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Abstract: Path planning is a hot topic at present. Considering the global and local path planning of
mobile robot is one of the challenging research topics. The objective of this paper is to create a raster-
ized environment that optimizes the planning of multiple paths and solves barrier avoidance issues.
Combining the A* algorithm with the dynamic window method, a robo-assisted random barrier
avoidance method is used to resolve the issues caused by collisions and path failures. Improving the
A* algorithm requires analyzing and optimizing its evaluation function to increase search efficiency.
The redundant point removal strategy is then presented. The dynamic window method is utilized for
local planning between each pair of adjacent nodes. This method guarantees that random obstacles
are avoided in real-time based on the globally optimal path. The experiment demonstrates that the
enhanced A* algorithm reduces the average path length and computation time when compared to
the traditional A* algorithm. After fusing the dynamic window method, the local path is corrected
using the global path, and the resolution for random barrier avoidance is visualized.

Keywords: A* algorithm; dynamic window method; path planning; random route-planning method

1. Introduction

Path planning aims to solve robot movement problems along the optimal route from
the starting point to the destination. Since the invention of the robot, path planning
has become a central focus of robot research [1,2]. Multiple attempts have been made
by scientists to find a collision-free path for the moving robot. This type of research is
extremely important because it enables robots to quickly complete tasks without human
guidance. Various researchers have utilized optimization criteria to endow robots with
self-awareness. In recent years, the A* algorithm [3,4], the D* algorithm [5], and the ant
colony have been used to represent global planning as well as the artificial potential field
in robot path planning research. The DWA is responsible for local planning. Global and
local path planning [6] differ in their knowledge of the environment variable information
of a mobile robot.

Global path planning refers to the robot planning a safe, collision-free optimal path in a
known static environment to establish an accurate global map in advance. Global path plan-
ning is extensively employed in the shipping industry [7,8], agriculture [9], aerospace [10],
autonomous driving [11], and other fields and constitutes an important research topic.
To overcome the limitations of traditional ant colony algorithm in indoor mobile robot
path planning, such as long path planning time, slow convergence speed, nonoptimal
path, and local optimal solution, Miao et al. [12] proposed an improved adaptive ant
colony algorithm. Sandamur et al. [13] proposed a whole-area traversal path planning
algorithm for orchards; the maximum area coverage rate of the proposed algorithm is 76%.
Huang et al. [14] proposed a rotary-wing drone operation path planning algorithm for
multi-area and complex boundary fields. They employed polygon grouping to distinguish
blocks of different shapes. Combined with route sorting and heading optimization, flight
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trajectory can be obtained quickly. Zhang et al. [15] developed a strategy for automatic path
planning by using the automatic identification system (AIS) data and simple round unit
(SRU), where the ship routes and velocity were generated by extracting the correlations
among ship routes by using the AIS tracking data. To better address ship path planning
in the virtual 3D context, Xie et al. [16] formulated a 2.5D navigation graph technique for
achieving walking domain modeling, as well as a modified A* algorithm for planning
large ship paths. By fusing the A* and ant colony algorithms, Lan et al. [17] developed a
modified algorithm for path planning, resolving the limitations of the ant colony algorithm,
such as numerous iterations, slow convergence, and long search duration in global path
planning, as well as ready trapping into the local optimization in an intricate environment.
Li et al. [18] proposed a multi-way A* algorithm that enables valid and real-time 3D path
planning of autonomous underwater vehicles, reduces the number of search nodes, and
enables further search path reduction. A hybrid mapping-based framework for global path
planning was established by Wang et al. [19]. The global path was estimated from the scene
diagram and mapped to the lower level, and then the geometric path was generated. Given
the generation of a high level from a low level, the generated global path offers powerful
guidance for measurement path computation. The A* algorithm has a short planning path
and quick computing rate. It is now a common approach for global route planning [20].
In local path planning, the Artificial potential field and dynamic window methods have
gained widespread application popularity. Wang Zhi [21] combined the A* algorithm and
the improved artificial potential field method for realizing random obstacle avoidance in
a complex environment; however, the path based on the artificial potential field method
appears less smooth.

