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Abstract: The obstruction of vehicles by surrounding vehicles, obstacles, etc. is a common phe-
nomenon in the practical application of automatic driving. In view of the problem that the vehicle’s
vision is affected by the occlusion, the vehicle feature information is incomplete, resulting in the
low detection accuracy of the occlusion vehicle, and the occlusion vehicle detection method based
on the multi-scale hybrid attention mechanism is proposed. The paper aims to fully excavate the
advantages of multi-scale feature extraction, channel/space attention and other modules, and to
design a multi-scale hybrid attention module suitable for occlusion vehicle detection to improve
the detection accuracy of occlusion vehicles. Multi-scale features are enriched by the grouping
convolution of different sizes of multi-scale feature extraction networks, and the parallel connection
channels and spatial attention modules form different scale hybrid domain attention modules, which
enhance the local feature information of the occluded vehicles and realize the reinforcement learning
of multi-scale features and the suppression of occlusion interference information. Experimental
results show that in the self-made occlusion vehicle dataset and the BDD100K occlusion vehicle
dataset, the average mean accuracy of this method is 95.2% and 59.3%, respectively, which is 1.5%
and 2.9% higher than that of the baseline network YOLOv5, respectively.

Keywords: occluded vehicle detection; multi-scale feature extraction; channel attention mechanism;
spatial attention mechanism; hybrid domain attention module

1. Introduction

Efficient and accurate vehicle detection is very important for intelligent transporta-
tion systems, and it is also an important task for driverless vehicles to perceive the road
environment [1]. With the development of CNN and other deep learning technologies,
vision-based target detection methods have achieved exciting results and have been widely
used in many fields. Machine vision technology is also widely used in the perception
module of intelligent transportation systems. However, the traffic environment of urban
roads is complex and changeable, which brings great challenges to vehicle detection based
on computer vision.

In the following scene of autonomous vehicles, there are often problems that vehicles
block each other, or vehicles are blocked by background information. When there is mutual
occlusion between vehicles, the occluded vehicles will lose some feature information due
to local coverage, while the features of the non-occluded parts will easily bring some
interference to the occluded vehicles, resulting in the impact of the detection results. When
the vehicle is blocked by irrelevant background information, the blocking of irrelevant
obstacles will also cause the loss of vehicle features, weaken the expression ability of the
key feature information of the vehicle to be inspected, and make it difficult for the target
detector to extract and learn its features. Therefore, the occlusion problem in complex
scenes is similar to that of small targets and low illumination, which is one of the most
challenging road vehicle detection tasks at present. In an environment with dense vehicles,
the local obstruction of the vehicle running out in front or on the side by the obstacles may
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cause the autonomous vehicle to be unable to find and avoid danger in time. Therefore,
it is essential to quickly and accurately capture the key information of the vehicle in the
occluded scene, which is helpful for autonomous vehicles to discover potential dangers
and avoid them in the process of following the vehicle on urban roads.

Although there are many researches on vehicle detection [2,3], few of them consider
occlusion. In road driving scenes, vehicle occlusion is very common. There are a total of
35.8% of the annotated vehicles and objects that are occluded on the KITTI dataset [4]. In
order to make the target detector make full use of the local features of the occluded vehicle
and minimize the interference caused by obstacles, a multi-scale hybrid attention module
(MHAM) is designed to enhance the local feature information of the vehicle to be inspected
and suppress the interference of irrelevant occlusion information. Combined with the above
proposed MHAM strategy, this paper proposes a multi-scale hybrid attention module-you
only look once (MHAM-YOLO) method based on multi-scale hybrid attention mechanism.

The remainder of this paper is organized as follows. Section 2 provides some related
works of vehicle detection and occlusion detection, and offers the proposed multi-scale
hybrid attention module-you only look once method. Section 3 shows the experiments and
results of the proposed method. Section 4 presents our conclusion.

