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Abstract: In this paper, a machine learning-based approach for the automation of topology selection
of integrated analog amplifier circuits is presented. A dataset of 480,000 circuits for 30 different
amplifier topologies is generated for the prediction algorithm based on a precomputed lookup
tables (LUTs) approach. A first approach based on neural networks is presented where the required
specifications act as inputs to the networks, and the output of the network is the suitable topology for
such a set of specifications. A modified cascaded neural network approach is examined to reduce
the training time of the network while maintaining the prediction accuracy. Using the cascaded
neural network approach, the network is trained in only one minute on a standard computer, and a
90.8% prediction accuracy is achieved. This allows on-the-fly changes in the input specifications, and
consequently the neural network, to enable examining different design scenarios.

Keywords: analog design automation; single-stage amplifiers; two-stage amplifiers; Miller compensation;
Ahuja compensation

1. Introduction

The design process of most analog building blocks is a manual and time-consuming
process that requires a high level of expertise. In addition, the effort required for the design
process needs to be repeated every time the technology or the circuit specifications are
changed. On the other hand, digital circuit design is automated using industry-standard
tools that enable the designer to synthesize most of the digital building blocks in a fast and
efficient procedure. This disparity in design time and effort between the analog and digital
blocks has directed researchers toward trying to automate the analog design process [1,2].

The analog design process can be divided into a series of iterative steps that starts with
topology selection followed by transistor sizing, layout, verification, and finally, post-layout
verification. The task of topology selection usually depends on the designer’s experience
and intuition. The designer must decide which topology is most suitable to achieve the
required specifications [3]. The level of expertise required for correct topology selection
may not be available. In addition, with the increased number of topologies performing the
same functionality, it is becoming harder for the designer to solely rely on his experience
to choose the topology that will better achieve the required specifications. Moreover, the
decision may be sub-optimal, i.e., the chosen topology may achieve the specifications but
with extra power and area.

As a result, topology selection automation is proving to be an important task. One
strategy that has been investigated in automating the topology selection process is an
equation-based selection [4]. In this method, the design parameters are related to the
design specifications through a set of linearized relations. After that, the design parameters
are swept to cover the whole design space, and the range of achievable output specifica-
tions is determined. This method suffers greatly from inaccuracy due to the simplified
equations used.
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Another approach that has been investigated to automate the topology selection
process is the development of a choosing algorithm that depends on a set of rules to choose
the suitable topology for the required specifications [5]. This set of rules is determined by
an expert designer. The drawback of such a method is that it is not an accurate method,
as it relies on a designer’s experience. Another drawback is that it does not produce an
optimal selection for the topology. Moreover, the rules may fail when the technology or the
device type change.

With recent advancements in computer processing capabilities, machine learning and
neural networks have emerged as exciting candidates for the automation of analog design
and have been used in the automation of the synthesis and design of analog circuits with
fixed topologies to achieve a set of specifications [1,6].

In this paper, we present an approach for the usage of neural networks for the selection
of a suitable analog amplifier topology for a set of specifications. The required specifications
serve as input parameters for the network while the circuit topology is the output of the
classification problem. The network is trained on the fly to allow changing the set of
specifications used for topology selection. A modified cascaded neural network that
involves performing the prediction on two stages is then presented. The performance of the
two approaches is compared showing that the cascaded network has better performance
and gives the designer an agile approach for topology selection.

2. Data Generation

The topologies chosen for the neural network training are all topologies that perform
the same functionality, namely, CMOS integrated analog amplifier topologies with a differ-
ential input and a single-ended output. In our study, 30 different topologies are chosen.
The topologies chosen included many varieties that are demonstrated in Table 1. A supply
voltage of 1.8 V and a 180 nm CMOS technology was used for all topologies.

Table 1. The varieties in the circuit topologies forming the dataset for the training of the neural
networks.