However, in the aforementioned studies, obstacles absent in the previous map could
not be considered in global path planning [22,23]. Accordingly, local path planning, which
allows real-time path generation based on the sensor information, was applied. In local
path planning, when random obstacles exist in the environment in which the robot is
located [24,25], the robot can avoid them according to the real-time observation information
obtained from the sensor so that the robot can safely reach the target point. By expanding
VO, Berg et al. [26] achieved smooth path planning without vibrations. Xu et al. [27]
proposed VO, where the obstacle velocities exceeding the maximum robotic velocity were
considered. Howard et al. [28,29] proposed a state lattice planner (SLP) that utilizes the
constraint and state datasets of robots for candidate path generation. However, in the
presence of barriers in the robot’s periphery, candidate path generation cannot be realized
using SLP. Being a simple strategy, the dynamic window approach enables smooth path
planning and avoidance of local obstacles [30]. The dynamic window method is proposed
by Fox [31]. This algorithm samples the various velocities contained within the velocity
space of the robotic kinematics model. In addition, it simulates robot trajectories within
a given time frame and scores the simulated trajectories according to a variety of scoring
rules. DWA is extensively employed in path planning and current ROS (Robot Operating
Systems). Since different robots have different shapes, their path-planning approaches and
strategies in the same environment depend on their shapes and sizes [32]. Zhang et al. [33]
proposed an enhanced DWA that uses stereoscopic vision to avoid obstacles, and the
optimal speed of the robot was achieved by defining a strict search space. As stereo vision
increases the complexity of time and space, however, a few minor localized issues can
still occur. For better path optimization, Dobrevski et al. introduced deep reinforcement
learning and DWA into local path planning [34]. By integrating DWA and the jump-A*
algorithm, Liu et al. [35] proposed a global dynamic path planning method. However, the
candidate paths produced by DWA, where the velocities are hypothesized to be fixed for
a certain duration, are linear and arc-shaped [36]. Given the failure to consider barriers
in the foregoing candidate paths, they are inappropriate for application in narrow spaces.
Li et al. [37] proposed an enhanced DWA that takes into account the free space relationship
between the dimensions of the mobile robot and the obstacles, but it is susceptible to local
optimality. Vista et al. [38] proposed an enhanced DWA to make its objective function
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convergent but failed to fully account for the environment. The current DWA continues
to have the following problems: Dynamic constraints only account for the acceleration
limitations of the robot's driving power. The effects of the vehicle's vertical loads and road
imperfections on acceleration are disregarded. The calculation of the trajectory is optimal
only when considering the errors caused by the car's actual walk. The dynamic window
method's strengths include a simple model, a smooth planning path, and an advantageous
local obstacle avoidance ability [39]. Wang et al. [40] and colleagues proposed using the
dynamic window method for local planning between the two nodes of the A* algorithm,
which has a smooth driving trajectory and good random obstacle avoidance ability, but
the search efficiency of A* algorithm must be enhanced. Many studies are currently being
conducted to enhance the search efficiency of the A* algorithm. Based on the dynamic path
planning model developed by Li et al. [41], the invading submarine path was optimized
using the ABC algorithm; this approach is feasible for planning the evasive path during
the submarine search. Through collision simulation, Xu et al. [42] assessed the developed
formula’s performance.

The paper presents a random obstacle avoidance method for robots that combines
the improved A* algorithm and the dynamic window method in an effort to address
the aforementioned issues. This method considers the path smoothness and the search
efficiency of the A* algorithm. When the globally optimal path node is determined using
the enhanced A* algorithm, the dynamic window method should be utilized for local path
planning between each pair of adjacent nodes. Thus, if the mobile robot encounters random
obstacles on the global path, it can avoid them and return to the global path. This not only
ensures global path optimization but can also randomly avoid obstacles.

2. Improved A* Algorithm

In the field of path planning, the Dijkstra algorithm must be implemented. The A*
algorithm is optimized compared to the Dijkstra algorithm and introduces an evaluation
function to instruct node extension and search, thus improving the robot path planning
efficiency [43].

The evaluation function for the traditional A* algorithm is:

F(n) = G(n) + H(n) (1)

F(n) means the path distance estimate for the robot at a node is the target function for
the A* algorithm. G(n) refers to the distance loss of the robot during the movement from
the starting position to the current position. Distance loss is measured using the formula as
a known value. H(n) indicates that when the robot is moving from the current position
to its intended target position during the course of its movement, the distance estimate of
the robot will vary slightly according to the formula. As an essential step of the evaluation
function for the A* algorithm, the distance estimate guarantees the accuracy and efficiency
of the A* algorithm.

