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Abstract: A drift-driving maneuver is a control technique used by an expert driver to control a vehicle
along a sharply curved path or slippery road. This study develops a nonlinear model predictive
control (NMPC) method for the autonomous vehicle to perform a drift maneuver and generate the
datasets necessary for training the deep neural network(DNN)-based drift controller. In general, the
NMPC method is based on numerical optimization which is difficult to run in real-time. By replacing
the previously designed NMPC method with the proposed DNN-based controller, we avoid the need
for complex numerical optimization of the vehicle control, thereby reducing the computational load.
The performance of the developed data-driven drift controller is verified through realistic simulations
that included drift scenarios. Based on the results of the simulations, the DNN-based controller
showed similar tracking performance to the original nonlinear model predictive controller; moreover,
the DNN-based controller can demonstrate stable computation time, which is very important for the
safety critical control objective such as drift maneuver.

Keywords: data-driven control; time delay neural network; drift control; autonomous driving;
nonlinear model predictive control

1. Introduction

To maximize passenger safety, future autonomous vehicles will be required to operate
in various road environments and cope with various emergencies. A common emergency
situation is high lateral slippage of the rear wheels on a sharply curved path or an ice-
covered road, which leads to oversteering (see Figure 1). In such a situation, an autonomous
vehicle should be capable of guaranteeing safety.
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1. Introduction 
To maximize passenger safety, future autonomous vehicles will be required to oper-

ate in various road environments and cope with various emergencies. A common emer-
gency situation is high lateral slippage of the rear wheels on a sharply curved path or an 
ice-covered road, which leads to oversteering (see Figure 1). In such a situation, an auton-
omous vehicle should be capable of guaranteeing safety. 
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Drift technology (Figure 2) is a vehicle control strategy developed for use in motor-
sports. This technology enables professional racecar drivers to quickly generate high yaw
rates that cannot be achieved with normal steering maneuvers. Such a driving technique
requires expert driving skills to handle the vehicle’s behavior at its dynamic limit. Addi-
tionally, it is also used as a method for maintaining vehicle stability when an unintentional
oversteering phenomenon occurs while driving.
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ware. AI is also expected to serve as a solution for critical safety scenarios that are difficult 
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abling shared control between a driver and an autonomous driving system [11]. 
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MPC can be significantly improved by learning from real-time data, which provide 
knowledge of the target model [16–27]. 
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Drift control methods for autonomous vehicles have been extensively studied. For
example, the University of California, Berkeley [1] and Stanford University [2,3] have
been developing drift control methods for several years. However, most existing control
methods are based on the drift equilibrium state derived from vehicle dynamics. In
particular, methods have been proposed to control a vehicle using a counter-steering
maneuver that turns the steering wheel opposite to the turning direction [4,5]. Recent
studies have introduced reinforcement learning techniques for developing drift control
algorithms [6].

A drift control algorithm based on a nonlinear model predictive control (NMPC)
method was also developed, which is a method using real-time numerical optimization to
compute the control inputs minimizing the cost function [7,8].

In general, NMPC is based on real-time optimization techniques over a finite future
horizon. The NMPC approach has many advantages; for instance, it considers the input and
state constraints along with the dynamics during numerical optimization. However, the
unpredictable computational time of most numerical optimization algorithms has limited
the performance of NMPC in real-time control applications. To overcome this limitation,
this study proposes a drift controller based on a deep neural network (DNN) algorithm.
The proposed controller learns from data generated using the model predictive control
(MPC) technique and demonstrates similar control performance as NMPC while delivering
better real-time performance.

With the continued development of algorithms and computing devices, artificial intel-
ligence (AI) is now being applied to various industrial applications. In automated vehicle
research, AI advances enhance the integrity and safety of automated vehicle software. AI is
also expected to serve as a solution for critical safety scenarios that are difficult to manage
with conventional approaches [9,10].

The development of AI techniques that could improve the existing control systems
has been addressed in several studies in various contexts. In particular, the performance of
existing control systems has been improved by learning the driving from the data, enabling
shared control between a driver and an autonomous driving system [11].