2. Related Works

Vehicle target detection. At present, vehicle target detection algorithms based on
deep learning can be divided into two categories: a two-stage detection algorithm based on
region recommendation and a one-stage detection algorithm based on regression.

The two-stage algorithm needs to form a preselection box, and then carry out fine-
grained object detection. The detection accuracy is high, but the detection efficiency is
low. The representative algorithms are: R-CNN, Fast R-CNN, Faster R-CNN and mask
R-CNN [5]. Many vehicle detection methods based on improved R-CNN are proposed
and achieve high detection accuracy [6,7]. However, these methods are relatively poor
in real-time performance, which limits the application of these methods in actual driving
scenes [8].

The single-stage algorithm does not need to generate a preselection box. Compared
with the two-stage algorithm, the single-stage algorithm has faster detection speed. Repre-
sentative algorithms include Retinanet [9], YOLO [10] and single shot multi-box detector
(SSD) [11]. The improved YOLO is widely used for vehicle detection because of its good per-
formance in efficiency and accuracy. However, many improved methods have no obvious
effect on occluded vehicle detection.

Occlusion detection. At present, most researches on the recognition of occluded
images mainly focus on large scale traditional objects of visible images, such as occluded
pedestrian detection [12], occluded face detection [13], and so on. For occluded vehicle
detection, most works focus on aerial images instead of the road scene [14,15]. A part-
aware region based on Faster R-CNN is proposed for occluded vehicle detection in the road
scene [4], but it achieves poor real-time. In view of the uncertainty of occlusion angle, layer
degree and occlusion range, and the difficulty of occluded vehicle recognition, a multi-level
optimization algorithm for occluded vehicle recognition is proposed [16]. On this basis, in
order to make the target detector make full use of the local characteristics of the occluded
vehicle and minimize the interference caused by obstacles, a multi-scale hybrid attention
module is designed to improve the detection accuracy of the occluded vehicle.

2.1. Proposed Network Architecture

In order to improve the accuracy and efficiency of occluded vehicle recognition, an
occluded vehicle detection model based on multi-scale hybrid attention mechanism is
designed in this paper. The overall network structure is shown in Figure 1. In the figure,
C1 to C5 are standard convolutional layers, extracting feature information in the image, P3
to P5 transmit deep semantic features from top to bottom, and N3 to N5 transmit target
location information from bottom to top.
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Figure 1. Architecture of proposed MHAM-YOLO network.

The MHAM-YOLO method uses a multi-scale hybrid attention module (MHAM)
embedded in the bottleneck layer of the feature extraction network to enhance the local
feature information of the vehicle to be inspected that is not occluded and suppress the
interference of irrelevant occlusion information. MHAM includes three modules: multi-
scale feature extraction, channel attention and spatial attention. The multi-scale feature
extraction module is located in the front end to collect different scale features output from
different receptive field convolution layers, and then use the channel and spatial attention
modules on different scale feature layers to generate attention weights between channels
and within feature map pixels, respectively. In the multi-scale features with large amounts
of information, the important information that is more conducive to the occlusion vehicle
detection task is filtered out.

2.2. Multi-Scale Feature Extraction Module

In the feature extraction stage of the network, if only the fixed scale convolution check
input feature layer is used for feature extraction, the defect of a relatively single receptive
field will make it difficult to capture rich context information, resulting in the extracted
occluded vehicle features being limited to a single scale [17]. In order to make full use
of the different receptive field information of the input feature space at multiple scales,
this paper adopts the multi-scale grouping convolution method to mine the feature space
from multiple scales, and a multi-scale feature extraction module (MFEM) is proposed and
shown in Figure 2.
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Suppose that the input feature space of MFEM can be expressed as X = [x1, x2, · ·
·, xc] ∈ RC×H×W , then the split segmentation method is used to divide it evenly from
the channel into n parts. If the channel size of the input feature space is C, the number
of channels of each feature map after the segmentation operation can be expressed as
C′ = C/n. In order to reduce the computational cost, the features of each feature map are
collected by n groups:

Fi = Fki×ki
conv (Xi, Gi), i = 0, 1, 2, . . . , n− 1. (1)

where the Fki ,ki
conv(Xi, Gi) represents the convolution of Xi with kernel size ki × ki and groups

number Gi. In order to further reduce the computational cost of the MFEM module, the
value of n is set to 4, that is, the input feature space is divided into four feature maps
with the same number of channels. The number of packets corresponding to the packet
convolution of these four parts is set to 1, 2, 3 and 4, while the resolution of the packet
convolution kernel is set to 3, 5, 7 and 9. The features of four scales are fused on the channel
through the concat splicing operation:

F = Concat([ F0, F1, F2, . . . , Fn−1]). (2)

The MFEM fuses the extracted multi-scale feature information on the channel, and the
output feature space can carry multi-scale powerful context information. Therefore, MFEM
effectively improves the negative impact of a single size convolution kernel on the feature
expression ability of the target detector.

2.3. Hybrid Domain Attention Structure

There are two kinds of attention mechanisms for image feature extraction: channel
attention and spatial attention.

Channel attention. In the target detector, the smaller the resolution of the characteris-
tic image, the more the number of channels. When the number of layers of the model is
deeper and deeper, the low-resolution feature map has a large amount of channel informa-
tion. Therefore, it is often very difficult for the target detector to filter out the important
channel information from a large number of channels. The channel attention mechanism
can help the target detector to find more important channels for the target detection task
and suppress those unimportant channels. Squeeze-and-excitation module (SEM) [18] is a
representative channel attention mechanism, and its structure is shown in Figure 3.
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The attention mechanism of the SEM can be divided into three parts: squeeze, excita-
tion and scale. First, a squeeze mapping is performed to squeeze the original feature space
into an output feature space Z ∈ RC×H×W :

zc = Fs(xc) =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j). (3)

where the xc ∈ RH×W represents the feature map of input feature space X in the channel,
Fs(·) represents the squeeze mapping, H and W are the height and width of the feature map.



Electronics 2022, 11, 2709 5 of 14

Secondly, the excitation is performed to appropriately reduce the required computa-
tional cost, and the corresponding channel attention weight coefficients are generated for
the feature map on all channels. It could be expresses as:

S = Fe(Z, W) = σ(W1δ(W0Z)). (4)

where the Fe(·, W) represents the excitation mapping, W0 and W1 represent the parameters
of the first and second full connection layers, respectively, δ and σ are the ReLU function
and sigmoid function, respectively.

Finally, the scale is performed to weight the S and X, and the output of SEM is obtained
in the feature space Y = [y1, y2, · · ·, yc] ∈ RC×H×W :

yc = Fscale(xc, sc) = xc × sc. (5)

where the Fscale represents the channel attention weighted mapping function.
Spatial attention. Different from the channel attention mechanism, the spatial atten-

tion mechanism assigns the same attention weight graph to each channel. The spatial
attention module (SAM) [19] has the same resolution as the feature map and corresponds
to each pixel on the feature map. Its structure is shown in Figure 4.
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The spatial attention module applies the attention weight map to the input feature to
strengthen the features of key areas, and it could be expressed as:

M = σ
(

F7×7
conv(Concat([ Xavg, Xmax]))). (6)

where the Xavg ∈ R1×H×W and Xmax ∈ R1×H×W represent the feature map after global
average pooling and global maximum pooling, F7×7

conv represents the convolution with 7 × 7
kernel size, and σ is the sigmoid function.

By using the spatial attention weight map, the output of SAM could be expressed as:

Y = Fscale(X, S) =X⊗M (7)

where the Fscale represents the spatial attention weighted mapping function, ⊗ represents
the weighted multiplication.

The SEM performs global attention weighting on the feature information in different
channels of the input feature space, but it does not take into account the information
interaction between the internal regions of the feature map. The SAM uses the generated
attention weight graph to apply the same weight graph to each channel of the input feature
space, while it ignores the information interaction between each channel.