However, redundant collinear nodes and tangents exist on the path obtained by the
conventional A* algorithm. If the robot follows such a path, its movement will become
incoherent [44]. In order to address the aforementioned issues, the A* algorithm is enhanced
in two ways: To increase the search efficiency of the A* algorithm, the improved search
point selection strategy and the optimization of the heuristic function are presented first.
Next, the redundant point deletion strategy is implemented to eliminate any redundant
nodes to optimize the path. Therefore, the path consists of the starting point, the destination,
and the pivotal turning point.

2.1. Optimize Search Point Selection Strategy

As shown in Figure 1, the dark grids are the current points, and n1 to n8 represent the
eight moving directions in the current grid.
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Figure 1. Schematic diagram of node moving direction.

The limitation of the target point orientation results in unnecessary grids in eight
of the neighboring grids, which wastes time and storage space during operation. This
article proposes optimizing the search point selection strategy based on the relative position
of the target point and the current point after discarding three of the search directions
and reserving five of the search directions to increase the search efficiency [45]. First, the
connection between the target point and the current point and the angle of the n direction
are determined, then the correspondence between the corner and three of the abandoned
directions is shown in Table 1.

Table 1. The corresponding relationship table includes dangle and three discarding directions.

α Reserved Five Directions Abandoned Three Directions

[337.5◦, 360◦) ∪ [0◦, 22.5◦) n1 n2 n3 n4 n5 n6 n7 n8
[22.5◦, 67.5◦) n1 n2 n3 n5 n8 n4 n6 n7

[67.5◦, 112.5◦) n2 n3 n5 n7 n8 n1 n4 n6
[112.5◦, 157.5◦) n3 n5 n6 n7 n8 n1 n2 n4
[157.5◦, 202.5◦) n4 n5 n6 n7 n8 n1 n2 n3
[202.5◦, 247.5◦) n1 n4 n6 n7 n8 n2 n3 n5
[247.5◦, 292.5◦) n1 n2 n4 n6 n7 n3 n5 n8
[292.5◦, 337.5◦) n1 n2 n3 n4 n6 n5 n7 n8

With these optimizations, you can reduce the number of search nodes to increase
computing efficiency.

2.2. Inspiration Function of Optimization Algorithm

Traditional A* algorithms search for paths by traversing numerous unnecessary nodes,
which reduces search efficiency [46]. The primary contributor is the algorithm-inspired
function design. If the estimated value for the inspirational function is less than the actual
generation value, the search node becomes less efficient, but the optimal path can still
be located. If the estimated value for the inspiration function is greater than the actual
generation value, there are fewer and more efficient search nodes, and the optimal path is
difficult to locate. The searching operation is most efficient when the estimated cost of the
inspirational function equals the actual cost. Due to the European nature of the inspiration
function, its value will never surpass the actual distance between the current point and
the target point. If the current point is far from the target point, the estimated value for
the inspiration function is significantly lower than the actual value, and the algorithm
has multiple search nodes, resulting in low operational efficiency. As the current point
approaches the target point, the estimate approaches the actual value more closely. In order
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to find the optimal path, it is necessary to reduce the estimated weight so that it is not
excessive. In conclusion, the cost function is improved, as shown in (2).

f (n) = g(n) +
(

1 +
r
R

)
h(n) (2)

Formula: f (n) represents the composite value; h(n) indicates the estimated proxy
value from the current point to the target point; and g(n) represents the actual generation
value from the starting point to the current point. R represents the distance between the
starting point and the destination, while r represents the distance between the current point
and the destination.

2.3. Redundant Point Removal Policy

While these enhancements improve the efficiency of the search, there are still numerous
redundant and unnecessary points on the path that are incompatible with the following
path of the robot. This paper proposes a policy to remove superfluous nodes while retaining
only necessary branching points [47]. The specific redundancy point deletion policies are as
follows: Initially, traverse each node in the path sequentially and remove the current node
if it is on the same line as the front and back nodes. Second, after removing the redundant
point on the same line, set the node in the path to {Pk|k = 1, 2, . . . , n}, connect point P1 to
point P3, and if the distance between the line segment P1P3 is greater than the safe distance,
the barrier is erected. Connect point P1 to point P4 until the distance between P1Pk, and the
barrier is less than the predetermined safe distance, then connect P1Pk−1, and remove the
middle node. Iterate from point P2 until every path node has been traversed.

