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Abstract: By creating an effective prediction model, software defect prediction seeks to predict
potential flaws in new software modules in advance. However, unnecessary and duplicated features
can degrade the model’s performance. Furthermore, past research has primarily used standard
machine learning techniques for fault prediction, and the accuracy of the predictions has not been
satisfactory. Extreme learning machines (ELM) and support vector machines (SVM) have been
demonstrated to be viable in a variety of fields, although their usage in software dependability
prediction is still uncommon. We present an SVM and ELM-based algorithm for software reliability
prediction in this research, and we investigate factors that influence prediction accuracy. These
worries incorporate, first, whether all previous disappointment information ought to be utilized
and second, which type of disappointment information is more fitting for expectation precision. In
this article, we also examine the accuracy and time of SVM and ELM-based software dependability
prediction models. Then, after the comparison, we receive experimental results that demonstrate
that the ELM-based reliability prediction model may achieve higher prediction accuracy with other
parameters, such as specificity, recall, precision, and Fl1-measure. In this article, we also propose a
model for how feature selection utilization with ELM and SVM. For testing, we used NASA Metrics
datasets. Further, in both technologies, we are implementing feature selection techniques to get the
best result in our experiment. Due to the imbalance in our dataset, we initially applied the resampling
method before implementing feature selection techniques to obtain the highest accuracy.

Keywords: extreme learning machine; prediction defect model; software fault prediction; quality
software; support vector machine

1. Introduction

Deep learning has already been intensively investigated in natural language processing
(NLP), machine learning, and data analysis as the most popular learning technique. Most
essentially, in deep learning, the convolutional neural was used to recognize documents
and faces in the beginning [1,2], Stack auto-encoders [3], deep neural networks [4] and
deep Boltzmann machines [5] are a few deep learning techniques for auto-encoders that
use multi-layer fully linked networks. Convolutional neural networks with pooling layers,
convolutional layers, and complete associated layers are broadly explored in huge scope
learning issues, such as in computer vision image classification, for their solid, profound
component portrayal capacity and the latest performance in tested large datasets, such
as Image Net, Promise, Pascal, and others. Researchers have used convolutional neural
networks with varied topologies to set a new record in face verification [6-9]. Convolutional
neural networks are very successful for profound element representation with huge scope
boundaries in these studies. Deep learning’s key benefits can be seen in three ways.
(1) Representation of features that convolutional neural networks utilize with no other high-
level or low-level element descriptors to consolidate feature extraction and model learning.
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(2) Massive learning of convolutional neural networks can learn millions of pieces of data
at once because of the customizable network topologies. (3) Learning with parameters.
Thousands of parameters can be taught thanks to the scalable network topologies. As a
result, convolutional neural network-based deep learning can be cutting-edge parameter-
learning technology.