In order to take advantage of the two attention mechanisms, some hybrid domain
attention mechanisms are proposed [20,21]. There are two main mixing methods: a cascad-
ing and a parallel combination. The hybrid domain attention mechanism of the cascading
combination connects two different dimensions of attention through cascading. The hybrid
domain attention mechanism of the parallel combination combines the information of the
channel and space through a parallel method. Compared with the cascade combination
method, the parallel combination method does not need to consider the arrangement order
of the two kinds of attention. The channel and spatial attention learn the key information
of the original feature space at the same time, and only one step is needed to weight the
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input feature space. Therefore, this paper adopts the parallel connected hybrid domain
attention structure, and its structure is shown in Figure 5.
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2.4. Multi-Scale Hybrid Attention Module

By using the MFEM and parallel connected hybrid domain attention structure, the
MHAM was constructed, and it is shown as Figure 6.
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According to Figure 6, the multi-scale features firstly were obtained by the MFEM
and concatenate. Then, the SEM was used to learn the features of different scales, so as to
generate the initial channel attention weight:

Si = SEM(Fi), i = 0, 1, 2, . . . , n− 1 (8)

S = Concat([S0, S1, S2, . . . , Sn−1]) (9)

In order to form a more stable long-term important relationship between multi-scale
feature channels, Softmax function is used to perform recalibration:

chai = softmax(Si) =
exp(Si)

∑n−1
i=0 exp(Si)

(10)

Similarly, by using the SAM, the weight map of the multiple scale feature maps in the
initial spatial would be obtained. It could be expressed as:

Mi = SAM(Fi), i = 0, 1, 2, . . . , n− 1. (11)

M = M0 + M1 + . . . + Mn−1. (12)



Electronics 2022, 11, 2709 7 of 14

In order to realize the information exchange within the multi-scale feature map, the
Softmax function can also be used to perform the recalibration operation to obtain the
multi-scale spatial attention weight map.

spai = softmax(Mi) =
exp(Mi)

∑n−1
i=0 exp(Mi)

(13)

Using the multi-scale channel attention weight chai and the spatial attention weight
spai, the weighted multi-scale feature space could be obtained:

Yi = Fi ⊗ chai ⊗ spai, i = 0, 1, 2, . . . , n− 1. (14)

Finally, by using the concat operation, the final output feature space of MHAM
is constructed:

Y = Concat([Y0, Y1, Y2, . . . , Yn−1]). (15)

In the case of focusing on the multi-scale features, MHAM gives the target detector
the ability to mine key information and capture more effective information of occluding
vehicles. In this paper, MHAM is embedded in the bottleneck layer of the target detector
feature extraction network.

3. Experiment
3.1. Implementation Details of Experiment
3.1.1. Dataset and Annotations

In order to test the performance of the proposed network, the occluded vehicle dataset
was made in the road scene. The video of road vehicles under various complex road
conditions in Chongqing was collected by camera, and a total of 5123 image data containing
occluded vehicles were screened, including 3500 training set images, 811 verification set
images, and 812 test set images.

The vehicles in the picture were labelled and the corresponding label information for
the training and testing of the model was generated. Figure 7 shows the visual schematic
diagram of some samples of the dataset and their label information.
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All vehicles were divided into four categories: car, bus, truck and van. A total of 28859
annotation information was obtained, and the number of instances of different types of
vehicles is shown as Table 1.

Table 1. Number of instances of different types of vehicles.

Vehicle Category Car Bus Truck Van

Number of instances 23,248 1686 1265 2660



Electronics 2022, 11, 2709 8 of 14

3.1.2. Platform and Parameters

The experiment was conducted under the environment of I Intel i5-10400 2.90 GHz,
and Nvidia RTX 3060.

