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Abstract: Vision transformers (ViTs) demonstrate exceptional performance in numerous computer
vision tasks owing to their self-attention modules. Despite improved network performance, trans-
formers frequently require significant computational resources. The increasing need for data privacy
has encouraged the development of federated learning (FL). Traditional FL places a computing bur-
den on edge devices. However, ViTs cannot be directly applied through FL on resource-constrained
edge devices. To utilize the powerful ViT structure, we reformulated FL as a federated knowledge
distillation training algorithm called FedVKD. FedVKD uses an alternating minimization strategy to
train small convolutional neural networks on edge nodes and periodically transfers their knowledge
to a large server-side transformer encoder via knowledge distillation. FedVKD affords the benefits
of reduced edge-computing load and improved performance for vision tasks, while preserving
FedGKT-like asynchronous training. We used four datasets and their non-IID variations to test the
proposed FedVKD. When utilizing a larger dataset, FedVKD achieved higher accuracy than FedGKT
and FedAvg.

Keywords: federated learning; vision transformer; split learning; knowledge distillation

1. Introduction

Since the concept of a vision transformer (ViT) was proposed by Dosovitskiy et al. [1],
ViT has demonstrated impressive performance in numerous machine vision tasks. Self-
attention-based transformers are widely used in natural language processing (NLP) [2]. A
multi-head self-attention transformer structure is used in these models which can attend
flexibly to a sequence of visual patches to encode contextual information. Owing to the scal-
ability and computational efficiency of transformers, it has become possible to train models
of unprecedented size with over 100B parameters [1,3,4]. There is currently no indication of
a saturating level of performance as the models and datasets grow. Although transformers
have exerted significant influence in the computer vision (CV) and multi-model fields, they
still face high storage and processing resource demands when deployed on edge devices,
such as smartphones and AIoT devices. Moreover, an increasing number of people are
concerned to address issues of data privacy [5,6]. As seen by the recent spike in interest
in federated learning (FL) [7,8], the demand for edge-based training is growing. FL is a
distributed learning paradigm which allows several edge devices to work together to build
a global model without relying on a centralized dataset. When a single organization or user
lacks sufficient or relevant data because of privacy legislation, FL can help improve the
accuracy of a model. Many tech giants’ FL services have been deployed commercially (e.g.,
WeBank’s FATE and Google’s TensorFlow Federated, TFF). Google has used FL to increase
the accuracy of item rankings and language models on Android smartphones. When data
centralization is undesirable or impossible, FL offers a viable alternative as an edge training
framework. Traditional FL assumes that the client has sufficient computational power with
GPUs to train a computation-intensive AI model. However, this assumption can be difficult
to meet in practice.
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Many model training technologies have been developed to train computation-intensive
AI models in FL on large CNNs, such as split learning (SL) and knowledge distillation (KD).
Model-parallelism-based SL [9,10] attempts to overcome edge computational limitations.
SL partitions a large model and offloads a larger portion of the neural architecture to
the cloud while maintaining a smaller portion of the local neural architecture. However,
SL faces a complicated straggler problem because a single mini-batch iteration requires
multiple rounds of communication between the server and edge devices. FedGKT [11] uses
an alternating minimization strategy to train small CNNs on edge nodes and periodically
transfers their knowledge to a large server-side CNN via KD [12,13].

To train ViTs on resource-constrained edge devices, many new transformer archi-
tectures and transformer pruning technologies have been proposed; however, smaller
transformers often perform less well than larger ones. KD paves the way for improving
the performance of ViTs. DeiT [14] introduced hard-label distillation and used a CNN
network as the teacher. It utilized a distillation token to ensure that the student learned
from the teacher through attention to it. Sun et al. proposed patient-knowledge distillation
(Patient-KD) [15] for the BERT model. Patient-KD adopts a patient-learning mechanism: a
student network learns from multiple intermediate layers of the teacher to extract internal
knowledge. For multilayer KD, the patient learner has the benefit of distilling rich infor-
mation through the deep structure of the teacher network. However, these methods do
not consider the distributed characteristics of FL and can only transfer knowledge within
a single dataset. Moreover, some hybrid models that combine CNNs and transformers
aim to overcome the disadvantages of transformers that lack inductive biases. The authors
of [16] minimally altered the early visual processing of ViTs by replacing their patchify stem
with a standard convolutional stem consisting of approximately only five convolutions.
Their results showed that a slight modification in early visual processing was beneficial for
improving the accuracy of the final model.