Topology Property Varieties Used in the Dataset

Number of Stages Single-stage or two-stage
Stage Type Simple common source, folded cascode, or telescopic cascode

Frequency Compensation Miller, Ahuja, or Ribner
Input Pair NMOS or PMOS

Load Simple mirror or wide-swing mirror

The dataset was generated using the Analog designer’s toolbox (ADT) [7], which is an
analog design automation tool that uses lookup tables (LUTs) extracted from the simulator
to predict the behavior of a circuit in a fast and efficient way [8]. For each topology,
the design parameters were swept in the entire design space, and the corresponding
specifications were obtained. The bias point of every device was swept in the gm/ID space
to ensure that the generated circuits are correct-by-construction, i.e., all the transistors
are properly biased in saturation [9]. Any circuit that has invalid biasing conditions is
automatically discarded from the dataset. The total number of dataset training points
obtained for all circuits was ≈480,000 circuits. The time taken to generate those training
examples was 1.2 min. In addition to being generated in a very short time, this is a one-time
effort that needs to be done only once.

The specifications measured in the dataset generation are presented in Table 2 along
with the minimum and maximum obtained values for each specification. Since the degrees
of freedom of the devices in every design were extensively searched in the generation
process, each specification has a very wide range of values, e.g., Open-loop DC Voltage
Gain from 13 to 1.9 M. Since the amplifier circuits included in the study may have several
poles, a significant phase shift may be introduced, leading to a negative phase margin
(PM). On the other hand, the amplifier may have a single pole that is not far away from
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the unity-gain frequency; thus, the phase shift is small, leading to a quite large PM. Some
of the generated designs may have outlier specifications with low practical value; e.g., a
negative or low PM will make the circuit unstable if the loop is closed. However, there
is no prior assumptions about how the amplifier circuit is going to be used, e.g., open
loop or closed loop, type of feedback network, etc. Since the PM is calculated assuming
a unity-feedback factor, the actual PM may be acceptable depending on the feedback
network used by the designer. Moreover, this will not affect the topology selection process
because the specifications entered by the designer will target circuits of practical value. If a
specific range of specs is required for the given design problem, e.g., PM is required to be
between 30◦ and 90◦, the invalid design points can be removed from the dataset before the
training process.

Table 2. Specifications used to predict the circuit topology alongside their ranges in the obtained
dataset.

Specification Minimum Maximum

Open-Loop DC Voltage Gain 13 1.9 M
DC Power Supply Rejection (dB) −184 30.8

DC Common Mode Rejection (dB) −134 17.3
Input Referred Total Integrated Noise (Vrms) 1 µ 563 µ

Input Referred Thermal Noise Density (V2/Hz) 0.028 f 171 f
Bandwidth (Hz) 2.03 6.95 M

Unity Gain Frequency (Hz) 1 M 438 M
Phase Margin (degree) −97 140

Maximum Output Voltage (V) 0.7 1.71
Minimum Output Voltage (V) 0.08 1.06

Peak-to-peak Output Voltage Swing (V) 0.13 1.61
Minimum Common Mode Input Voltage (V) −0.31 1.19
Maximum Common Mode Input Voltage (V) 0.85 2.16

Bias Current (A) 10 µ 100 µ

Total Gate Area (m2) 2.2 p 14.3 n

To be able to test the neural network’s algorithms constructed in this paper, a subset
of the generated dataset is separated for testing. This subset consists of 1200 design points
selected by randomly choosing 40 examples from each topology. The testing examples are
removed from the pool of the available circuits for training.

3. The First Approach

In the first approach, a single neural network is constructed and trained with the
training examples such that the input to the network is the required specifications and
the output is the suitable topology to achieve those specifications as depicted in Figure 1a.
The neural network was constructed using TensorFlow [10] and Python. It is formed of
two hidden layers each of which consists of 200 nodes with the activations function of
ReLU. The output activation function is the sigmoid function. The learning rate was fixed
at 1 × 10−5, and Adam optimizer was used with a loss function of mean square error. The
number of epochs was fixed to 200 epochs. The network was trained using 480,000 training
examples. It was then tested using the testing set that consists of 1200 examples. The
network succeeded in predicting the correct topology in 1145 examples of the 1200 testing
examples. The achieved R2 score is 0.9.