The discovery of support vector machines in 1995 [10,11] marked the start of the
advancement of a group of exceptionally productive and particular classifiers. They work
by planning input tests into a high-layered feature space with a decent non-linear change.
The examples are then arranged in this feature selection, utilizing a linear decision function
that maximizes the margin and split them from distinct classes. Extreme learning machine
was first presented as a single hidden layer feed-forward network (SLEN) in 2006 [12,13].
The term “regularization” was not utilized in this case. The ELM is comparable to an ANN
in which the first layer’s biases and weights are randomly or arbitrarily initialized and held
constant, while the second layer’s loads (and alternatively biases) are picked by limiting
the least-squares error. Two significant properties of feed-forward neural networks [14,15]
are interpolation and universal estimation. The interpolation ability of ELM has been thor-
oughly shown in [9], and any N arbitrary particular examples can be advanced definitively
with all things. The widespread estimation capacity of ELM for any consistent objective
capacity is definite for non-steady activation functions, which is an important theoretical
addition. Software systems become more difficult and time-consuming to handle as more
bugs or weaknesses are introduced. As a result, effective techniques for detecting software
faults rapidly and reducing software development expenses must be created. The majority
of extant research employs various Al methodologies to construct fault prediction algo-
rithms. As to detect prediction models, numerous categorization algorithms have been
used. Ensemble approaches [16,17], Naive Bayes [18], Random forest [19,20], Support vec-
tor machine [21,22], Decision tree [23], Nearest neighbor [24], and Neural network [25,26]
are examples of distinct algorithms. Machine learning is becoming more prevalent in a vari-
ety of industries, including banking and finance [27-29], healthcare [30-32], robots [33-35],
transportation [36-38], social networks, and e-commerce [39-42] to name a few. It is unlikely
to remain unaffected by it in most academic subjects. Choosing pertinent characteristics
or a potential subgroup of features is the process of feature selection. An ideal feature
subset is obtained using the evaluation criteria. Finding the ideal feature subgroup in
high-dimensional data is challenging [43]. Many related issues are demonstrated to be
NP-hard [44] a candidate subset of features exists for the data containing several features.
For feature selection, there are four fundamental steps: the creation of subsets (subset
formation), subset evaluation or subset assessment, a benchmark for stopping (stopping
criterion), and outcome verification or result validation. Subset creation is a search tech-
nique that employs a specific search approach [45] a generated subgroup feature is tested
against the prior best feature subdivision using a specific evaluation criterion. If the new
feature subgroup outperforms the previous best feature subgroup, the latter is replaced
by the former. This cycle is repeated until a predetermined stopping threshold is met. It is
necessary to validate the generated optimal feature subgroup after the stopping condition.
Either artificial or real-world datasets may be used for validation [46]

2. Literature Review

Six electronic datasets (ACM Digital Library, IEEE Xplore, Science Direct, EI Compen-
dex, Web of Science, and Google Scholar) and one internet-based bibliographic library were
used to look for essential exploration (BEST web). Other fundamental assets CiteSeer, like
DBLP, and The Collection of Computer Science Bibliographies, were not analyzed because
the chosen literature resources almost nearly covered them.

Song et al. [47] is an essential component of a common imperfection prediction frame-
work. The exhibition of filter and wrapper-based highlight determination approaches for
error expectation was investigated by Shivaji et al. [48,49]. Their tests revealed that includ-
ing determination can upgrade deformity prediction execution while keeping 10% of the



Electronics 2022, 11, 2707

30f13

original features. Wold et al. [50] are a group of researchers who have worked on several dif-
ferent projects. On a large telecommunication system, the researchers investigated different
filter-based feature selection techniques and found that the Kolmogorov-Smirnov method
performed best compared to the others. Gao et al. [51] examined the show of their hybrid
feature selection structure, which consolidated seven channel-based and three-component
subset find approaches. In most situations, they discovered that removing characteristics
had no negative impact on prediction performance. Chen et al. [52] displayed feature
selection as a multi-objective streamlining issue, fully intent on diminishing the number of
selected features while expanding defect prediction accuracy. They tried their technique
against three wrapper-based feature selection strategies concerning several projects from
the PROMISE dataset and observed that it beat them all. Their system is inefficient in
comparison with more the one wrapper-based approach. Catal et al. [53] directed an exact
review to explore the effect of the size of the datasets, the sorts of capabilities, and the
feature selection strategies on fault identification. To concentrate on the effect of feature
selection strategies, initially, they used a correlation or connection-based feature selection
method to get the applicable elements before preparing the characterization models.

Vandecruys et al. [54] wanted to use software mining to forecast software defects. They
used AntMiner+, a data mining tool, for this. They implemented AntMiner+ after utilizing
several datasets pre-processing techniques, for example, oversampling, discretization, and
input choice, and compared the model’s presentation to that of models developed with
C4.5, logistic regression, and SVM. Czibula et al. [55] utilized relational affiliation rules
mining, a kind of grouping strategy, to anticipate defects. Pre-processing was used to filter
out the extraneous metrics Mahaweerawat et al. [56] established a novel model to identify
bugs in object-oriented software frameworks with 90 percent accuracy. ANN and SVM [57]
were used by Gondra et al. to determine which software metric is more fundamental for
disappointment expectation. They also compared the SVM and ANN framework outcomes.
As per the research, SVM properly identified the software frameworks 87.4 percent of
the time, whereas ANN did so 72.61 percent of the time. Menzies et al. [58] used NB
and method-level metrics to predict software faults on a PROMISE repository dataset.
The model had a 55 percent recall value. Heeswijk et al. [59] looked at the application of
one-step-forward identification in non-fixed time series using adaptive ensemble models of
extreme learning machine. The method’s capacity to work on non-stationary time series’
was also examined. The adaptive ensemble model has an acceptable testing fault and is best
at adapting, according to empirical experiments. Rong et al. [60] proposed a pruned ELM
as an orderly and computerized way of planning ELM classifier networks. It begins with a
large network and afterward utilizes statistical models, for example, the Chi-square and
data gain measures, to eliminate hidden nodes that have little importance to the different
class labels.