After redundant point removal policy operations, the A* algorithm-based path con-
tains only the start, end, and necessary nodes, effectively reducing the path length.

3. Improved Dynamic Window Algorithm

The dynamic window method has been considered a local path planning algorithm
for guiding robot movement. It is based on speed data collected during robot movement
and a simulation of the robot's trajectory under speed drive [48]. Given the disadvantage of
the traditional dynamic window method, which lacks the guidance of global programming,
this paper improves the evaluation function of the dynamic window method by combining
it with global path information. This ensures that the final partial programming matches
the globally optimal path, thereby enhancing the local–optimal problem [49].

When planning the path, the dynamic window method first determines the range of
robotic motion speed, then incorporates the range into the robotic motion model, simulates
the trajectory, scores multiple trajectories using the evaluation function, and the trajectory
with the highest fractional score is the optimal trajectory currently planned by the robot.
The following steps are to establish the robot motion model, determine the robot velocity
range, and determine the evaluation function.

3.1. Establishment of the Robot’s Motion Model

The dynamic window method simulates the trajectory through the robot motion model
to find the best path among several simulated trajectories. Let v(t) be the robotic t-hour
line velocity, ω(t) be the t-hour angular velocity, and the position increment of the two
adjacent moments be: 

∆x = vt∆tcos(θt)
∆y = vt∆tsin(θt)

∆θ = ωt∆t
(3)

The position of the t + 1 moment is expressed as:
x(t + 1) = x(t) + vt∆tcos(θt)
y(t + 1) = y(t) + vt∆tsin(θt)

θ(t + 1) = θ(t) + ω∆t
(4)
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where the range of changes in the translation velocity v(t) is decided by the nearest
distance to the obstacle as well as the maximum line reduction speed. Similarly, the range
of rotation velocity ω(t) depends on the nearest distance to the obstacle and the maximum
angular deceleration.

3.2. Determination of the Robotic Velocity Range

The robot's speed relies on the maximum–minimum speed, motor performance, and
braking distance of the robot. The robot has a maximum speed of:

vm = {(υ, ω)|v ∈ [vmin, vmax], ω ∈ [ωmin, ωmax]} (5)

The motor speed constraints are:

vd =
{
(υ, ω)

∣∣v ∈ [vc −
.

vb∆t, vc +
.

va∆t
]
, ω ∈

[
ωc −

.
ωb∆t, ωc +

.
ωa∆t

]}
(6)

in: the current line speed is vc; the current angular velocity is ωc; the maximum linear
acceleration is

.
va; the maximum angular acceleration is

.
ωa; the maximum linear attenuation

is vb; and the maximum angular reduction speed is
.

ωb.
Brake distance constraint: to ensure the robot’s safety in case of a random obstruction,

the robot must stop before hitting the obstruction:

va =

{
(υ, ω)|v ≤

√
2dist(υ, ω)

.
vb, ω ≤

√
2dist(υ, ω)

.
ωb

}
(7)

where dist(υ, ω) is the distance between the analog trajectory and the nearest obstacle. The
three aforementioned constraints limit the speed range of the robot. The robotic speed
range can be expressed as follows:

vr = vm ∩ vd ∩ va (8)

3.3. Improvement of the Evaluation Function

With the evaluation function, the optimal trajectory can be determined by simulating
several trajectories in accordance with the motion velocity range and the robot motion
model. This paper improves the evaluation function, combines it with global path informa-
tion, and ensures that the final local path is based on the globally optimal path, as opposed
to the traditional dynamic window method, which falls easily into local optimality. The
enhanced evaluation function is displayed in Format (9).

G(υ, ω) = σ(αPHead(υ, ω) + βdist(υ, ω) + γvel(υ, ω)) (9)

in: PHead(υ, ω) means the angle of difference of the trajectory’s end direction with the
current target point; dist(υ, ω) suggests the distance between the trajectory and the nearest
obstacle; vel(υ, ω) represents the current velocity evaluation function; σ refers to a smooth
function; α, β, γ are weighted coefficients. This evaluation function enables planning routes
to prevent random obstacles, applicable to the globally optimal path.

