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Abstract: Replacing 2D-convolution operations by depth-wise separable time and frequency convolu-
tions greatly reduces the number of parameters while maintaining nearly equivalent performances in
the context of acoustic scene classification. In our experiments, the models’ sizes can be reduced by 6
to 14 times with similar performances. For a 3-class audio classification, replacing 2D-convolution in
a CNN model gives roughly a 2% increase in accuracy. In a 10-class audio classification with multiple
recording devices, replacing 2D-convolution in Resnet only reduces around 1.5% of the accuracy.

Keywords: low complexity audio network; acoustic scene classification; depth-wise separable
convolutions; detection and classification of acoustic scenes and events

1. Introduction

Acoustic scene classification (ASC) has become an important research topic in recent
years [1–3]. The goal of ASC is to categorize given recordings into a set of given classes.

Deep neural networks are currently the best performing techniques in a wide range
of applications in computer vision, bioinformatics, medical disease study, robotics, and
audio processing applications [4]. Many network structures and architectures have first
been developed in the context of computer vision or image classification problems and later
adapted to other application domains. Acoustic scene classification, which classifies sound
recordings into a set of predefined classes, has also adopted variants of the two dimen-
sional Convolutional Neural Network (CNN) from computer vision in recent studies [5–8].
Variants of VGG [9], ResNet [10] and DenseNet [11] are state of the art architectures from
image classification which have been successfully applied to acoustic scene classification
problems [5–8,12]. Similar to the networks used in computer vision [13], millions of param-
eters are often required for applying deep neural networks in acoustic scene classification
problems [7]. Such large networks require a lot of computational power for training, and
present challenges for deployment on mobile phones or low-power-consumption devices.
As a consequence, low-complexity neural network solutions are a topic of great interest
in acoustic classification applications. In this study, we propose a method to decompose a
traditional 2D convolution operation [14] into a series of small convolution operators in
order to design a low complexity neural network for acoustic scene application.

In order to design a smaller network for a given task, one can start by training a
large network for performance, and then train a network of similar structure with fewer
parameters to match the output of the original network in the training set [15]. Alterna-
tively, pruning a network zeros out a large fraction of the network parameters to reduce
complexity [16–18]. In pruning schemes, a low-complexity network is a model which has a
small number of non-zero parameters within the original complex network structure. A
pruned network can be achieved by iteratively zeroing out a small fraction of parameters
having lower magnitude and then retraining the model until a desired compression ratio is
reached [16,18].
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In contrast, designing network structures that inherently have only a small number
of parameters directly reduces the computational cost in both training and inference.
Mobilenets [13,19] are examples of networks that can reduce the number of parameters
required while maintaining reasonable performance. Key features of these networks include
separable convolutions, depth-wise separable convolutions, and linear bottlenecks [19,20].
Our study aims at finding a low complexity architecture for audio. The key idea is to
recognize the distinction between a 2D spectrogram of an audio clip, in which the time
and frequency dimensions represent fundamentally different characteristics, whereas both
dimensions in a 2D image are spatial translation. For example, in image classification an
image and its transpose would normally be classified as the same class, while this would
rarely be the case for a spectrogram and its transposed version.

Our approach shares some similarities with EEGNet-based networks [21,22] which are
low-complexity networks used in BMI (Brain-Computer Interface) applications. EEGNet
classifies Electroencephalography (EEG) signals by using multiple 1D convolutions along
temporal and spatial dimensions in the different layers of the network. The success of
EEGNets in providing the low-computational-complexity networks with high accuracy in
BMI applications supports our idea to exploit 1D convolutions to design low-complexity
networks in acoustic scene applications. There are two main differences from our ap-
proach and EEGNets. Firstly, our study focuses on acoustic scene classification from audio
recordings, which have their own distinct characteristics. Secondly, our approach tries
to build a decomposition of 2D convolution into a series of 1D convolutions, and then
apply the decomposition into high-performance deep neural networks in different acoustic
scene applications.