3. Proposed Methodology
The ELM and SVM classifiers were used to predict software reliability defects.

Data Gathering.

Data Preparation.

Resampling and Feature Selection Methodology.

Training the SVM classifier.

Training the ELM classifier.

Proposed Model and Algorithms for calculating the accuracy and time.
Results and analysis.

3.1. Data Gathering

The methodology of estimating, gathering, and assessing the right experiences for
research utilizing spread-out approved techniques is referred to as information gathering.
Because of the real factors accumulated, an expert could survey their hypothesis. No matter
what the concept may be, data gathering is commonly the primary and most important
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stage in the research cycle. Depending on the required information, different ways of
managing data gathering are used in different studies. The NASA Metrics Data Program
informational index is procured through the PROMISE library. In this informational index,
there are 10,885 cases with 22 properties each. A flawed dataset from NASA [61] was used
to predict software problems. Source code extractors were included in Halstead’s Data
Processing Program, while McCabe’s flight program provided data for an earth-orbiting
satellite. The different features of the datasets are IOCode, v(g), [IOComment, ev(g), locCode
and Comment, iv(g), uniq_Op, n, uniq_Opnd, v, total_Op, |, total_Opnd, d, branch count, I,
defects, t, e, loc, b respectively. Figure 1 depicts the proportion of the false and true values
of the NASA dataset.
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Figure 1. Transaction class against the frequency.

3.2. Data Preparation

Cleaning and altering raw information before handling and investigating are referred
to as information arrangements. A critical stage before handling, as a rule, involves refor-
matting information, making information rectifications, and incorporating informational
indexes to advance information. For data experts or business clients, information readiness
can be a tedious interaction, yet it is important to put data into surroundings to change it
into pieces of information and decrease bias brought about by unfortunate information
quality. Following the acquisition of data, we must prepare it for the next phase. The
different methods of organizing and putting together data for machine learning are known
as data preparation. We then rearrange the data after merging it all. The full dataset is
then analyzed to check if there is any missing information. The protocol is examined using
cross-validation techniques. In Figure 2, you can see the NASA dataset correlation graph.
In other words, correlation is a statistic that is used to determine the degree to which two
variables are related.
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Figure 2. Co-relation graph of the NASA dataset.
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3.3. Resampling and Feature Selection Methodology

A dataset is considered imbalanced if there is a significant skew in the class distribution,
such as a ratio of 1:1000 or 1:10,000 samples from the minority class to the majority class.
Some machine learning algorithms may completely disregard the minority class as a result
of this bias in the training dataset, which can affect various machine learning methods.
This is a concern because projections are often made with the minority class in mind.
Resampling the training dataset at random is one method for addressing the issue of class
imbalance. Resampling can be performed in a variety of ways, including oversampling and
under sampling. Choosing the most important features to input into Al algorithms is one
of the primary components of feature engineering. Different feature selection methods are
utilized to reduce the number of information factors by removing additional or irrelevant
aspects and decreasing the scope of features to those that are generally helpful to the Al
model. The following are the key advantages of pre-selecting attributes rather than relying
on a machine learning model to figure out which ones are the most important. A model that
is overly complicated to grasp is useless. The time it takes to train a model decreases when
a more precise subset of features is used. Increasing the precision of forecasts for a given
simulation. According to the dimensionally cursed phenomenon, as dimensionality and the
total number of features increase, the volume of space expands so rapidly that the amount
of data available diminishes. Data scientists can use feature selection to their advantage.
Knowing how to select relevant qualities is critical to the algorithm’s effectiveness in
machine learning. Irrelevant, redundant, and noisy features can cause a learning system to
slow down, lowering performance, accuracy, and processing costs. When the typical dataset
expands in size and complexity, feature selection becomes increasingly crucial. Two of the
most popular feature selection techniques are Kbest and ANOVA. In this investigation,
we apply the Kbest feature selection. It was found after assessing the work on highlight
choice, getting an optimal subset of pertinent and non-repetitive attributes is a troublesome
issue. Most existing techniques in the literature depend on univariate positioning, which
disregards associations between factors previously remembered for the chosen subsets and
the excess ones, neglects the dependability of the determination calculation, and strategies
that produce great accuracy. Figure 3 depicts the proportion of the false and true values of
the NASA dataset after using the resampling method.
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Figure 3. Transaction class against the frequency after implementing the resampling method.