The training time of this network is two hours. This training time can be tolerated if
this training is a one-time effort completed at the beginning. However, this puts a restriction
on the specifications used in prediction because the whole set of specifications needs to be
determined to obtain an accurate prediction. Most of the time, the designer wants to decide
on a topology to achieve only a subset of the mentioned specifications in Table 2. To solve
this problem, the training needs to be completed on the fly before every prediction. This
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puts a tight requirement on the training time. In order to reduce training time, the training
dataset size can be reduced. However, this will be at the expense of the accuracy.
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4. The Second Approach

To reduce the training time and maintain a good prediction accuracy, another approach
is proposed. The prediction is performed on two stages (coarse and fine). In the first stage
(the coarse stage), a neural network is trained to predict the suitable topology based on a
smaller amount of training examples. The results of this prediction step are not as good
as the results obtained when a huge number of training examples is used as in the first
approach. To improve this coarse prediction, the classes with the highest probability of
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matching the required specifications based on this network are used as an input for a
second stage that is used to improve the prediction (the fine stage).

In the second stage (the fine network), the second neural network is trained using only
data examples from topologies that produced a high probability of achieving the required
specifications as predicted by the first network. Only circuit topologies that achieved a
probability of more than 10% for achieving the required specifications in the first network
were used as possible contenders in the second network. This means that a smaller number
of topologies is used in the dataset of the second network. This allows for more training
examples for each topology while maintaining the total number of examples below a certain
limit to keep the training time of the second network also small. The methodology used in
this second approach is summarized in Figure 1b.

To implement this approach, the first step was to determine the size of the training set
of the first network to have a good accuracy such that correct topologies would be selected
as contenders to choose from for the second network. The size of the training set was
reduced multiple times, and the accuracy of the test set was compared to the accuracy of
the first approach. The number of testing examples that had the correct topology included
in the list of contenders for the second network was also compared (inclusion in the top
contenders). If the correct topology is included as a contender for the second network,
there is a chance the second network can choose it as the correct topology to achieve the
specifications after fine training. The training time was also recorded. The results of such a
comparison are shown in Table 3. It is clear from Table 3 that the training time decreases
exponentially as the training set size is decreased.

Table 3. Comparison between the networks using different dataset sizes.

Training Dataset Size R2 Accuracy Inclusion in the Top Contenders Training Time

480,000
(First approach) 0.9 1145/1200

(95.4%) - 2 h

48,000 0.8 1088/1200
(90.6%)

1186/1200
(98.8%) 3.6 min

16,000 0.7 1041/1200
(86.75%)

1174/1200
(97.8%) 1.1 min

4800 0.481 892/1200
(74.3%)

1127/1200
(93.9%) 0.22 min

For the second stage (the fine network), a dataset consisting of topologies that scored a
probability of higher than 10% in the first network is used. For each topology, the number
of training examples used is increased by a factor of 33× compared to the first network
to improve the prediction. The fine network consists of two hidden layers, each of which
consists of 200 neurons with the activation function ReLU. The output layer was also using
a sigmoid activation function. The learning rate was fixed at 1× 10−5, and Adam optimizer
was used with a loss function of mean square error. Only 100 epochs were used in this
network, unlike 200 in the first network, to reduce the training time. This network is trained
for each input separately based on the results of the previous network. The network was
tested for each of the 1200 examples of the testing set. If the list of possible contender
topologies resulting from the first network for a certain set of specifications includes only
one topology, this topology is taken as the final prediction without the need for the second
stage of training.