Other studies have attempted to increase the online performance of proportional
integral derivative controllers by learning through an artificial neural network
(ANN) [12–14]. Recently, primal-dual NNs have improved the real-time performance
and stability of MPC [15].

Several studies have been conducted to improve the performance of the controller
by reducing the uncertainty of the model using an ANN. In particular, the performance
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of MPC can be significantly improved by learning from real-time data, which provide
knowledge of the target model [16–27].

The present study develops an NMPC-based drift control method that accurately
tracks the predefined trajectories of an automated vehicle by using an established vehicle
model. The developed NMPC-based drift controller is then replaced by a DNN-based
controller pretrained on the data generated from the previously designed closed-loop
trajectories of the NMPC method.

By replacing the previously designed NMPC method with the proposed DNN-based
controller, we avoid the need for complex numerical optimization of the vehicle control,
thereby reducing the computational load. The computational time of the DNN-based
controller is very small and predictable in general, once the training process is complete.
However, the computational cost of the NMPC method is often high and very unpredictable
because its optimization problem includes many free variables that must be explored under
many constraints. By switching the iterative numerical optimization process with a fixed
number of NN computational processes, real-time implementation of the final control
algorithm on a cheaper controller platform can be achieved and the real-time performance
of the control method can be guaranteed. The new technique is especially advantageous in
safety-critical applications such as automated vehicle control [28–31].

The following sections describe the development process. Section 2 analyzes the
vehicle dynamics that were used for the NMPC’s design, and the simulation is introduced.
The vehicle model is based on a 1:10-scaled vehicle (the test platform for future research).
Section 3 presents the NMPC design process under which the automated vehicle performs
the drift maneuver while following the desired curved trajectories. Section 4 illustrates the
closed-loop simulation results of the designed NMPC, and Section 5 presents the design of
the DNN-based controller. The research conclusions are presented in Section 6.

2. Vehicle Dynamics Analysis
2.1. Three-Degrees-of-Freedom Bicycle Model

The horizontal motion of the vehicle was computed using the bicycle model shown in
Figure 3. Neglecting aerodynamic drag forces, the bicycle model is defined as follows:

.
β =

Fy f cos(δ)+Fyr
m − r,

.
r =

Fy f cos(δ)−lr Fyr
Izz

,

.
vx =

Fxr−Fy f sin(δ)
m + rvxβ.

(1)
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Table 1 defines the notations used in this study. The state variables of the vehicle
model in Equation (1) are the sideslip angle (β), yaw rate (r), and forward velocity (vx). The
control inputs are the rear tire force (Fxr) and the steering angle (δ).

Table 1. Nomenclature of the present study.

Symbol Meaning Unit

Fy f Front tire lateral force N
Fyr Rear tire lateral force N
v Vehicle velocity m/s

vw Rear-wheel velocity m/s
vx Longitudinal velocity m/s
α Tire slip angle rad
α f Front tire slip angle rad
αr Rear tire slip angle rad
µ Friction coefficient -
µs Friction coefficient of tire skids -
r Yaw rate rad/s
δ Steering angle rad
β Sideslip angle rad
m Vehicle mass kg
l f Distance from the center of gravity (CG) to the front axle M
lr Distance from CG to the rear axle M
Izz Yaw moment of inertia N·m/rad2

Cxr Rear tire longitudinal slip angle -
κ Tire slip ratio -

2.2. Brush Tire Model

The longitudinal and lateral tire forces in the bicycle model are computed using
a brush tire model, which constrains the maximum amount of tire force (the combined
longitudinal and lateral forces) within the elliptical circle in Figure 4. A tire force curve
versus the tire slip angle is illustrated in Figure 4, where the red area indicates the saturated
area and the blue area denotes the unsaturated area. The brush tire model was employed
using Equation (2).

Under normal driving conditions, the combined force acting on a tire remains within
the elliptic region and the tire model remains in the unsaturated state. Conversely, when
the magnitude of the combined force acting on the tire reaches the elliptic circle, the tire
model moves to the saturated state and a large amount of slip occurs. This situation is
dangerous because the vehicle can lock its wheels or skid, which increases the difficulty of
controlling the vehicle.