Our main contributions of this paper are: first, time-frequency separable convolution
is introduced to decompose 2D convolution for acoustic scene classification. Secondly, we
show how to apply time-frequency separable convolution into a given network structure
in order to reduce the number of parameters significantly while maintaining similar perfor-
mances. In our experiments, we can reduce total parameters by 14 times for a simple CNN
and more than 6 times for a complex Resnet.

In this study, we demonstrate our contributions through low-complexity architectures
on the dataset from DCASE 2020 task 1 subtask B [8] and DCASE 2021 task 1 subtask A [23].
For the DCASE 2020 task 1 dataset, we extend the baseline network from the DCASE
2020 [8] to work with binaural audio as our baseline for comparison. Meanwhile, in the
DCASE 2021 dataset, as our baseline we selected the much more complex Residual network
solution [24] that had a high performance on the dataset. To make the trade-off clear
we limited the architecture changes, and our solutions are mainly achieved by replacing
2D-convolution operations in the baseline networks with our proposed decomposition.

The rest of this paper is organized as follows: First, a description of time-frequency
separable convolution is provided before introducing the datasets for the experiments.
Next, for each experiment, each dataset is explained. Each proposed network is described
after outlining the corresponding baseline network. Lastly, a discussion of the experimental
results is followed by the conclusion.

2. Time-Frequency Separable Convolution

When applying a deep neural network to acoustic scene classification, a spectrogram
of an audio clip is treated as a 2D image and fed into a deep convolutional neural network.
From the sample spectrogram in Figure 1, we can see that the frequency and time axes are
not interchangeable for each other; therefore simply applying 2D convolutional operations
for audio spectrum input fails to exploit the unique characteristics of the audio domain. As
a result, we propose the time-frequency separable convolution structure.
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Figure 1. Sample spectrogram from the DCASE 2020 Task 1 Subtask A development dataset. This clip
is recorded at an airport. The spectrogram of each channel from the binaural recording is depicted.

Before diving into details of the proposed structure, we can review 2D convolution in
an audio context as shown in Figure 2. Given a multiple-channel two dimensional input P,
the output at the given frequency bin f , time t is defined as

O( f , t) =
C f

∑
i=1

Ct

∑
j=1

Cin

∑
k=1

wijk p f+i−1,t+j−1,k (1)

where pijk are input at frequency i, time step j, and channel k. wijk is the corresponding
weight of the convolution layer. Cin is the number of input channels to the convolution layer,
while Ct and C f specify the size of the convolution operator. Note that pijk is set to zero if i
or k is larger than the number of frequencies and time steps of the input, respectively.

Figure 2. 2D convolution operation illustration at a given location of an output layer.
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The 2D convolution can be decomposed into the separable time-frequency structure
by a two-step process. First, each channel of the input is convolved along the frequency axis
before applying convolution along the time axis as shown in Figure 3. Equations (2) and (3)
describe these steps in detail

F( f , j, k) =
C f

∑
i=1

w f
i,k p f+i−1,j,k (2)

T(i, t, k) =
Ct

∑
j

wt
j,kF(i, t + j− 1, k) (3)

where w f
j,k and wt

j,k are the parameters of the convolution along the frequency and time
axes of input channel k, respectively. Secondly, outputs from the frequency convolutions
and time convolutions are concatenated to form intermediate input I(i, j, k) as defined in
Equation (4). Input I is fed to a 1 × 1 convolution as depicted in Figure 4. Equation (5)
expresses the final output of the time-frequency separable convolution.

I(i, j, k) =

{
F(i, j, k

2 ) if k mod 2 = 0.
T(i, j, k+1

2 ) otherwise.
(4)

O( f , t) =
2Cin

∑
k=1

wk I( f , t, k) (5)

Figure 3. The first step of 2D convolution decomposition. In this step the convolution along frequency
is applied, followed by convolution along the time axis.

Figure 4. The second step of 2D convolution decomposition. In this step 1 × 1 convolution is applied
to generate the final output layer.