On the one hand, traditional FL algorithms do not consider the features of transformers
and thus cannot be directly used for ViTs; on the other hand, the existing transformer-based
training technologies do not consider the distributed privacy of FL.Therefore, we propose a
federated KD training algorithm (FedVKD) to train ViTs in FL with limited edge device
resources. The contributions of this study can be summarized as follows.

(1) FedVKD places low-computing-demand convolutional networks at edge devices,
while keeping high-computing-demand ViT at the cloud, as in SL. Our new FL paradigm
transfers the computing pressure from edge devices to the cloud. In addition, our global
model is a hybrid model consisting of a convolutional stem and transformer blocks. There-
fore, our global model combines the local information perception ability of convolutional
networks and the long-distance information capture capability of transformers into a
single framework.

(2) FedVKD utilizes bidirectional KD to transfer knowledge between edge devices and
the cloud. Considering the features of transformers, we make targeted improvements to
bidirectional KD. We use a hard distillation strategy for transformer blocks on the server
side, while using traditional KD for the CNN network on the edge side. Owing to the
inherent inductive biases of CNNs (e.g., translation equivariance and locality), the CNN
model on edge devices generalizes well when trained on insufficient amounts of local
data. In the process of distilling knowledge from edge devices, the transformer learns from
multiple CNNs as a student. Therefore, our hybrid model can obtain competitive results
when trained on mid-sized datasets, such as ImageNet. Benefiting from bidirectional KD
and a strong server-side model, the performance of the edge-side model is also improved.

(3) We performed suitable experiments to verify the performance of the FedVKD
framework and demonstrated a new method for training ViTs in FL with limited edge-
device resources.

The rest of this paper is organized as follows: Essential concepts and background are
introduced in Section 2. The system architecture is presented in Section 3. The experiments
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performed are detailed in Section 4. Section 5 discusses and concludes the paper. Section 6
considers limitations of the study.

2. Preliminaries
2.1. Vision Transformer (ViT)

By providing scalable training, transformers have transformed NLP. Transformers use
multiheaded self-attention, which is more general than convolution, and perform global
information processing. The authors of [17] observed that single-head self-attention is
a type of non-local method. A transformer encoder was used in [1] to classify images
with minor vision-specific changes. First, the input images were separated into a series of
patches in a ViT; subsequently, the transformer network was used to extract image features
for visual recognition. By evenly splitting an input image, p patches can be obtained. If the
image resolution is 224× 224 and the patch size is set to 16× 16, the image is divided into
196 patches. A linear layer flattens and projects these patches onto patch embeddings. We
obtained n× p patch embeddings, X ∈ Rn×p×c, for a batch of n images, where c was the
embedding dimension. For relationship modeling and feature aggregation, these patch
embeddings were input into the transformer network. The structure of the ViT comprises
position encoding, a multi-head self-attention (MSA) block, and a multi-layer perceptron
(MLP) block. The information flow is expressed as follows.

X ← MSA(LN(X)) + X (1)

X ← MLP(LN(X)) + X (2)

The input is added with the position encoding before the first MSA, and LN is the
layer-normalization layer. The MSA mechanism can be formulated as follows.

MSA(X) = FCout
(
Attention

(
FCq(X), FCk(X), FCv(X)

)
(3)

Attention(Q, K, V) = Softmax
(

QKT
√

d

)
V (4)

When the hidden dimension of MLP is 4c by default, the floating-point operations per
second (FLOPs) of MSA and MLP are 4nc2 + 2n2c and 8nc2, respectively. The ViT with L
blocks has L(12nc2 + 2n2c) FLOPs.

The computational cost of ViTs is always high because of the large values of n and d
(typically in the several hundreds). To process a 224× 224 input image, the base version of
the ViT requires 17.6B FLOPs. For practical deployment on edge devices, a lightweight ViT
with fewer FLOPs is preferred. In contrast, smaller ViTs usually perform more poorly than
larger ones.

2.2. Knowledge Distillation

KD was first defined in [12] and generalized by Hinton et al. [13]. Model compression
and knowledge transfer are two fields in which KD is widely employed. A student model
was trained to mimic a teacher model or an ensemble of models for model compression.
Although several types of KD are defined depending on the objective, one common feature
of any KD is represented by its S-T (student-teacher) framework, wherein the model
delivering information is referred to as the teacher and the model gaining knowledge is
referred to as the student. Irrespective of the structural differences between the teacher and
student networks, ref. [13] demonstrated transfer of knowledge from the teacher model
to the student model by minimizing the difference between the logits (inputs to the final
softmax) provided by the teacher model and those produced by the student model.