F =

{
γ− 1

3µFz
γ2 + 1

27µ2F2
z

γ3, γ ≤ 3µFz

µsFz, γ > 3µFz
,

Fx = Cx
γ

(
κ

1+κ

)
F,

Fy = Cα
γ

( tanα
1+κ

)
F,

γ =
√

C2
x
(

κ
1+κ

)2 − C2
α

( tanα
1+κ

)2,

α =

α f = atan
( vy+l f ∗r

vx

)
− δ ≈ atan

(
β +

l f
vx
∗ r
)
− δ

αr = atan
(

vy−lr∗r
vx

)
≈ atan

(
β− lr

vx
∗ r
) ,

κ =
vw−vy

vx
.

(2)
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2.3. Drift Equilibrium State Analysis

The vehicle’s trajectory was predicted using the bicycle model defined in Equation (1)
with speed and steering angle as the control inputs. To analyze the motion and stability
of the vehicle, the bicycle model was combined with the brush tire model under specific
conditions (Equation (2)). When the tire slip angle remains within a specific range and the
tire force is unsaturated, the vehicle’s motion will remain stable. However, when the tire
slip angle increases and the resulting tire force becomes saturated, the vehicle’s motion will
destabilize and even a slight disturbance will divert its states from equilibrium.

To maintain the drift maneuver, the vehicle must be controlled in an unstable equilib-
rium state. Especially on a slippery road, maintaining a drift maneuver requires a precise
and agile controller.

In this study, the equilibrium states were established using Equations (1) and (2) when
the time derivatives of the vehicle’s states were all zero.

Figure 5 plots the β, r, and vx equilibrium points according to the steering angle
at a longitudinal speed of 1.7 m/s. Plotted are the equilibrium states during a normal
driving maneuver (*) and during a drift maneuver (o, ∆) in the clockwise and
counterclockwise directions.
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3. Design of the Nonlinear Model Predictive Controller
3.1. Vehicle State Prediction Model

Based on the dynamics of the controlled system, the NMPC method predicts the future
motions of a vehicle over a fixed time horizon. In this study, the future trajectory was
predicted by discretizing the model of the vehicle’s dynamics (Equation (1) in Section 2).
The vehicle states (X) comprise the sideslip angle (β), yaw rate (r), and speed (vx) of the
vehicle as follows:

X = [β, r, vx]. (3)

The control input vector (u) comprises the rear-wheel speed (vw) and the steering
angle (δ) of the vehicle.

u = [vw, δ]. (4)

In terms of the rear-wheel speed (vw), the rear-wheel tire force in Equation (1) is given
by the following simplified tire force relation:

Fxr =
Cxr(vw − vx)

vx
. (5)

3.2. Nonlinear Model Predictive Controller Cost Function

The cost function for the optimization process of the NMPC method is the error vector
(Xe

k) between the current vehicle state vector (Xk) and the target state vector (Xre f
k ).

Xe
k = Xre f

k − Xk

=
[

β
re f
k − βk, rre f

k − rk, vre f
xk − vxk

]
.

(6)

The cost function (J) is defined in terms of the state error vectors and the control inputs.

J =
1
2
(
Xe

k+N
)T ∗ P ∗ Xe

k+N +
1
2 ∑k+N−1

j=k

(
Xe

j

)T
∗Q ∗ Xe

j + uT
j Ruj. (7)

Note that the cost function comprises a quadratic term of the final Nth step error (Xe
N),

the sum of the quadratic terms of errors (Xe
k), and the quadratic terms of the control input

(uk) in future steps from k to k + N – 1, with weight matrices of P, Q, and R, respectively. The
inputs that minimize the cost function given by Equation (7) are determined by numerical
optimization based on a conjugate gradient method.

3.3. Nonlinear Model Predictive Controller System for Drift Driving

Figure 6 shows the control system of the developed NMPC-based drift control method.
First, the curvature (ρr) and reference speed (vr) of the driving trajectory are provided
by a path-generation algorithm. The drift equilibrium state is then obtained from the
three-dimensional (3D) maps shown in Figure 7. Given the vehicle speed and steering
angle at each time step, the 3D maps are configured to output the equilibrium states, i.e.,
βeq, req, and Fxreq , based on the equilibrium analysis presented in Section 2.

