality of the retinal images, which is important because low-quality images
can degrade network performance. Thus, ensuring the consistency of all images and the
enhancement of the features of the images are important. Thus, as networks and datasets
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improve and real-time classifications become available, the potential usefulness of CNN
models (ResNet-101, ResNet-50, and VGG-16) to DR clinicians will continue to increase.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 20 
 

 

 

(b) 

Figure 7. Training process of ResNet-101 for both (a) accuracy and (b) loss. 

 

(a) 

 

(b) 

Figure 8. Training process of ResNet-50 for both (a) accuracy and (b) loss. Figure 8. Training process of ResNet-50 for both (a) accuracy and (b) loss.

4.3. Performance Evaluation

To assess the performance of the proposed system ResNet-101 in DR detection on our
dataset and other datasets, we used a high-resolution fundus (HRF) image, which contains
30 images of dimension 3304 × 2336 pixels [53]; STructured Analysis of the Retina (STARE),
which contains 20 images from the STARE dataset of size 700× 605 pixels [54]; DIARETDB0,
which contains 130 images from the DIARETDB0 dataset of size 1500 × 1152 pixels [55];
1200 images from the MESSIDOR dataset of resolution 1440 × 960 [56]; and our database
XHO, which contains 1607 images of size 300 × 300.

The testing dataset is divided into two categories: images with no DR and images with
DR recognized by ophthalmologists who divided the 2987 images with DR into 1089 images.
No DR was observed when the suggested approach was tested on normal (no DR) pictures.
Table 6 shows a detailed summary of all datasets used.
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Table 6. Complete description of database.

Dataset Number of Images No DR DR

XHO datasets 1607 1000 607
HRF datasets 30 15 15

STARE datasets 20 12 8
DIARETDB0 datasets 130 20 110

MESSIDOR 1200 851 349
Total 2987 1898 1089

4.4. Performance Evaluation Criteria

The measures used to evaluate the effectiveness of CNNs include accuracy (ACC),
specificity (SP), sensitivity (SEN), area under the ROC curve (AUC), positive predictive
value (PPV), negative predictive value (NPV), and F1 score (F1). The amount of correctly
identified photos is known as the ACC. The SP is the proportion of correctly categorized
photos as normal images, while the SEN is the proportion of correctly classified images
as DR images. The ROC curve and the value calculated by ROC, and the AUC provide a
graphic representation of the ratio between SEN and SP. PPV is the proportion of correctly
categorized DR pictures, whereas NPV is the proportion of correctly labeled normal images.
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These variables are used to evaluate how ResNet-101 performs in comparison to other
algorithms. The following defines these metrics:

SP =
TN

(TN + FP)
(1)

SEN =
TP

(TP + FN)
(2)

ACC =
(TN + TP)

(TN + TP + FN + FP)
(3)

PPV =
TP

(TP + FP)
(4)

NPV =
TN

(TN + FN)
(5)

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall′

(6)

where false negative (FN) values refer to DR pictures that are categorized as non-DR,
whereas false positive (FP) values refer to non-DR images that are labeled as DR. The terms
TP and TN stand for true positive and true negative values, respectively, and relate to the
DR pictures that are categorized as DR and the non-DR images that are not.

ResNet-101 is implemented utilizing many assessment criteria, including ACC, SEN,
SP, and F1. The usage of 2987 retinal fundus pictures from four distinct datasets. For the
detection of DR, an assessment of the proposed system ResNet-101 is conducted. The
results of DR detection using various datasets were shown in Table 7 for all the accuracy
(ACC), specificity (SP), sensitivity (SEN), area under the ROC curve (AUC), and F1 score
metrics (F1). The AUC values are evaluated for the HRF, DRIVE, STARE, MESSIDOR,
DIARETDB0, and DIARETDB1 datasets. The ROC curve plot is shown in Figure 10. In
Table 8, the findings are compared with several current state-of-the-art methods for each
dataset to determine their superiority and efficacy.

Table 7. Summary of DR detection for four different datasets using ResNet-101 CNN method.

Dataset Test Images Correctly
Detected Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%) AUC (%)

XHO datasets 200 196 98 97.14 97.65 97.36 98.55
HRF datasets 30 30 100 99.98 99.98 99.98 99.99

STARE datasets 20 19 95 94.96 95.11 95.03 95.04
DIARETDB0 datasets 110 105 95.45 95.39 99.38 95.45 95.46

MESSIDOR 349 347 99.42 99.45 99.38 99.41 99.42
Total 360 349 97 96.87 98.03 96.95 97.26

Table 8. Comparison between the related works that used CNN with our work to classify DR Images.

Evaluated Parameter [57] [58] [59] Proposed
Method [60] [39] [61] [62] [63]

Number of Classes 2 5 4 5
Detect Lesion No No No Yes

Dataset private dataset Kaggle Messidor DDR
Performance

Measure
ACC 94.23% 88.21% 98.7% 98.88% 63.23% 95.6% 98.15% 96.35% 82.84%
AUC 0.9823 0.946 - 98.55% - 0.978 - - -
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5. Conclusions

The automatic classification of DR fundus images can aid doctors in the diagnosis of
DR and accelerate the diagnosis process. In this study, we first established the preprocessing
and regularization steps that our lab dataset images require for maximizing the deep
learning system’s functionality. Then, we looked into how much a small number of images
used in training affects the performance. Second, our work has shown that the two-class
problem for national screening of DR can be approached using a CNN method. The latest
CNN models (ResNet-101, ResNet-50, and VggNet-16) show promising signs of being
able to learn the features required to classify fundus images. The ResNet-101 model was
tested on a set of images from our lab datasets. The network achieved a testing accuracy of
98.8198758%, whereas the network provides a training accuracy of 98.88% with a training
loss of 34.99%. Finally, the ResNet-101 method was applied to 1787 color fundus images
from the four (HRF, STARE, DIARETDB0, MESSIDOR, and XHO) datasets, and achieved
an accuracy of 98%, 100%, 95%, 95.45%, and 97% for the all datasets, respectively. Therefore,
the latest CNN models (ResNet-101, ResNet-50, and VggNet-16) can be trained to identify
the features of DR in fundus images.

Our data sets’ quality and balance are essential for developing a system for DR
detection. To create a balance for these datasets, we plan to merge several datasets in the
future. Although the CNN models work well in detecting DR in two stages of our datasets,
they have limitations in terms of the classification of system performance, so our goal is to
extend and improve these models by adding more layers or by using CNN’s new model
design, which can categorize and produce results in real time.
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