In reference to the YOLOv5 network, the proposed MHAM-YOLO network was
implemented by Pytorch framework in this paper. The Adam algorithm was used to
optimize the model parameters. The weight decay was 5 × 10−4, the initial learning rate
was 1 × 10−2, and the learning rate was decayed once in each round. The decay rate
was 0.95. A total of 200 rounds were trained. There were 16 batches in the round, with
320 training samples in each batch.

In order to evaluate the effectiveness of the occluded vehicle detection algorithm
proposed in this paper, the number of parameters and floating-point operations (FLOPs)
per second were selected to evaluate the complexity of the model, and the mean average
precision (mAP) was selected as the evaluation index for the comprehensive detection
performance of the model for multiple target categories, The average precision (AP) was
used to evaluate the detection performance of the model for a single target category.

3.1.3. Model Training

The YOLOv5 network was employed as the baseline algorithm. Both the YOLOv5 and
the proposed MHAM-YOLO network were trained on self-made occluded vehicle dataset,
and the average loss convergence curve during training is shown as Figure 8.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 8. Total loss convergence curve. 

As Figure 8 shows, the proposed MHAM-YOLO could decrease faster than that of 
YOLOv5 when the training times were less than 50. This indicates that the model in this 
paper has a faster learning speed for occluded vehicle features. 

Moreover, the mAP@0.5 and mAP@0.5: 0.95 of the baseline algorithm and MHAM-
YOLO method were compared, as shown in Figure 9. 

  

(a) mAP@0.5 (b) mAP@0.5: 0.95 

Figure 9. Comparison of training accuracy curves. 

The comparison in Figure 9a shows that the mAP@0.5 curve of MHAM-YOLO im-
mediately tended to be stable after a rapid rise. Then it began to decline slightly when it 
was trained to about 120 times, and it gradually fell below the baseline algorithm after the 
160th training. However, Figure 9b shows that the mAP@0.5: 0.95 curve of MHAM-YOLO 
has great advantages. 

3.2. Experiment and Analysis 
3.2.1. Ablation Experiment 

In order to verify the effectiveness of the multi-scale hybrid attention mechanism 
proposed in this paper, the channel attention module SEM, spatial attention module SAM, 
hybrid domain attention module and multi-scale hybrid attention module MHAM were 
verified and analyzed on the self-made occluded vehicle dataset. The test results are 
shown in Table 2. 

  

0 50 100 150 200
0.02

0.04
0.06
0.08

0.10
0.12

0.14

0.16
0.18
0.20

To
ta

l l
os

s v
al

ue

Number of trainings

 YOLOv5
 MMAM-YOLO

0 50 100 150 200
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 YOLOv5
 MMAM-YOLO

Number of trainings

m
A

P@
0.

5

0 50 100 150 200
0.0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8

0.9

 YOLOv5
 MMAM-YOLO

Number of trainings

m
A

P@
0.

5 
: 0

.9
5

Figure 8. Total loss convergence curve.

As Figure 8 shows, the proposed MHAM-YOLO could decrease faster than that of
YOLOv5 when the training times were less than 50. This indicates that the model in this
paper has a faster learning speed for occluded vehicle features.

Moreover, the mAP@0.5 and mAP@0.5: 0.95 of the baseline algorithm and MHAM-
YOLO method were compared, as shown in Figure 9.

The comparison in Figure 9a shows that the mAP@0.5 curve of MHAM-YOLO imme-
diately tended to be stable after a rapid rise. Then it began to decline slightly when it was
trained to about 120 times, and it gradually fell below the baseline algorithm after the 160th
training. However, Figure 9b shows that the mAP@0.5: 0.95 curve of MHAM-YOLO has
great advantages.
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3.2. Experiment and Analysis
3.2.1. Ablation Experiment

In order to verify the effectiveness of the multi-scale hybrid attention mechanism
proposed in this paper, the channel attention module SEM, spatial attention module SAM,
hybrid domain attention module and multi-scale hybrid attention module MHAM were
verified and analyzed on the self-made occluded vehicle dataset. The test results are shown
in Table 2.