The drift equilibrium points obtained from the 3D maps were assembled into the target
state vector of the NMPC. The rear-wheel speed, vw, that allows the vehicle to maintain the
drift maneuver was calculated with the developed NMPC algorithm.

While maintaining the drift condition through rear-wheel control using the NMPC,
an additional pure pursuit algorithm was used as the steering-angle controller to follow
the desired trajectory. Similar to the NMPC, the pure pursuit algorithm inputs the current
vehicle position and the target trajectory and computes the steering angle (δ) from future
time steps k to k + N. Figure 8 illustrates the path-following implementation of the pure
pursuit control algorithm.
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In the pure pursuit control algorithm, the waypoints are determined from the center
point of the rear-wheel axis, which is switched to the center point of the vehicle to simplify
the control law. Each waypoint is located at distance l′d along the straight line in the
direction of the target body’s sideslip angle. The vehicle’s trajectory over N future steps
was computed using Equation (1), and the front-wheel steering angles up to N future steps
were calculated as

δk = atan 2Lsinβ
eq
k

l′d
+ kβeβk

= atan
(

2Lsinθk
l′d

)
+ kβ

(
β

eq
k − βk

)
.

(8)

The first term in Equation (8) represents the control input that allows the vehicle to
head toward the waypoints, and the second term represents the control input for creating
the vehicle’s track, i.e., βeq. To obtain the future equilibrium states followed by the NMPC,
the steering-angle inputs from the pure pursuit control algorithm are applied to the 3D
drift equilibrium maps.

4. Drift-Driving Test of the Nonlinear Model Predictive Controller
4.1. Test Scenario

The performance of the NMPC-based drift control method was evaluated through
numerical simulations. The controller was required to follow 8-shaped trajectories with
diameters of 2 m ( 1© and 2©) and 2.5 m ( 3© and 4©), as shown in Figure 9.
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The control period and NMPC prediction period were set to 50 Hz (0.02 s) and
20 steps, respectively. Under these settings, the NMPC system can predict the maneuver
for 0.4 s.

4.2. Drift Test Results

In the test scenario, the test vehicle was controlled to drive on routes 1©– 4© repeatedly
using the drift maneuver. Figure 10 shows the sideslip angle and yaw rate (β and r,
respectively) of the vehicle during the simulation. In scenarios 1© and 3©, the vehicle drove
in the counterclockwise direction; hence, its body sideslip angle was negative and its yaw
rate was positive. Conversely, in scenarios 2© and 4©, the vehicle drove in the clockwise
direction with a positive body sideslip angle and a negative yaw rate. The designed NMPC
method accurately followed the desired sideslip angle and yaw rate provided by the
3D map.
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As shown in Figure 11, the front tire slip never exceeded the limit but the rear tire
slip did. Therefore, the front-wheel steering controller required a control-force margin to
maintain the desired trajectory, whereas the rear-wheel controller successfully maintained
the drift condition by following the desired angle and yaw rate.
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Figure 11. Front and rear tire slip angles of the vehicle during the drift maneuver. The solid blue
curves in the upper and lower panels represent the front and rear tire slip angles of the vehicle,
respectively, and the dotted red lines show the upper and lower saturation limits of the tires.
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Figure 12 shows the driving trajectory of the NMPC-based drift-driving control
method. The vehicle precisely followed the figure-eight-shaped target trajectory.
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5. Design of the Neural Network Drift Controller

The NMPC method predicts a vehicle’s behavior up to a predetermined future time
and derives the optimal control inputs through numerical optimization with a predesigned
cost function. A notable advantage of this method is consideration of the characteristics
(dynamics and constraints) during the system optimization. On the downside, accounting
for these constraints significantly increases the computational time of the optimization,
which is undesirable in fast real-time control applications.

To overcome these limitations while exploiting the advantages of the developed NMPC
method, this study employed a DNN-based control method that uses the driving data
generated by the NMPC method during drift behavior.

5.1. Training Data Preprocess

The DNN was trained on approximately 50,000 sets of simulated trajectory-driving
data, collected along the 2-m-diameter path in Figure 10 (counterclockwise driving along
Path 1©).