3.4. Training the SVM Classifier

SVM [62] contrasts with other classification algorithms in that it selects a choice limit
that enhances the distance between every one of the classes closest to the data points. The
maximum margin hyperplane is the decision border laid out by SVMs. A direct SVM
classifier makes a straight line between two classes. That is, each of the useful pieces
of information on one side will be assigned to a particular classification, while the data
points on the opposite or another side will be assigned to another one. This suggests
that the number of lines accessible is unlimited. The linear SVM calculation is better
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than other algorithms, for example, k-nearest neighbors, since it chooses the optimum
line for characterizing the different data points. It chooses the line that partitions the
information and is the farthest from the nearest data points. A 2-D illustration explains
the language behind the Al Generally, you have a matrix of pieces of data points. You are
endeavoring to sort these data points into the appropriate categories, but you do not want
any data to be misplaced. That is, you are looking for a line that connects the two closest
points and keeps the remaining data points apart. Handwriting recognition, face detection,
intrusion detection, gene classification, email classification, and web page classification
are all examples of applications that use SVMs. SVMs are utilized in Al for a variety
of reasons. It can deal with both linear and non-linear information for classification and
regression. Another explanation for why we use SVMs is that they might find unpredictable
relationships in your information without expecting you to input various changes. While
working with the smallest datasets with tens to a huge number of elements, this is a brilliant
option. As a result, to deal with complex and small datasets, they frequently track down
additional exact responses when compared to other methods. Let us look at some of the
most common kernels for which an SVM classifier can be used. The kernel function is used
for converting a lower dimension to a higher dimension.

e Linear fX)=wl x X+b

w, X, and b indicate the weight vector to minimize, data to classify, and the linear
coefficient estimated from the training data in this equation, respectively.

e  Polynomial f(X1,X2)=(a+X1T X X2) b
(X1, X2) represents the polynomial decision boundary that will split our data.
e  Gaussian RBF fX1,X2) =exp(—y I I X1 —=X211)2

In this equation, the gamma parameter describes the impact of a particular training
point on the data points around it. Between your features, | I X1 — X21 | indicates the
dot product.

To get the best accuracy, the data are separated into 70/30 training/test proportions.
To increase the performance of a system, 15 percent of the training data utilized is used
for validation. The values of the weight of each input parameter were merged with bios
in iterative random choice tests to reduce inaccuracy. Using the support vector machine
training strategy is used to depress the time data, which is part of the core internal time-
related part of programming succession. After each new emphasis of a new software
failure sequence, the SVM preparing method is continually and iteratively different from
discovering the recent property hidden behind the software failure behavior [34]. Figure 4
shows how kernels are used in the SVM classifier.

Max margin

Separating Positive

hyperplane class Max Margin width
] - O Support vectors

- (data points)

Negative ¢ o ®
class
v

wix+b=1

wix+b=0
wix+b=-1

Figure 4. Support Vector Machine Classifier.



Electronics 2022, 11, 2707

7 of 13

3.5. Training the ELM Classifier

Using an ELM (as illustrated in Figure 5 below) to train SLFN (Single Hidden Layer
Feed-Forward Neural Networks) networks is rapid. The model’s hidden layer, which is
made up of one layer of non-linear neurons, is referred to as single. The input layer supplies
data features but does not compute, whereas the output layer is bias-free and linear.