Table 2. Ablation study of ASPP and FPN blocks.

Method Param. (M) FLOPs (G) FPS
AP/%

mAP/%
Car Bus Truck Van

YOLOv5 46.65 114.3 38 97.2 92.8 91.7 93.1 93.7
YOLOv5 + SEM 48.43 118.7 37 97.8 93.1 92.0 93.9 94.2
YOLOv5 + SAM 46.87 114.9 38 97.4 92.8 91.6 93.9 93.9

YOLOv5 + SEM + SAM 48.65 119.4 37 97.9 93.2 92.1 94.9 94.5
MHAM-YOLO 54.18 140.8 35 98.8 93.7 92.5 95.6 95.2

The ablation experiment results show that after the SEM was implanted in the feature
extraction network of the baseline algorithm, the number of model parameters increased
to 48.43 M, the number of floating-point operations increased to 118.7 G, and the model
detection rate decreased by 1 frames/s. At the same time, good detection accuracy was
achieved. The mAP value was increased from 93.7% of the original model to 94.2%, and
the AP values of the four vehicle categories were also improved to some extent. It can be
seen that the remote dependency between channels modeled by SEM was very effective for
the detection of occluded vehicle targets.

After SAM was embedded in the baseline algorithm, the map of the model was
improved by 0.2%, and only 0.6 G of floating-point operations and 0.22 M of parameters
were additionally increased. Compared with SEM, the mAP obtained after SAM was
embedded in the baseline algorithm was lower, but it also ensured a small model scale and
parameter quantity. Therefore, it was also effective for capturing the feature information of
key areas from the spatial dimension using Sam.

After embedding the parallel hybrid domain attention module combined with SEM
and SAM into the feature extraction network of the baseline algorithm, the number of
model parameters and floating-point operations increased by 2 M and 5.1 G, respectively,
and reached 94.5% of mAP. It can be seen that the hybrid domain attention effectively
combined SEM and SAM in a parallel way, and fully played the role of screening effective
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feature information. After end-to-end learning in the training phase, the generated attention
weight was very effective, and could effectively improve the detection performance of
occluded vehicles while ensuring small model complexity.

On the basis of the hybrid domain attention module, MFEM was introduced as
the source of multi-scale feature space to obtain the multi-scale hybrid attention module
MHAM. Then the MHAM was integrated into the bottleneck layer of the baseline algorithm
to obtain the MHAM-YOLO method. The experimental results showed that with the
embedding of MHAM, the parameters of the model increased to 54.18 M, and the number
of floating-point operations also increased to 140.8 G, The detection rate of the model was
reduced from 38 frames/s of the baseline algorithm to 35 frames/s, but it could still meet
the requirements of real-time detection. At the same time, the mAP value of MHAM-YOLO
reached 95.2%, which is 0.7% higher than that of the model only embedded with the
hybrid domain attention module, and 1.5% higher than that of the baseline algorithm. The
AP values of the four types of occluded vehicles were also improved to varying degrees.
Therefore, the method of combining hybrid domain attention with multi-scale feature
extraction module was very effective. Hybrid domain attention could fully extract multi-
scale features from the multi-scale feature extraction module, and then mine the key feature
information on multiple scales for shelter vehicle detection.

To sum up, under the condition of meeting the real-time performance, MHAM-YOLO
algorithm first extracts the feature space information of different scales through the multi-
scale feature extraction module, and then sends the extracted multi-scale feature infor-
mation to the hybrid domain attention module composed of the spatial attention module
and the channel attention module to mine the multi-scale information of the feature space
accurately, so as to suppress the feature information of irrelevant occlusion, strengthen
the feature information of the non-occluded part of the occluded vehicle, and effectively
perform the road vehicle detection task in the occluded scene.