Because the vehicle states, such as vehicle velocity and sideslip angle, have different
units and magnitudes, the data were preprocessed by normalizing as follows:

xnorm =
x− xmin

xmax − xmin
, (9)

where x represents the variable to be normalized and xmin and xmax represent the minimum
and maximum values, respectively, among the sets of variables x. To increase the efficiency
of the learning process, only data within the normal range were selected. The standard
score z was thus defined as follows:

z =
x− µ

σ
, (10)



Electronics 2022, 11, 2651 11 of 17

where µ and σ signify the mean and standard deviation of the data, respectively.
If the absolute value of the Z score exceeded 2, the datum was excluded from the

training data because it was outside the normal range of 95% probability. In this process,
the data were assumed to follow a Gaussian distribution. The data normalization results
are shown in Tables 2 and 3.

Table 2. Training data for steering (lateral) control.

Mean and Standard Deviation Normalization Variables

µ σ Min Max

Input Data

xe * −0.0307 0.1819 −0.2697 0.2674
y † 0.0080 0.2070 −0.2688 0.2695
β −0.4278 0.1314 −0.5625 −0.3534

βeq
o −0.4969 0.1213 −0.6379 −0.2630

Output Data δ −0.1742 0.1216 −0.3876 0.0651

* Longitudinal position error with respect to the reference point; † Lateral position error with respect to the
reference point; o Sideslip angle equilibrium point.

Table 3. Training data for steering (longitudinal) control.

Mean and Standard Deviation Normalization Variables

µ σ Min Max

Input Data

vx −0.0307 0.1819 −0.2697 0.2674
vy 0.0080 0.2070 −0.2688 0.2695
β −0.4278 0.1314 −0.5625 −0.3534
r −0.4969 0.1213 0.6379 0.2630

Output Data vw * −0.1742 0.1216 −0.3876 0.0651
* Vehicle’s rear-wheel speed.

As an example, Figure 13 presents the data before and after normalizing the sideslip
angle. The data were distributed in the range of −0.48–0.43 before normalization (left
panel) and the range 0 to 1 after normalization (right panel).
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The control system architecture includes two NN controllers (Figure 14). The first
NN controller, based on a DNN, controls the steering wheel to drive the vehicle along the
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desired trajectory during a drift maneuver. The second NN controller, based on a time
delay NN (TDNN), maintains the drift state of the vehicle.
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5.2.1. Deep Neural-Network-Based Controller for Steering Control

A typical NN comprises an input layer, one or more hidden layers, and an output
layer. To include the characteristics of the system and prevent unstable behavior due to
external disturbances [26,27], the present study employed a DNN with six hidden layers.
Each of the six hidden layers was configured with 20 artificial neural nodes as shown in
Figure 15. The input data of the network (Table 2) include the position error (xe, ye) between
the path point and the vehicle, the body slip angle (β), and the body slip-angle equilibrium
point (βeq) generated from the 3D map. The network outputs the vehicle steering angle (δ)
for lateral position control.
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5.2.2. Time Delay Neural-Network-Based Controller for Drift State Control

The designed NMPC method for maintaining the drift equilibrium states was replaced
with a TDNN-based controller. To include the dynamic characteristics of the vehicle during
the drift maneuver, the network structure must reflect the near-past vehicle states. The
TDNN structure inputs the current data and the data of the past four steps (t, t−1, t−2,
t−3, and t−4) as follows:

Current States : Xt =
[
vt

x, vt
y, βt, rt

]
,

Previous States : Xt−1 =
[
vt−1

x , vt−1
y , βt−1, rt−1

]
,

...

Xt−4 =
[
vt−4

x , vt−4
y , βt−4, rt−4

]
,

(11)

Input Data : I =
[

Xt, Xt−1, Xt−2, Xt−3, Xt−4
]
, (12)

where the number of time delay steps was set to 4. The TDNN-based drift controller
(Figure 16) contains six hidden layers, each holding 20 artificial neural nodes.