Figure 5. Single Hidden Layer Feed-Forward Neural Networks.

Weights and biases are arbitrarily allocated to input layers and stay constant in the
ELM approach. This is because the weights of input are constant and fixed, and the
solution is simple and does not require iteration. For a particular linear output layer, such
an answer is both straightforward and quick to compute. Because they provide nearly
symmetrical hidden layer highlights, arbitrary information or input layer loads increase
the speculative qualities of a linear output layer solution even further. A linear system’s
solution is always made up of a collection of inputs. When the solution’s weight range is
restricted, symmetrical information sources result in a bigger arrangement of space volume.
As a result, the arbitrary hidden layer creates feebly connected hidden layer features,
producing a low norm and high generalization accuracy solution. Because of its high
prevalence in training performance, speed, and generalization, the ELM has been utilized
in a wide range of applications, including medical, chemical, transportation, economics,
robotics, and so on. Activation methods for the elm algorithm include ReLU, sigmoid, sin,
tanh, and Leaky ReLU. In our experiment, we use the ReLU function.

We will compare and analyze the sigmoid (logistic) activation function with other
activation functions such as tanh, ReLU, Leaky ReLU, and Softmax activation functions
in this post. All of these are activation functions that are commonly employed in deep
learning and neural network algorithms. To tackle a categorization problem, there are
several algorithms on the market. One of these, the neural network, is well-known for
accurately predicting data. It does, however, take a long time to compute. It is based on
how neural systems process biological information. It is made up of associated layers of
nodes, or we can say neurons. Information is sent to the hidden levels from the input
layer. Initially, we multiply all inputs by the weights and then add a bias and apply an
activation function to the result, and finally transfer the output to the next layer. This
process continues until the final layer is reached. Non-linear activation functions are
commonly used in neural networks, and they can aid the network in learning complex
data, computing and learning nearly any function that represents a question and making
correct predictions. Since they have a derivative function associated with the sources of
info, they permit back-propagation.

The sigmoid activation work is a straightforward function that takes a particular real
value as info and returns a probabilistic value that is somewhere in the range of 0 and 1 all
of the time. It has the state “S”. It has a set result range and is non-linear and differentiable.
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The principal benefit is that it is clear and reasonable for use with a classifier. However,
because the function’s fact that the capacity’s result is not zero focused, it causes an issue
known as “vanishing gradients” It causes the angle updates to diverge too much. It is
tougher to optimize when you have a 0 output and a 1. In a hidden layer of a neural
network, this takes a long time to compute. Tanh can assist with sigmoid function non-
zero-centered problems. Tanh reduces a real-valued number in a range between —1 and
1. In addition, it is non-linear. The derivative function is nearly identical to the derivative
function of a sigmoid. It overcomes the sigmoid’s flaw; however, it cannot eliminate the
vanishing gradient issue. This diagram shows how the tanh activation function compares
to the sigmoid. This is the most commonly utilized activation function in NN’s hidden
layer. It is not linear, despite its name and look, and offers similar advantages as sigmoid,
however, with superior performance. It avoids and corrects the disappearing gradient
problem issue, as well as being less computationally costly than tanh and sigmoid, these
are the key advantages. In any case, it is not without defects. During preparation, certain
slopes can become delicate and pass on. Subsequently, neurons start to die. As such, the
weight will not be adjusted during the drop because the gradient for activations in the
ReLU regionX0 () will be 0. That is, neurons in this state will no longer respond to changes
in error and input. Therefore, choosing an activation function ought to be finished with an
alert, and the function should be tailored to the needs of the organization. It eliminates the
problem of dying ReLUs. Because this ReLU variation includes a certain small incline in the
negative region, it permits back-propagation even with negative input values. For negative
information esteems, the Leaky ReLU does not make solid expectations. If the learning
rate is set excessively high during the front propagation, the neuron will overshoot and
pass on. The concept of a Leaky ReLU can be further developed. We can multiply X x with
a hyper-parameter instead of a constant term, which appears to function better with the
Leaky ReLU. In general, we utilize the function in the very last layer of a neural network
to calculate the distribution of probabilities to an event over a set of “n” occurrences. The
ability to handle various classes is the function’s key benefit.