3.2.2. Comparison of Different Attention Modules

In order to further evaluate the detection performance of the multi-scale hybrid atten-
tion mechanism proposed in this paper, the multi-scale hybrid attention module MHAM
was compared with the existing advanced hybrid domain attention mechanisms BAM [22]
and CBAM [23] on the self-made occluded vehicle dataset. The experimental results are
shown in Table 3. In this experiment, YOLOv5 was still used as the baseline algorithm, and
BAM was embedded into the back layer of each C3 layer in the baseline algorithm feature
extraction network for training. The embedding method of CBAM was the same as that of
BAM. Then, the models of these two hybrid domain attention mechanisms were compared
with the baseline algorithm and the MHAM-YOLO in this paper.

Table 3. Comparison of different attention modules.

Method Param. (M) FLOPs (G) FPS
AP/%

mAP/%
Car Bus Truck Van

A YOLOv5 46.65 114.3 38 97.2 92.8 91.7 93.1 93.7
B BAM-YOLO 47.31 116.0 38 97.4 92.5 90.3 94.5 93.7
C CBAM-YOLO 48.45 118.9 37 98.2 92.6 91.9 94.1 94.2
D MHAM-YOLO 54.18 140.8 35 98.8 93.7 92.5 95.6 95.2

It can be seen from the comparative results in Table 3 that the performance of the model
has not been substantially improved after BAM was embedded in the baseline algorithm.
Not only did the mAP value still maintain at 93.7% of the baseline algorithm, but it also
brought a certain number of parameters and floating-point operations. From the AP values
of various vehicle categories, we found that the AP value of BAM for van category was
greatly improved, which was 1.4% higher than that of the baseline algorithm, and the AP
values of bus and truck categories were lower than that of the baseline algorithm. Therefore,
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BAM did not achieve ideal results in the occluded vehicle scene in this paper. Further
experiments show that after the baseline algorithm was embedded in CBAM, the number
of model parameters and floating-point operations were increased to 48.45 M and 118.9 G,
respectively, and the model detection rate was slightly reduced to 37 frames/s. It was
evident that the embedding of CBAM did not bring too much computational overhead to
the model. From the change of map value, we found that CBAM achieved 94.2% of mAP,
and at the same time, 1% of AP values of car and van were significantly improved. It could
effectively enhance the detection performance of baseline algorithm. Compared with the
above two hybrid domain attention mechanisms, the multi-scale hybrid attention module
in this paper achieved the best detection performance. The BAM embedding failed to
bring good detection results to the baseline algorithm, and was not an effective method for
detecting occluded vehicles. Compared with CBAM, the MHAM method in this paper had
5.73 M higher parameters and 21.9 G higher floating-point operations, but only reduced the
model detection rate of 2 frames/s. At the same time, the mAP value of the model was 1%
higher than that of CBAM, and the AP value of each vehicle category had also achieved the
optimal results. Therefore, the detection performance of MHAM for occluded vehicles was
commendable compared with the current advanced hybrid domain attention mechanism.

3.2.3. Comparison of BDD100K Dataset

In order to further verify the effectiveness of this method in other occluded scenes,
the BDD100K dataset was used for generalization experiments. The BDD100K dataset
contained a large number of difficult samples such as night and fuzzy, and the detection
accuracy was low. Here, 9904 pictures of cars, buses and trucks with “occlusion” label
information were randomly selected from the BDD100K dataset, of which 8021 were used
as the training set, 892 as the verification set and 991 as the test set, forming a generalized
experimental dataset. The experimental results are shown in Table 4.

Table 4. Comparison of BDD100K dataset.

Method Param. (M) FLOPs (G) FPS
AP/%

mAP/%
Car Bus Truck

YOLOv5 46.64 114.3 38 74.2 42.4 52.7 56.4
MHAM-YOLO 54.17 140.8 35 74.5 47.9 55.4 59.3

Table 4 shows that on the BDD100K occluded vehicle dataset, the parameter quantity of
MHAM-YOLO algorithm increased by 7.53 M and the number of floating-point operations
by 26.5 G compared with the baseline algorithm, but only the model detection rate of 3
frames/s was reduced, and the average accuracy of each category was improved. Among
them, the average accuracy of cars, buses and trucks increased by 0.3%, 5.5% and 2.7%,
respectively, and the mAP increased by 2.9%, This fully proves that the MHAM-YOLO
algorithm in this paper can detect occluded vehicles better.