Electronics 2022, 11, 2651 13 of 18 
 

 

Figure 15. The input data of the network (Table 2) include the position error (𝑥 , 𝑦 ) be-
tween the path point and the vehicle, the body slip angle (𝛽), and the body slip-angle 
equilibrium point (𝛽 ) generated from the 3D map. The network outputs the vehicle 
steering angle (δ) for lateral position control. 

 
Figure 15. Deep neural network architecture for lateral positioning control. 

5.2.2. Time Delay Neural-Network-Based Controller for Drift State Control 
The designed NMPC method for maintaining the drift equilibrium states was re-

placed with a TDNN-based controller. To include the dynamic characteristics of the vehi-
cle during the drift maneuver, the network structure must reflect the near-past vehicle 
states. The TDNN structure inputs the current data and the data of the past four steps (t, 
t–1, t–2, t–3, and t–4) as follows: 

Current States: 𝑋 = 𝑣 , 𝑣 , 𝛽 , 𝑟 , 

Previous States: 𝑋 = 𝑣 , 𝑣 , 𝛽 , 𝑟 , 

⋮ 

𝑋 = 𝑣 , 𝑣 , 𝛽 , 𝑟 , 

(11)

Input Data: I = [𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 ], (12)

where the number of time delay steps was set to 4. The TDNN-based drift controller (Fig-
ure 16) contains six hidden layers, each holding 20 artificial neural nodes. 

 
Figure 16. Time delay neural network architecture for drift state control. 

The TDNN inputs were the longitudinal and lateral speeds (𝑣 , 𝑣 ), body slip angle 
(𝛽), and rotation angular speed (𝑟) in Table 3 and the output was the rear-wheel speed 
(𝑣 ). The DNN was trained on ~50,000 sets of simulation data obtained from the trajectory-
driving data (counterclockwise driving around the 2-m-diameter path; see ① in Figure 
10). 

  

Figure 16. Time delay neural network architecture for drift state control.

The TDNN inputs were the longitudinal and lateral speeds (vx, vy), body slip angle (β),
and rotation angular speed (r) in Table 3 and the output was the rear-wheel speed (vw). The
DNN was trained on ~50,000 sets of simulation data obtained from the trajectory-driving
data (counterclockwise driving around the 2-m-diameter path; see 1© in Figure 10).

6. Simulation Results of the Neural Network Drift Controller

The performance of the DNN-based drift control method was evaluated through
numerical simulations of a 1:10-scale vehicle driving counterclockwise around a 1-m-radius
circle. In this scenario, the vehicle speed was set to 1.7 m/s.

Figure 17 shows the sideslip angles of the front and rear wheels during the drift
maneuver. The lateral slip of the front tire did not exceed the saturation limit, whereas
the lateral slip of the rear tire exceeded the saturation limit while maintaining the drift
condition, allowing the rapid increase of yaw rate that is necessary for following the
1-m-radius circular path. The same phenomenon was observed during the closed-loop
simulation using NMPC.

Figure 18 plots the vehicle states during the drift maneuver. Although the TDNN-
based rear-wheel controller did not explicitly use the 3D map information of the vehicle
equilibrium states, the desired equilibrium points are also plotted as a reference.
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Figure 18. Vehicle states during a drift maneuver (solid blue lines). The desired equilibrium points
(dotted red lines) are plotted for reference.
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The vehicle’s states accurately followed the desired equilibrium states of the body
sideslip angle, yaw rate, and longitudinal velocity, even though the TDNN-based controller
does not explicitly have information related to the 3D map. It was concluded that the
closed-loop trajectory data generated by the NMPC implicitly included information on the
drift equilibrium states, which was transferred to the TDNN-based controller during the
learning process.

Figures 19 and 20 display the closed-loop trajectory of the vehicle controlled by the
TDNN and the tracking errors, respectively. The mean lateral position error remained at
~0.06 m during the drift maneuver. The designed DNN-based steering controller accurately
followed the desired trajectory.
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Figure 19. Vehicle trajectory during the drift maneuver.
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7. Conclusions

In this study, a drift control method for autonomous vehicles was developed as
a strategy for managing a dangerous oversteer phenomenon that may occur during driv-
ing. First, a NMPC-based drift controller was designed by analyzing the tire model and
vehicle dynamics during the drift maneuver. The closed-loop performance of the devel-
oped NMPC method was evaluated through numerical simulations of figure-eight-shaped
vehicle trajectories with different radii.