3.6. Proposed Model and Algorithm for Calculating the Accuracy and Time

We construct a proposed Algorithm 1 for calculating the accuracy in this area of our
paper, and we also find time to execute the approach in this section. In this case, we used the
SVM classifier first and, subsequently, the ELM classifier in the NASA dataset. We compare
the results at last. Figure 6 illustrates a proposed prediction model after using feature
selection with SVM and ELM classifiers. The different methods are used in this model,
i.e., data gathering, data preparation, and feature selection using Kbest, implementing
SVM or ELM classifier, evaluation of performance, finding the accuracy, and analysis of
outcomes at the last output measurement.

Algorithm 1 Calculating the accuracy and time

Input: NASA Dataset

Output:  To improve precision and reliability

Step-1 Begin

Step-2 Import NASA’s data.

Step-3 NASA dataset pre-processing features

Step-4 Implement the Resampling MethodStep-4 Implement the Method of Feature Selection

Step-5 Then, for hyper-parameter analysis, we used SVM or ELM classifiers on our
Dataset with various functions.

Step-6  Our model then concentrates on Hyper-plane.

Step-7 Calculate the accuracy and time.

Step-8 End

The initial stage in our strategy is gathering data for the ML model’s training, which
is the fundamental machine learning step. Only the data used to train the models can
guarantee the accuracy of the predictions. There are a variety of issues that can arise during
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the data collection process, such as the fact that the data collected may not be relevant to the
problem statement (inaccurate data), empty values in columns, missing images for some
classes of predictions (missing data), data imbalance, and private data. The pre-processing
or preparation of our data comes next. There are several methods for performing this,
including data imputations using the standard deviation, mean, median, and k-nearest
neighbors (k-NN) of the data in the given field; bias or imbalance in the dataset can be
corrected by repetition, bootstrapping, or synthetic minority over-sampling technique
(Oversampling) or data integration. Additionally, in this stage, we partitioned our dataset
into training and testing portions. Following the removal of unnecessary features from our
datasets using the feature selection approach, the cleaned data are fed into the classifier
to build our model. Our model calculates various characteristics, including accuracy,
specificity, recall, and precision, after calculating the confusion matrix, which is comprised
of the true positive, true negative, false positive, and false negative outcomes. We use SVM
and ELM classifiers in our experiment. At the time of our experiment, we carefully observe
each parameter after constructing a distinct classifier.

- -

N ilnaali| N A
(\ Data Gathering } > Pregaartaation ’ 7,‘ B e > SZ?::;E;M
—— e | | esampling and - )
Feature Selection
Output < Analysis the P Find the <« | Evaluation of
Measurement Outcomes Accuracy Performance

Figure 6. Proposed prediction model after using feature selection with the SVM and ELM classifiers.

3.7. Testing and Calculation of Accuracy

A test’s accuracy is still up in the air due to its capacity to suitably recognize healthy
and sick cases. To calculate the part of true negative (—ve) and true positive (+ve) cases
in every analyzed case, we need to calculate the test data accuracy. Accuracy calculation
depends upon the four parameters of the confusion matrix i.e FP, TP, TN, and FN. The
different number of instances correctly identified are false positives (FP), and true positives
(TP) is the number of misidentified cases. The number of attributes correctly classified is
called a true negative (TN). The number of attributes wrongly classified is called a false
negative (FN).

The ELM classifier’s accuracy and time computation improved after this test on
the NASA dataset. We will provide an accuracy table once we have finished all of the
procedures. The accuracy calculations for both approaches are compared in Table 1. Further,
Tables 2 and 3 represent the value of other parameters, such as specificity, recall, precision,
and Fl-measure.

Table 1. Accuracy and Time Calculation Table.