However, the minimum distance value collected by the sensor is discrete and not
continuous. Evaluation of the trajectory directly by using Equation (9) will result in errors.
Therefore, the evaluation function expressed by Equation (9) must be further processed
and normalized.

4. Simulation and Verification of the Robot Random Obstacle Avoidance Algorithm
Based on an Improved A* Algorithm

This paper incorporates the enhanced A* algorithm and the dynamic window method
in order to achieve global path optimization and random obstacle avoidance. The particular
steps are as follows: First, the global path is planned using the enhanced A* algorithm [50].
After determining the optimal global node sequence, the dynamic window method is
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utilized to plan the local path between each pair of adjacent nodes. This diagram illustrates
the flow of the robot’s random obstacle avoidance algorithm based on an enhanced A*
algorithm (Figure 2).
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Figure 2. Flow of the Robot’s Random Obstacle Avoidance Algorithm Based on an Improved
A* Algorithm.

In this section, the improved algorithm will be simulated and validated to test the
practicability and reliability of the A* algorithm fusion dynamic window method in a
complex environment. The simulation experiments were conducted in the MATLAB 2017b
software environment. The simulation results were used to test the effectiveness of the
fusion algorithm.

4.1. The Experiment Analysis of an Improved A* Algorithm

The raster map was built in the form of 30 × 30 specification. During the simulation
experiment, the starting position and target position of the robot in the raster map were
kept constant. The starting position and the end point were, respectively, labeled as “S”
and “T”. The obstacles and boundary positions in the raster map were fixed.

Path planning utilizes the improved A* algorithm with a 5 × 5 neighborhood, the
improved A* algorithm based on the hop-point search method, and the improved A*
algorithm. The optimization results are validated by altering the environmental data.
Environment I is a 30 × 30 two-dimensional grid map with starting coordinates of S(3,11)
and ending coordinates of T(26,23), barrier coverage of p = 20.7%, and path planning results
are depicted in Figure 3a. Environment II is a 30 × 30 two-dimensional grid map with
beginning coordinates of S(4,7) and ending coordinates of T(25,22), and barrier coverage of
p = 21.3%. Figure 3b displays the results of path planning. Environment III is a 30 × 30
grid map with starting coordinates of S(5, 11), ending coordinates of T(20, 8), and barrier
coverage of p = 10.5%. Figure 3c displays the results of path planning.
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Figure 3. Path Planning Trajectories of Four Algorithms: (a) Path planning of four algorithms in
environment I; (b) Path planning of four algorithms in environment II; (c) Path planning of four
algorithms in environment III.

Table 2 shows the path regularization results for these four algorithms. According
to the simulation experiments, the traditional A* algorithm, the improved A* algorithm
with a 5 × 5 search neighborhood, the improved A* algorithm based on the hop-point
search method, and the improved A* algorithm are used for global path planning in three
environments. In terms of planning time, the improved A* algorithm can reduce average
planning time by 21% compared to the traditional A* algorithm, whereas the improved
A* algorithm based on the hop-point search is less than the improved A* algorithm based
on 5 × 5 neighborhood. This is because the improved method in this paper reduces some
search nodes compared to the traditional A* algorithm, the improved A* algorithm based
on 5 × 5 neighborhood, and the improved method based on hop-point search. In terms
of turning points, the improved A* algorithm can reduce the number of turning points in
most cases. Overall, the path planned by the improved the A* algorithm in this paper has
further improved and has higher search efficiency.

Table 2. Path Regularization Results of 4 Algorithms.

Algorithms

Environment I Environment II Environment III

after
Smoothing

Length
/m

Time/s
Number of

Turning
Points

after
Smoothing

Length
/m

Time/s
Number of

Turning
Points

after
Smoothing

Length
/m

Time/s
Number of

Turning
Points

Traditional A*
Algorithm 33.1891 0.0075562 15 31.2136 0.01507 24 20.0765 0.004029 18