The proposed convolution structure decomposes the representation into two separable
time and frequency components, thereby reducing the number of parameters compared
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to the traditional 2D convolution. For example, if a hidden convolution layer of a neural
network has Cin input channels and Cout output channels, where the size of convolution
is C f and Ct, then the total parameters of 2D convolution C(Cin, Cout, C f , Ct) is given by
Equation (6)

C(Cin, Cout, C f , Ct) = Cin × Cout × C f × Ct (6)

while building a similar hidden layer using our time-frequency separable convolution
requires the number of parameters Ct f (Cin, Cout, C f , Ct) provided by Equation (7)

Ct f (Cin, Cout, C f , Ct) = 2Cin × Cout + Cin × (C f + Ct)

= Cin × (2Cout + C f + Ct)
(7)

As a consequence, the compression ratio is provided by Equation (8)

C(Cin, Cout, C f , Ct)

Ct f (Cin, Cout, C f , Ct)
=

Cin × Cout × C f × Ct

Cin × (2Cout + C f + Ct)

=
Cout × C f × Ct

2Cout + C f + Ct

(8)

For example, if a hidden layer has Cin = 64, Cout = 64, C f = 5, and Ct = 5, then by
applying Equations (6) and (7), the number of parameters for traditional convolution and
the proposed convolution are 102,400 and 8832. Hence, the compression ratio in terms of
parameters required is roughly 11.5 times in the given example.

The time-frequency separable convolution structure can easily be extended to increase
its representations. For example, a non-linear activation function can be applied to the
output of certain stages in the time-frequency convolution structure. In our implementation,
batch normalization [25] and rectified linear units (Relu) [25] are applied before 1× 1 2D
convolution. Furthermore, when the proposed structure is applied to the input of a model,
a 2D convolution of size C f×1, which is a convolution along the frequency axis, should
be chosen for the model to learn extra low-level features in the frequency dimension.
Because of the flexibility of the proposed structure, the total number of parameters in some
practical implementations can be generalized by adding extra positive term α as shown in
Equation (9).

Ct f (Cin, Cout, C f , Ct) = Cin × (2Cout + C f + Ct + α) (9)

3. Experiment with CNN-Based Network

In the first experiment, we apply our time-frequency architecture in a Convolutional
Neural Network (CNN). Our design goal is a small model for acoustic scene classification.
We select the DCASE 2020 Task 1 Subtask B dataset for this experiment because the dataset
was created for low complexity model developments for acoustic scene classification in
the DCASE 2020 challenge. In addition, the baseline CNN for this task is used as our base
network for model size reduction.

3.1. Dataset

The DCASE 2020 Task 1 subtask B dataset contains recordings of 10 different acoustic
scenes from 12 European cities [8]. The acoustic scenes are grouped into three classes:
indoor, outdoor, and transportation. All recordings are binaural, 48 kHz 24-bit format,
and from a single recording device. The development data set has 40 h of recording
from 10 different cities. 70 percent of the development dataset is used for training, while
30 percent is withheld as a test set. Recordings from the same location appear only in the
training set or test set but not both. In audio applications, raw audio is typically transformed
into log-mel energy spectrograms, with the machine learning algorithm operating on these
log-mel energy features. Sample spectrograms of a recording from the dataset are depicted
in Figure 1. Note that the DCASE 2020 Task 1 subtask B dataset has an equal number of
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instances of each class. We maintain the balance between the classes in the training set and
test set during our experiments.