3.3. Visualization of Occluded Vehicle Detection

In order to more intuitively evaluate the detection effect of the proposed MHAM-
YOLO algorithm on vehicle targets in occluded scenes, this paper tests the actual detection
effect of the baseline algorithm YOLO5 and the MHAM-YOLO algorithm on the self-made
occluded vehicle dataset. This paper selects some sample images of occluded vehicles from
the detection results of the two algorithms for comparative analysis, as shown in Figure 10.
Firstly, the detection effects of the two algorithms in the case of serious vehicle occlusion
are compared.
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From the comparison between Figures 10a and 10b, it can be seen that the vehicle in
front of the road is seriously blocked by the vehicle behind it, which leads to the problem
of repeated detection when the baseline algorithm detects the truck. However, the MHAM-
YOLO algorithm in this paper shows strong anti-interference ability when facing the
situation of mutual occlusion of vehicles. By weakening the interference of blocked vehicles
and strengthening the characteristics of blocked vehicles, the vehicle target is accurately
detected. Subsequently, this paper compares the dense continuous occlusion between
vehicles, and the results are shown in Figure 11.
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By further comparing Figure 11a with Figure 11b, we found that even in the face of
a more complex scene of dense and continuous occlusion of vehicles, the method in this
paper can also achieve a very ideal detection effect. It can be seen that while the baseline
algorithm fails to detect two vehicles blocked by surrounding vehicles, and there are also
false detections, MHAM-YOLO relies on its good ability to detect occluded vehicles to
effectively detect vehicles that have been occluded with most of the key features. Finally,
this paper compares the ability of the two methods to deal with background occlusion, as
shown in Figure 12.

From the comparison between Figures 12a and 12b, it can be seen that the baseline
algorithm has a serious impact on the feature extraction of the blocked vehicles due to the
blocking of the roadside guardrail on the vehicles in front. Therefore, there is a missed
detection situation. While MHAM-YOLO fully suppresses the interference of the roadside
guardrail and other complex backgrounds through the multi-scale hybrid attention module,
only a small part of the feature information that is not occluded is used to complete the
accurate detection of cars and trucks.
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The above analysis shows that the proposed road vehicle detection method MHAM-
YOLO in occluded scenes can use the proposed multi-scale hybrid attention mechanism
to well complete the task of detecting occluded vehicles. It can fully mine the important
features of occluded vehicles by using the screening function of the attention mechanism,
whether in the case of mutual occlusion between vehicles or the case of background
information on vehicles. Hence, it can provide guidance for the detection process of
target detector.

4. Conclusions

An occluded vehicle detection method MHAM-YOLO based on multi-scale hybrid
attention mechanism is proposed. A multi-scale hybrid attention module (MHAM) was
designed, which integrates a multi-scale feature extraction module, a channel attention
module and a spatial attention module. Firstly, the multi-scale feature extraction module
will segment the original input features along the channel dimension and use the grouping
convolution of different sizes to collect rich multi-scale features. Further, in the training
phase of the target detector, the multi-scale features were learned through the parallel com-
bined hybrid domain attention mechanism, and the hybrid domain attention weights on
different scales were obtained to enhance the local feature information of the occluded vehi-
cle. The self-made occluded vehicle dataset and the occluded vehicle dataset of BDD100K
were used to evaluate the effectiveness of MHAM-YOLO. The experimental results show
that the MHAM-YOLO algorithm performs better than the baseline algorithm in the vehicle
detection task in an occluded environment. It can accurately detect whether the vehicle is
occluded by the vehicle, or the vehicle is occluded by irrelevant background information.
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