An Improved A*
Algorithm for a

5 × 5 Neighborhood
Search

33.2204 0.017705 14 32.1737 0.02704 19 20.0739 0.011244 15

An Improved A*
Algorithm for Path

Planning
33.1737 0.035745 8 31.7024 0.044917 12 20.1634 0.019895 12

An Improved A*
Algorithm Based on

Hop Search
32.6157 0.055889 10 31.7562 0.062665 13 19.7577 0.029458 13

4.2. Analysis of Random Barrier Avoidance Effect of the Improved A* Algorithm Fusion Dynamic
Window Method

We set up three groups of simulation experiments to enhance the A* algorithm fusion
dynamic window method and evaluate its ability to avoid random obstacles. A raster map
with the same environment is planned using the enhanced A* algorithm and dynamic
window method. The beginning coordinates are S(21,7) and the ending coordinates are
T(6,25). Additionally, random obstacles are added to the map (Figure 4b). The dynamic
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window method has the following parameter settings: the maximum velocity is 1 m/s, the
maximum angular velocity is 15◦/s, and the speed resolution is 0.02 m/s with an angular
velocity resolution of 1◦/s, and the acceleration is 0.2 m/s2 with an angular acceleration of
50◦/s2. The parameters of the evaluation function are α = 0.1, β = 0.06, and γ = 0.2. The
predicted time is 4.0 s. Figure 4 depicts the outcomes of the simulation. The data for path
planning is shown in Table 3, and the control parameter feedback diagram is shown in
Figures 5–7.
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Figure 7. Simulation of changes in the angular velocity of robots: (a) Path planning when adding
one random obstacle; (b) Path planning when adding two random obstacles; (c) Path planning when
adding three random obstacles.

Figure 4 illustrates that when there are no random obstacles in the local diagram,
the enhanced A* algorithm fusion dynamic window method plans the path from the
starting point to the destination. After introducing a random obstacle, the improved A*
algorithm fusion dynamic window method is able to achieve random obstacle avoidance
while completing the overall path planning, and the path is smooth, preserving the globally
optimal path. As can be seen in Figure 4c,d, the number of random obstacles is escalating.
The path should become longer as the number of random obstacles increases, but the path
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between these two random obstacles is shorter than that of a random obstacle because the
path planned by the dynamic window method maintains a distance from the obstacles
when there is no obstacle present. Therefore, the locations of random obstacles will be
added to Figure 4c so that the robot can only plan its path in close proximity to them.
In conclusion, the hybrid algorithm is capable of random obstacle avoidance, and its
smooth path is consistent with the globally optimal path. In contrast, the robot dynamics
control requires the robot to have information regarding the continuous change in the
path curvature. From Figures 5–7 of the simulation results of the robot control parameters
fed back by the fusion algorithm, it can be seen that the path drawn out by this fusion
algorithm fully meets the requirements of the robot dynamics control.

5. Conclusions

Navigation planning a navigation path is the foundation for realizing robot naviga-
tion tracking control. Considering the robotic environment's complexity, domestic and
international scholars have conducted extensive research on navigation path planning
to reduce operational costs and design a better barrier-free operation path for automatic
navigation in the pre-operation area. Global path planning is a mature technology widely
implemented in precision operations, agricultural transportation, and machine farming
across a plot schedule. Due to the complexity and spatial and temporal variability of the
robotic operating environment, real-time algorithmic efficiency, robustness, and security
are crucial for local path planning.

In this paper, a robot stochastic barrier avoidance method is presented that combines
the improved A* algorithm and the dynamic window method. This method effectively
solves the problem that the traditional A* algorithm is inefficient, has redundant nodes,
and cannot randomly avoid obstacles in a complex environment. This algorithm increases
the search efficiency of the A* algorithm by optimizing the A* algorithm's search point
selection strategy and evaluation function. The proposed redundant node deletion strategy
reduces the path length. Utilizing the dynamic window method for local planning between
neighboring nodes enables the robot to avoid obstacles randomly. The following are the
experimental outcomes:

First, in this paper, the path length and computation time are decreased in compar-
ison to the traditional A* algorithm, which increases the A* algorithm's programming
efficiency. There are fewer turning points and a shorter planning path in comparison to the
improved A* algorithm with a 5 × 5 neighborhood and the improved A* algorithm based
on hop-point search.

Second, the enhanced A* algorithm fused dynamic window method can circumvent
random obstructions to reach the target point without difficulty. Based on the global path,
it can correct the local path.

This research can be applied to the path planning of mobile robots in complex envi-
ronments, which has some practical value. Future researchers can continue to optimize the
dynamic window method's weights to enhance its environmental adaptability.
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