3.2. CNN Baseline Architecture

The baseline network is a convolutional neural network consisting of the input layer
followed by three hidden layers and an output layer. Hidden layers include two convo-
lution layers followed by a fully-connected layer. The first convolution layer has 32 fil-
ters of size 7× 7, while the second hidden layer contains 64 filters. Conv2D(32,7,7) and
Conv2D(64,7,7) denote the first two hidden layers. The fully connected layer FC(100) has
100 neurons, followed by a fully connected output layer FC(3) that has the same number of
classes as the dataset. Rectified linear units (Relu) [25] are used as activation functions in
hidden layers, while Softmax [25] is applied at the output of the network. In the hidden
layers, batch normalization units are applied before Relu units. Furthermore, max pool-
ing [25] layers MaxP(5,5) and MaxP(4,100) are connected to the end of each convolution
layer, respectively. Max pooling MaxP(5,5) has pool size of 5× 5, while layer MaxP(4,100)
uses the pool size of 4× 100. Dropout layers Dropout(0.3) are applied in all hidden layers.
The dropout rate in the baseline network is 0.3. The baseline network is similar to the base-
line network from DCASE 2020 on the dataset except that the input layer in our baseline
network accepts two Mel spectrogram channels of a recording. Table 1 summarizes the base
network structure. The total number of parameters of the baseline network is roughly 117 K.
The proposed network will modify and apply our time-frequency separable convolution
in order to reduce the number of parameters significantly. Our proposed network will be
discussed in detail in the following section.

Table 1. Summary of the baseline network in terms of connection configurations and numbers
of parameters.

Layer Number of Parameters

Input 0
Conv2D(32,7,7) 3136

Batchnorm 128
Relu 0

MaxP(5,5) 0
Dropout(0.3) 0

Conv2D(64,7,7) 100,352
Batchnorm 256

Relu 0
MaxP(4,100) 0
Dropout(0.3) 0

FC(100) 12,900
Batchnorm 400

Relu 0
Dropout(0.3) 0

FC(3) 303
Softmax 0
Output 0

Total parameters 117,475

3.3. Proposed Architecture

The proposed network is designed by first replacing all of the 2D convolutions in
the baseline by our time-frequency separable structure. Instead of a fully-connected hid-
den layer, we apply 2D global max pooling to reduce each input channel into one single
maximum value. For acoustic scenes classification, we think that persistent features are
more reliable than transient features; therefore, average pooling [25] is employed instead
of max pooling layers. Furthermore, in a final version, a smaller filter size is used, and
the positions of pooling layers are changed compared to the baseline model. The details



Electronics 2022, 11, 2734 7 of 15

of the architecture can be described as follows. Average pooling across time of size 1× 5
is first applied to the input of the model. Next, the separable time-frequency structure
Convt f (32,4,5) with filter lengths of four and five along frequency and time, respectively, re-
places the first convolution layer of the baseline network. The output of the time-frequency
structure has 32 channels that are average-pooled by size 2× 3. The time-frequency struc-
ture Convt f (64,5,5) generates 64 output channels, followed by a global max-pooling layer.
The frequency and time filters of the second time-frequency structure have lengths of 5.
Lastly, the output of the model includes three fully connected units. Relus are used as
the activation functions in hidden layers, while softmax is applied at the output layer. In
addition, batch normalization units are added at outputs of time-frequency structures.
Table 2 summarizes the proposed network. Our network only uses 8k parameters, which
is roughly 14 times smaller than the baseline network. If each parameter is 32 bit floating
point, our model only requires 32 KB for storage while the baseline model needs nearly
470 KB as shown in Table 3.

Table 2. Summary of the proposed network in term of connection configurations and number
of parameters.

Layer Number of Parameters

Input 0
AverageP(1,5) 0
Convt f (32,4,5) 2980

Batchnorm 128
Relu 0

AverageP(2,3) 0
Convt f (64,5,5) 4672

Batchnorm 256
Relu 0

GlobalMaxPooling 0
FC(3) 195

Softmax 0
Output 0

Total parameters 8003

Table 3. Model sizes of the baseline network and the proposed architecture in KB when each
parameter is a 32 bit floating point.

System Number of Parameters Total Size

Baseline 117,475 469.9 KB
Proposed Structure 8003 32 KB

3.4. Experiment Setup

The baseline system and the proposed architecture are trained and evaluated on
the aforementioned dataset. Once again, this experiment is designed to evaluate the
performance impact of the time and frequency separability in CNN for audio applications,
so the changes are restricted to these convolutional components. In the experiment, each
audio channel of a recording is converted to a log-mel-band energy spectrogram with
40 mel bands. The number of samples in an analysis frame is 2048 (40 ms) with 50% hop
interval. The log-mel-band energy spectrogram features of the recordings are normalized
frequency-wise across time step by mean and standard deviation from the training set
before inputting into the studied models. In other words, the dataset D has the form given
by Equation (10).