However, the output of the softmax function on the teacher’s logits indicated that the
correct class had a very high probability, with all other class probabilities being extremely
close to zero. The function does not provide much information beyond the ground-truth
labels already provided in the dataset in this case.To address this issue, the authors of [13]
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proposed the concept of softmax temperature, which may be used to soften the target.
The class probability qi of an objective is determined using the logits zi from a network
as follows:

qi =
exp

(
Zi
T

)
∑j exp

( Zj
T

) (5)

where T is the temperature parameter. We obtain the standard softmax function when
T = 1. The probability distribution generated by the softmax function becomes softer as
this increases, thereby offering more information about the classes that the teacher finds
to be more similar to the predicted class. Knowledge is transferred to the distilled model
in the simplest form by training it on a transfer set and using a soft target distribution
for each case in the transfer set. This is generated by employing a ponderous model with
a high temperature in its softmax function. When training the distilled model, the same
high temperature is employed. However, the model uses a temperature of 1 after it has
been trained.

In [13], The Kullback—Leibler divergence between the softmax of the student model
and the softmax of the teacher model was minimized via soft distillation. The goal of
distillation is as follows.

`global = (1− λ)`CE(ψ(Zs), y) + λT2`KL

(
ψ

(
Zs

T

)
, ψ

(
Zt

T

))
(6)

where λ is the coefficient balancing the Kullback—Leibler divergence loss (`KL) and cross-
entropy (`CE) on ground truth labels y; ψ is the softmax function; and Zs and Zt are the
student model logits and teacher model logits, respectively.

The authors of [14] proposed hard-label distillation. They consider the teacher’s hard
decision to be a true label and take yt = argmaxcZt(c) as the teacher’s hard decision.
The objective of this hard-label distillation is as follows.

`hardDistill
global =

1
2
`CE(ψ(Zs), y) +

1
2
`KL(ψ(Zs), yt) (7)

When a specific data augmentation occurs, the hard label of the teacher may change
for a given image. This variant of distillation is conceptually simpler and parameter-free,
and is superior to the traditional method. In addition, in [14], it was reported that the
teacher prediction yt plays the same role as the true label y.

2.3. Split Learning

SL [9] is another type of distributed collaborative machine learning (DCML). Unlike
FL, SL divides a deep learning network W into several parts, each of which is processed
and computed on a separate device. In a basic configuration, W is divided into two parts,
Wc and Ws, which are referred to as the client-side and server-side networks, respectively.

The complete model is trained and tested by running sequential (forward/backward)
propagation between the client and server. In its most basic form, forward propagation
occurs as follows: A client forward propagates until a certain network layer called the
cut layer is reached. Then, the cut layer’s activations are referred to as smashed data
and are relayed to the server. Subsequently, the server treats the crushed data (received
from the client) as input and executes forward propagation on the next layer. Thus far,
a single forward propagation has been achieved on the complete model. Back-propagation
works as follows: After calculating the loss, the server performs back-propagation, which
involves computing weight gradients and layer activations until the cut layer. Subsequently,
the server sends the crushed data’s gradients back to the client. The client performs
back-propagation on its client-side network using the received gradients. Up to this
point, a single pass of back-propagation between a client and server has been completed.
The (forward and reverse) propagation in the ML model training continues until the model



Electronics 2022, 11, 2638 5 of 13

is trained on all participating clients and reaches a reasonable convergence point (e.g., high
prediction accuracy).

In SL, the learning process is synchronized with numerous clients, either in a central-
ized or peer-to-peer manner, but only one client engages with the server in one instance.

3. System Architecture

An overview of the proposed FedVKD framework is shown in Figure 1. The training
process of the FedVKD framework and the problem formation and framework details of
the proposed FedVKD are introduced in this section.

Figure 1. Training process of the FedVKD framework.
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3.1. FedVKD Framework

FedVKD is an alternating minimization technique that optimizes two random variables
(the edge model and the server model) by alternately fixing one and optimizing the other.
FedVKD offloads the computing pressure onto the server and improves the performance of
the edge and server models.

The model’s training processes can be divided into four parts: (1) Local training: the
CNN on the edge device is composed of a lightweight feature extractor and classifier and
can be trained efficiently with its own data; (2) Periodic transfer: following local training,
all edge nodes agree to generate the same tensor dimensions as the feature extractor output;
(3) Transfer back: the large server model transformer encoder is trained by taking features
derived from the edge-side extractor. Subsequently, a loss function of hard KD is used to
minimize the gap between the prediction and the hard label predicted by the edge-side
model and the gap between the prediction and ground truth. To boost the edge model,
the server transmits its predicted soft labels to the edge model. Then, the edge model uses
the server-side soft labels to train its local dataset with a loss function of soft KD; (4) Edge-
sided model: consequently, the knowledge transferred from the edge models and vice versa
significantly improves the server’s performance. When training is concluded, the final
model is a combination of the local feature extractor and the shared transformer encoder.