Accuracy Accuracy Time Time Required
Calculated Calculated Required q!
Input . . . for Execution of
Using Using ELM For Execution of ELM Classifier
SVM Classifier Classifier SVM Classifier
NASA dataset 0.7868965517241 0.84617241379310  2.8329972743988037 s  0.6670020008087158 s

Table 2. F1-measure, Precision, Recall, and Specificity Calculation Table (Using SVM).

F1-Measure Precision Recall Calculated Specificity
Calculated Calculated . .
Input . . Using SVM Calculated Using
Using SVM Using SVM e e
e o Classifier SVM Classifier
Classifier Classifier
NASA dataset 0.043638 0.79 0.015163 0.919331
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Table 3. F1-measure, Precision, Recall, and Specificity Calculation Table (Using ELM).
F1-Measure Precision g e
Calculated Calculated Recall. Calculated Spec1ﬁc1ty'
Input . . Using ELM Calculated Using
Using ELM Using ELM i e
s s Classifier ELM Classifier
Classifier Classifier
NASA dataset 0.158019 0.894939 0.075128 0.966846

4. Results and Analysis

We used two methods in our experiment: SVM classifier and ELM classifier. That is, we
use SVM to classify our NASA dataset before getting 78.68 percent accuracy. The accuracy
of the next technique is raised to 84.61 percent by applying ELM classification to the NASA
dataset. We may also compare the execution time; for example, SVM classification takes
more than 2 s while Elm classification takes less than 1 s. Table 1 compares the accuracy and
execution time of the two approaches. Figure 7 illustrates a portion of our implementation
code for calculating the accuracy and time for SVM and ELM. We employed numerous
types of parameters in our experiment, such as ANOVA and Kbest, in feature selection
strategies. Different parameters, such as ReLU, sigmoid, sin, and tanh, are also tested
in the ELM approach. We are taking those parameters and creating a model based on
them. Figure 7 illustrates the accuracy comparison graph. The accuracy provided by the
SVM classifier will always be greater than the value provided by the ELM classifier in
each iteration. To make it easier to compare with the SVM model in our experiment, we
calculated the average from all of the iteration values of ELM.

Figure 7. Accuracy comparison.

Figure 8 illustrates that EIm not only gets a higher accuracy as compared with SVM
but also it will get the best result for other parameters such as specificity, recall, precision,
and Fl-measure.

Specificity
Recall

i mELM

.. HSVM
Precision
Fl-measure

0 0.2 0.4 0.6 0.8 1

Figure 8. Specificity, Recall, Precision, and F1-measure comparison.
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5. Conclusions and Future Work

This study compares and analyzes two classification methods that are similar as far
as accuracy and duration go. The ELM and SVC classifiers are implemented in this study
using the NASA dataset. The NASA benchmark dataset can be found in the Promise data
repository, which is available to the public for research to determine which methodology
is superior of the two algorithms. The ELM classifier model is the most accurate. The
ELM technique also takes less time than the SVM classifier. To improve the accuracy and
save time spent on feature processing, we can utilize feature selection procedures in this
classifier. In our work, we investigate the precision and computational efficiency of SVM-
and ELM-based software reliability prediction models. Then, following comparison, we
obtained experimental findings showing that the ELM-based reliability prediction model
may reach higher prediction accuracy when combined with other factors, such as specificity,
recall, precision, and F1-measure. In this paper, a paradigm for using feature selection with
ELM and SVM is also put forward.

A systematic literature review on software defect prediction using machine learning is
presented in this work. A large number of papers were obtained from electronic databases,
and certain publications were chosen based on the study selection criteria. Platforms,
machine learning types, datasets, evaluation metrics, and machine learning algorithms,
validation methodologies, best machine learning, software metrics, and deep learning
algorithms, problems, and gaps are all identified, with the associated results presented.
Researchers overwhelmingly favored the software platform. Furthermore, software fault
prediction studies have restricted several types of repositories and datasets. In software
defect prediction, most of the researchers utilized object-oriented metrics. Supervised
learning is utilized in the majority of the investigations as compared to unsupervised and
semi-supervised learning algorithms. This indicates that there is still a need for more
research into software fault prediction using unsupervised and semi-supervised learning.
We intend to use these methods to create unique software and reliability models.
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