5. Results

The results of the single neural network using two sizes of datasets are compared
to the results of the second approach (the two-stage approach) in terms of accuracy and
training time in Table 4. A standard Core i7 9th generation 2.6 GHz processor was used
in all the experiments. The single network achieves 95.4% accuracy in two hours using
480,000 training examples and 90.6% accuracy in 3.6 min using 48,000 examples. The second
approach achieves almost the same accuracy but with 72% time saving (90.8% accuracy in



Electronics 2022, 11, 2654 6 of 9

one minute). The second approach here uses a first-stage network of 4,800 examples and a
second stage with training examples of 33× for each of the top contender topologies only.
This short training time enables very fast on-spot topology prediction where the designer
can dynamically add, remove, or change the specifications to retrain the neural network
and explore different “what-if” scenarios. We have experimented using other machine
learning approaches such as support vector machine, linear perceptron, and decision tree.
Our experiments showed that the proposed approach using neural networks provided the
best combination of reasonable training time and good accuracy. Other machine learning
techniques may be also explored and compared to the neural network approach.

Table 4. Comparison between the results of the first and the second approach.

Number of Networks Used Accuracy Total Training Time

First approach (480,000
training examples)

1145/1200
(95.4%) 2 h

First approach (48,000
training examples)

1088/1200
(90.6%) 3.6 min

Second approach 1089/1200
(90.8%) 1 min

In order to visualize the topology prediction produced by the neural network, we used
a test case that considers three important specifications: the DC gain, the phase margin
(PM), and the unity-gain frequency (UGF). The predictions of four topologies of circuits
are visualized in Figure 2. These four topologies are common source amplifier, folded
cascode amplifier, telescopic cascode amplifier with wide-swing mirror load, and telescopic
cascode amplifier with cascode current mirror load, respectively. For each point in the 3D
space (i.e., each set of specifications), the neural network predicts the best topology to be
used. Additional types of visualizations can be created to help the designer understand
the decisions of the prediction network. In addition, the visualizations can be used as a
learning tool for students and novice designers.
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In order to further illustrate that the topology prediction provided by the network is
feasible and can meet all the design specifications, a design point is selected from Figure 2
as an example (DC Gain = 67.2 dB, UGF = 31.6 MHz, PM = 71◦). The prediction of the
network for this design point is topology 4 is shown in Figure 2. Topology 4 is a telescopic
cascode amplifier with telescopic load. The schematic of the predicted topology is shown
in Figure 3.
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We generated a dataset for the selected topology and visualized it as shown in Figure 4.
The generated dataset indicates that the required design point is indeed feasible using
the predicted topology. We used the gm/ID design methodology to size the transistors
of the selected topology. The sizing results are shown in Table 5. The sized circuit was
simulated using Cadence specter to verify the circuit specifications. The simulated results
are reported in Table 6 and compared against the input that was provided to the neural
network. The comparison reveals that all the required circuit specifications are satisfied,
which illustrates that the topology prediction provided by the neural network is appropriate.
It should be noted that the effect of process, voltage, and temperature (PVT) variations can
be included in the topology selection procedure by using additional datasets generated at
PVT corners [9].
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Table 5. Sizing parameters of the example design point.

Device L (µm) W (µm) gm/ID (S/A)

M1a, b 0.6 8.1 17.8
M2a, b 0.6 11.4 19.6
M3a, b 0.44 11 14.4
M4a, b 0.72 56 18.9

M5 1.8 32 15.4

Table 6. Simulated results of the designed circuit compared to the required specifications.

Spec Neural Network Input Simulated Results

DC Gain 67.2 dB 69.5 dB
Unity Gain Frequency 31.6 MHz 33.8 MHz

Phase Margin 71◦ 73.7◦

6. Conclusions

This work proposed the automation of analog circuit topology selection using machine
learning. A large dataset for 30 different topologies was generated using precomputed
lookup tables. The dataset was used to train a neural network, and the network was tested
on the testing set. The network achieved an accuracy of 95.4%, and the training time was 2
h. A second approach that was focused on minimizing the total training time was examined.
A two-stage prediction process was implemented and achieved an accuracy of 90.8% in one
minute of training. The second approach provides a fast and agile solution for topology
selection as it gives the designer the flexibility in setting the required specifications with
reasonable accuracy while training the network on the fly.
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