3.2. Problem Formation

We aim to collaboratively train the ViTs in FL, wherein many resource-constrained
edge devices are not equipped with GPU accelerators. In particular, we consider su-
pervised learning with C categories for a dataset D. K-edge devices are used in the FL

system. The k-th edge device has its own dataset Dk :=
{(

Xk
i , yi

)}N(k)

i=1
, N = ∑K

k=1 N(k),

D = {D1,D2,D3, · · · ,Dk}. Abbreviations lists the primary notation used throughout this
paper. Following earlier work, we formulate FL as a distributed optimization problem:

min
W

F(W)
def
= min

W

K

∑
k=1

N(k)

N
· f (k)(W), where f (k)(W) =

1
N(k)

N(k)

∑
i=1

`(W ; X i, yi) (8)

3.3. Training ViT in FL with KD

As mentioned above, traditional FL uses FedAvg to solve objective Equation (8) locally.
However, in practice, the resource-constrained edge devices cannot train transformers
owing to the lack of GPU accelerators and sufficient memory. Inspired by SL, we split ViTs
(in particular, our ViT is a hybrid model equipped with a CNN stem) into two portions and
offloaded the computing-intensive transformer block to the server side.

We divided the global ViT in Equation (8) into two partitions: a small feature extractor
model We and a large-scale server-side model Wt, which are placed on the edge and
server, respectively. Additionally, we added a classifier Wc for We to create a small, but
fully trainable, model on the edge device. We was used to extract feature maps or patch
input images. Subsequently, a single global model optimization was reformulated into a
non-convex optimization problem that needs to solve the Ft and the Fc simultaneously,
as follows.

argmin
W t

Ft(W t, W∗
e ) = argmin

W t

K

∑
k=1

N(k)

∑
i=1

`t

(
ft

(
W t; H(k)

i

)
, y(k)i

)
(9)

subject to: H(k)
i = f (k)e

(
W (k)

e ; X(k)
i

)
(10)

argmin(
W (k)

e ,W (k)
c

)Fc

(
W (k)

e , W (k)
c

)
= argmin(

W (k)
e ,W (k)

c

)
N(k)

∑
i=1

`c

(
f (k)
((

W (k)
e , W (k)

c

)
; X(k)

i

)
, y(k)i

)
(11)
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= argmin(
W(k)

e ,W (k)
c

)
N(k)

∑
i=1

`c

 f (k)c (W (k)
c ; f (k)e

(
W (k)

e ; X(k)
i

)
︸ ︷︷ ︸

H(k)
i

), y(k)i

 (12)

Owing to the structural differences between the server model ft and edge model
fc, we incorporated KD loss into the optimization equations to circumvent the optimiza-
tion difficulty. Moreover, the knowledge transferred from the server model can boost the
optimization on the edge. Inspired by DeiT, we adopted a hard distillation strategy for
transformer blocks on the server side, while using traditional KD for the CNN network on
the edge devices. We added a distillation token to the input of the transformer. The distil-
lation token played a role similar to that of a class token. It interacted with other inputs
via self-attention and was output by the network after the last layer. The distillation token
ensured that the transformer blocks learn from the CNN through attention. `harddistill

t and

`
(k)so f tdistill
c are formulated as follows.

`harddistill
t = `CE

(
ψ(zt), y(k)i

)
+

K

∑
k=1

`CE

(
ψ(zt), y(k)c

)
(13)

`
(k) softdistill
c = `CE

(
ψ
(

z(k)C

)
, y(k)i

)
+ `KD

(
zt, z(k)c

)
= `CE

(
ψ
(

z(k)C

)
, y(k)i

)
+ DKL(pt‖pk) (14)

where pi
k =

exp
(

z(k,i)
c /T

)
∑C

i=1 exp
(

z(k,i)
c /T

) and pi
t =

exp (zi
t/T)

∑C
i=1 exp(zi

t/T)
are the probabilistic predictions

of the edge-side model f (k) and server-side model ft, respectively. After substituting
Equations (13) and (14) into Equations (9) and (12), respectively, the optimization problem
can be reformulated as follows.

argmin
W t

Ft

(
W t, W (k)∗

e

)
= argmin

W t

K

∑
k=1

N(k)

∑
i=1

`CE

(
ft

(
W t; H(k)

i ; Xclass

)
, y(k)i

)
+

K

∑
k=1

N(k)