D = {X|X ∈ RF×T×C} (10)

where F is 40 mel bands and T is 498 analysis frames (10 s audio recording) and C is
2 channels of the binaural recordings.



Electronics 2022, 11, 2734 8 of 15

During training, 30 percent of the training set is withheld for validation. Each model
is trained for 200 epochs with a batch size of 64. The ADAM optimizer [26] was used with
a learning rate of 0.0001. The parameter was learned by minimizing the cross-entropy loss
function given by Equation (11)

Lθ = − 1
N

N

∑
i

Yi · log( fθ(Xi)) (11)

where N is number of training examples, vectors Xi and Yi represent training example i
and its corresponding ground truth, respectively. fθ(·) is the machine learning model. Note
that dot product is used for the multi-class classification problem in Equation (11) and Yi is
one-hot encoding in our case. The parameter values of a model are selected such that the
classification error over the validation set is smallest among all epochs.

Because our model is very compact compared to the baseline in terms of the number of
parameters, we therefore think that data augmentation is more suitable as a regularization
technique than dropout. Therefore the mix-up data augmentation technique [27] was
explored for the proposed model during one of the training processes. Mix-up generates
weighted combinations of random pairs of audio recordings from the training data. Given
two recordings and their ground truths (Xi, Yi), (Xj, Yj), a synthetic training example (X̂, Ŷ)
is given by Equation (12)

X̂ =λXi + (1− λ)Xj

Ŷ =λYi + (1− λ)Yj
(12)

where λ is sampled from the Beta(α = 0.2, β = 0.2) distribution [28] independently at the
beginning of each epoch when the mix-up technique is used.

3.5. Performance

The performance on the dataset is measured on the validation subset. Our primary
metric is the classification accuracy. Accuracy is calculated as a macro-average: average
of the class-wise accuracy for the acoustic scene classes. More precisely, if the number of
predefined classes is C, and N(c) samples belong to class c, then the accuracy metric is given
by Equation (13)

Accuracy =
1
C

C

∑
c

1
N(c) ∑

i:yi=c
I{yi = ŷi} (13)

where I is the identity function (true when predicted label ŷ matches label yi). In addition,
we also measure multi-class cross-entropy (log loss) as a metric which is independent of the
operating point [8]. The multi-class cross-entropy is shown in Equation (11). Each model
was trained and tested 10 times; the means and standard deviations of the performance
from these 10 independent trials are shown in the result Table 4.

Table 4. Performance of the models on DCASE2020 Task 1b dataset.

System Accuracy (%) Log Loss

Baseline model 88.96 ± 0.56 0.352 ± 0.064
Proposed model 90.15 ± 0.77 0.293 ± 0.024

Proposed model with mixup 91.14 ± 0.40 0.287 ± 0.006

Clearly, the proposed network using time-frequency convolution outperforms the
baseline system even though it is much smaller in size. The accuracy of the baseline
system on average is 88.96% while the corresponding number for the proposed network is
90.15%. When mix-up data augmentation is employed during the training of the proposed
architecture, the average performance increases by roughly 1% to 91.14%. Mix-up data
augmentation also helps to reduce the performance variance of independent trials. In
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terms of log loss metric, the proposed model with mix-up shows the smallest loss, while
the baseline has the largest loss on average. Overall, the proposed model with mix-up
data augmentation gives the best result in both accuracy and log loss metric even though
the model size is around 14 times smaller than the baseline system. Figure 5 presents the
class-wise accuracy for different experimental settings. Without mix-up data augmentation
during training, the proposed architecture only shows improvement for detecting the
outdoor class while the accuracy of indoor and transportation classes is similar to the
baseline network. When mix-up is employed, the proposed model increases in accuracy
in all classes compared to the baseline network. Furthermore, in each class the proposed
network with mix-up has the smallest standard deviation.