Second, a data-driven NN-based control method was employed to overcome the
limitations of the real-time performance of the existing NMPC-based drift controller. The
DNN- and TDNN-based controllers incorporated the closed-loop performance of the
previously designed NMPC method by learning the trajectories and input data obtained
from the simulations. The performance of the developed data-driven controller was further
verified through realistic numerical simulations, which confirmed the accurate tracking
performance of the vehicle along a circular path.

Based on the study results, the proposed data-driven control method has the potential
to be used as a controller for autonomous vehicles. The method retains the advantages
of the sophisticated model-based NMPC approach for managing expert driving tech-
niques such as drift. In addition, it can learn expert driving skills from a broad range of
user data, potentially overcoming the limitations of the current rule-based autonomous
driving system.
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25. Mohamed, I.; Rovetta, S.; Do, T.; Dragicević, T.; Diab, A. A Neural Network Based Model Predictive Control of Three-Phase
Inverter with an Output LC Filter. IEEE Access 2019, 7, 124737–124749. [CrossRef]

26. Peng, H.; Song, N.; Li, F.; Tang, S. A Mechanistic-Based Data-Driven Approach for General Friction Modeling in Complex
Mechanical System. ASME J. Appl. Mech. 2022, 89, 071005. [CrossRef]

27. Peng, H.; Song, N.; Kan, Z. Data-Driven Model Order Reduction with Proper Symplectic Decomposition for Flexible Multibody
System. Nonlinear Dyn. 2022, 107, 173–203. [CrossRef]

28. Kang, B.; Lucia, S. Learning-based Approximation of Robust Nonlinear Predictive Control with State Estimation Applied to
a Towing Kite. In Proceedings of the 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 16–22.

29. Lee, T.; Kang, Y. Performance Analysis of Deep Neural Network Controller for Autonomous Driving Learning from a Nonlinear
Model Predictive Control Method. Electronics 2021, 10, 767. [CrossRef]

30. Winkler, D.A.; Le, T.C. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity
Cliffs, and QSAR. Mol. Inform. 2017, 36, 1–2.

31. Lucia, S.; Karg, B. A Deep Learning-based Approach to Robust Nonlinear Model Predictive Control. IFAC-PapersOnLine 2018,
51, 511–516. [CrossRef]

http://doi.org/10.1142/S0218126618500652
http://doi.org/10.1088/1742-6596/1359/1/012090
http://doi.org/10.1007/s12046-014-0275-0
http://doi.org/10.15837/ijccc.2012.3.1394
http://doi.org/10.3390/math7100890
http://doi.org/10.3390/math6110242
http://doi.org/10.1016/j.ifacol.2017.08.1050
http://doi.org/10.1016/j.enbuild.2017.02.012
http://doi.org/10.3390/s20133679
http://doi.org/10.1109/ACCESS.2019.2938220
http://doi.org/10.1115/1.4054484
http://doi.org/10.1007/s11071-021-06990-3
http://doi.org/10.3390/electronics10070767
http://doi.org/10.1016/j.ifacol.2018.11.038

	Introduction 
	Vehicle Dynamics Analysis 
	Three-Degrees-of-Freedom Bicycle Model 
	Brush Tire Model 
	Drift Equilibrium State Analysis 

	Design of the Nonlinear Model Predictive Controller 
	Vehicle State Prediction Model 
	Nonlinear Model Predictive Controller Cost Function 
	Nonlinear Model Predictive Controller System for Drift Driving 

	Drift-Driving Test of the Nonlinear Model Predictive Controller 
	Test Scenario 
	Drift Test Results 

	Design of the Neural Network Drift Controller 
	Training Data Preprocess 
	Neural-Network-Based Controller Architecture 
	Deep Neural-Network-Based Controller for Steering Control 
	Time Delay Neural-Network-Based Controller for Drift State Control 


	Simulation Results of the Neural Network Drift Controller 
	Conclusions 
	References