Figure 5. Class-wise accuracy for different experiments with the DCASE 2020 Task 1A dataset.
The proposed network is constructed by replacing 2D convolution in the baseline network with
time-frequency separable convolution.

4. Experiment with Resnet Based Network
4.1. Dataset

The DCASE 2021 Task 1 subtask A dataset contains recordings of 10 different acoustic
scenes from 12 European cities with 4 recording devices [8]. From the original recording
devices, 11 simulated devices are created by applying different impulse responses and
dynamic compression ranges from recordings of Device A. The development dataset
includes three real Devices A, B, and C, and six simulated Devices S1–S6. In addition,
the development dataset only includes recordings from 10 cities. The acoustic scenes are
grouped into 10 classes: airport, shopping mall, metro station, pedestrian street, public
square, street traffic, tram, bus, metro, and park. 64 h of 24-bit format recordings of single-
channel audio at a sampling rate of 44.1 kHz are provided in the development dataset. This
dataset has similar number of samples of each class. During our experiments, we try to
maintain an equal number of instances for each class in the training and test set.

The baseline prepossessing steps convert each recording to log mel-band energy
spectrograms with 128 mel bands. The number of samples in an analysis frame was 2048
with 50% hop interval. Each spectrogam was normalized into a range from 0 to 1 by its
maximum and minimum values. Log-mel deltas and delta-deltas without padding were
included as additional inputs into the models. The un-normalized version of an input
audio recording from the dataset is given in Figure 6.
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Figure 6. Sample spectrogram from the DCASE 2021 Task 1 Subtask A development dataset. This
clip was recorded at an airport in Barcelona.The delta and delta-delta features are presented along
with the spectrogram feature.

4.2. ResNet Baseline Model

Our baseline model was a smaller version of the ResNet model from [24]. The key
elements of the Resnet structure are the Residual Blocks. The ResNet baseline relies on
two types of residual blocks: ResBlock1 and ResBlock2 as shown in Figure 7. In both
residual blocks, the input processes through two 3× 3 2D convolutions before an addition
operation on one path. ResBlock1 has a skip connection directly from the input of the block
to the addition operation at the output, while ResBlock2 modifies the input x by an average
pooling operation over a 3× 3 window. Note that ResBlock1(16) denotes 16 2D convolution
filters in each 2D convolutional layer of the ResBlock1 block while ResBlock2(32) represents
32 2D convolution filters in each 2D convolutional layer of the ResBlock2 block.

In the ResNet baseline model, the spectrogram inputs are split evently in mel bins into
two parts Xlow and Xhigh. Each part is first fed into an independent branch including 2D
convolution, ResBlock1s, and ResBlock2s. Outputs of the two branches are concatenated
before applying two 1 × 1 2D convolutions in series as shown in Figure 8. Note that batch-
normalization is applied before Relu inside ResBlock1 and Resblock2. The 2D convolutions
in this baseline implicitly have batch-normalization and Relu at their outputs.
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Figure 7. Two types of residual blocks are used in the baseline ResNet. ResBlock1 has the skip
connection directly from the input of the block to the addition operation at the output, while ResBlock2
modifies the input x by an average pooling operation over a 3× 3 window.

Figure 8. The ResNet baseline. The input is split into independent vectors by the mel frequency bins.
The top 50% of the high frequencies form Xhigh, and the remaining mel bins belong to Xlow. Each
vector goes through a 2D convolution before connecting to the chain of residual blocks. Outputs from
the chain of residual blocks are concatenated before running though two 2D Convolution operations
to produce the output for the classification.
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4.3. Compressed-ResNet Model

In the compressed ResNet, we apply the time-frequency separable convolution to
replace 2D convolution inside residual blocks ResBlock1 and ResBlock2. Namely, the
proposed ResBlock1 and ResBlock2 are shown in Figure 9. Note that 5× 5 convolution
windows are used in the first and the second Convt f s respectively in the residual blocks.
The architecture of the final network still follows closely the baseline ResNet in Figure 8
except that all ResBlock1s and ResBlock2s are replaced by their corresponding compressed
version. The number of parameters reduced by a factor of 6.4 when the time-frequency
separable convolutions are applied as shown in Table 5.

Figure 9. Compressed ResBlock1 and Compressed ResBlock2 are composed of replacing 2D convolu-
tion with time-frequency separable convolution.

Table 5. Summary model parameters for ResNet networks.

Model Total Number of Parameters

Baseline ResNet 363,084
Compressed ResNet 57,484

4.4. Experiment

The experiments with the ResNet models were set up similarly to Section 3.4 with
a couple of exceptions. First, the input X includes the normalized spectrogam, log-mel
deltas, and delta-deltas. Secondly our model was trained using Stochastic Gradient descent
and warm restart similar to the setting from [24] for 126 epochs. Mix-up augmentation [27]
was employed during our training. The baseline ResNet and compressed ResNet are
independently trained and tested on the validation set for 10 times.

4.5. Performance

Table 6 presents the performance of different models on the DCASE 2021 Task 1A
development dataset. The baseline CNN network is included as a reference. Note that the
baseline CNN network and the compressed ResNet both required less than 60,000 parame-
ters, while the baseline ResNet uses more than 360,000 parameters. The baseline CNN has
very similar log loss measure to the ResNet models but its accuracy is significantly lower
than the ResNet ones. The performance results showed that our compressed ResNet has a
reduction of around 1.5% in accuracy as compared to the baseline ResNet; however, the
compressed ResNet performs significantly better than the DCASE 2021 baseline model. In
terms of log loss metric, the difference between the baseline ResNet and the compressed
ResNet is very small. This suggests that our time-frequency separable convolution can
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replace the 2D Convolution operations inside a complex model in order to significantly
reduce the number of parameters both before and after training with only a small reduction
in performance in a complex audio classification problem.

Table 6. Performance of the models on DCASE2021 Task 1A dataset.

System Accuracy (%) Log Loss

DCASE2021 Task 1A Baseline 47.7 ± 0.9 1.473 ± 0.05
Baseline ResNet 65.99 ± 0.12 1.4700 ± 0.0037

Compressed ResNet 64.65 ± 0.35 1.4958 ± 0.0033

5. Discussions and Conclusions

All classes in the datasets in our experiments are balanced; therefore the classification
accuracy is a reasonable performance metric. From the experimental results, we can con-
clude that in many acoustic scene classifications, utilizing the proposed time-frequency
separable convolution structure can lead to a neural network model offering high perfor-
mance while requiring many fewer parameters. In a simple audio classification task, the
proposed time-frequency separable convolution structure actually led to improvement in
performance in both log loss and accuracy. Given a well-performing model in a complex
audio classification task, simply replacing convolutional layers by the time-frequency sepa-
rable convolutions leads to at least 6-fold decrease in the number of parameters with only
small differences in the classification performance. As a result, the time-frequency separable
convolution structure is a promising configuration for learning audio features in audio
classification applications. In addition, we also show that network architectures employing
time-frequency separable convolution can combine with mix-up data augmentation for
additional performance improvement.

The correlation between frequency components at a given time and the patterns of
frequencies over a time window in spectrograms are essential features for developing
audio classifiers. We think the proposed time-frequency separable convolution structure
forces the networks to capture these features through the convolutions along frequency and
time axes. Therefore, it significantly reduces the number of parameters while maintaining
the high performance of the networks in acoustic scene classification. In addition, our
proposed network also suggests that if 1D convolutions are configured properly, it can be
very efficient to design low complexity solutions in audio applications.

We approached the low-complexity solution by designing a general model with fewer
parameters; therefore, other techniques for compressing models such as pruning can still
be applied on top of our proposed model for further reduction in size. An extension of
our work could explore the combination of time-frequency separable convolution with
pruning techniques to create a model which is smaller in size but still performs well.
The time-frequency separable convolution may benefit other audio-oriented machine-
learning applications by directly exploiting the time and frequency characteristic of the
audio domain.
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