∑
i=1

`CE

(
ft

(
W t; H(k)

i ; Xdistill

)
, y(k)∗c

) (15)

where y(k)∗c = f (k)c

(
W (k)

c ; H(k)
i

)
, and H(k)

i = f (k)e

(
W (k)∗

e ; X(k)
i

)
(16)

argmin
W(k)

Fc

(
W∗

t , W (k)
)
= argmin

W(k)

N(k)

∑
i=1

`CE

(
z(k)C , y(k)i

)
+ `KD

(
z∗t , z(k)C

)
(17)

where z(k)c = f (k)c (W (k)
c ; f (k)e

(
W (k)

e ; X(k)
i

)
︸ ︷︷ ︸

H(k)
i

), and z∗t = ft

(
W∗

t ; H(k)
i

)
(18)

where the * notation indicates that the related random variables are fixed during optimiza-
tion. This optimization occurs across several rounds between Equations (15) and (17) until
a convergence state is reached.

4. Experiments
4.1. Experimental Setup

Our FedVKD training framework was developed based on FedML [18]. FedML is
an open-source federated learning research library that streamlines the development of
novel algorithms and deploys them in a distributed computing environment. In resource-
constrained experiments, our server node was equipped with four NVIDIA RTX 3080Ti
GPUs, each with sufficient GPU memory to train large models. We used several CPU-based
nodes as edge devices to train the CNNs. In resource-sufficient experiments for traditional
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FL, our server node was equipped with four NVIDIA RTX 3080Ti GPUs, and each edge
device was equipped with two NVIDIA RTX 2080Ti GPUs.

For our training task, we used image classification on CIFAR-10, CIFAR-100, and Ima-
geNet. To distribute the training examples in a dataset among nodes, we followed earlier
work [19]. If a dataset contains M classes, we divided the nodes into M groups at random.
A training example with label l was allocated to group l with probability p > 0 and with
probability 1−p

M−1 to any other group. Data were provided uniformly to each node within
the same group. The distribution difference of the nodes’ local training data was controlled
by p. If p = 1

M , the nodes’ local training data were independent and identically distributed
(IID), otherwise they were non-independent (non-IID). Furthermore, a greater p suggests
increased non-IID in the nodes’ local training data. The fact that DCMLs frequently have
non-IID local training data is one of its distinguishing features [7,20]. Consequently, we
selected p > 1

M as the default to imitate the non-IID settings. We split the dataset into
10 groups according to their categories (e.g., each group has 10 categories in CIFAR-100)
and set p = 1

5 to simulate non-IID local training data.
FedVKD was compared to FedAvg [7], a state-of-the-art FL method, FedAUX, a fed-

erated distillation method with leveraging unlabeled auxiliary data [21]. and FedGKT,
a CNN-based SL method [11]. After each round, test images were used for the global
test. We used the top one percent test accuracy as a criterion to compare the model per-
formance for different techniques. As shown in Figure 2, a hybrid ViT model was used
as the global model in our framework. Inspired by the work of Xiao et al. [16], we re-
placed ViT-B’s patchify stem with a shallow network of ResNet-18. The shallow network of
ResNet-18 was placed on the edge side and served as the extractor of the edge-side CNN
network. As shown in Figure 3, for FedGKT, the edge side was the same as that in our study.
The server-side model architecture refers to FedGKT’s ResNet-109, which comprises the
global ResNet-113 with the extractor of the edge-side CNN network. However, the baseline
FedAvg and FedAUX require all edge nodes to be trained using these two global models.
Moreover, FedAUX needs to add subsets of ImageNet-21K as auxiliary data. We used an
experimental setup as described in [21] for FedAUX training.

Figure 2. ViT architectures on the edge and server.
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Figure 3. CNN architectures on the edge and server.

4.2. Experimental Results

In our experiment, 10 edge nodes and a server were run for all datasets and models.
Figure 4 depicts the test accuracy curves during training under the IID setting with the
four datasets. This includes the results for FedGKT (CNN) [11], FedAUX (CNN/ViT) [21],
FedAvg (CNN/ViT) [7], and FedVKD (ViT). As shown in the figure, the ViT-based frame-
works performed worse than the CNN-based frameworks in the case of a small dataset.
This seemingly discouraging outcome may be because CNN-based frameworks benefit
from the inductive biases inherent in CNNs when facing insufficient amounts of data.
When the size of the datasets increased, the ViT-based frameworks began to outperform
the CNN-based frameworks. As shown in Figure 5, the larger the dataset, the better the
performance of the ViT-based frameworks. At best, the experimental results on the dataset
of ImageNet showed that the test accuracy of the proposed fedVKD (ViT) was 5.71% higher
than the FedAUX (CNN). When we focus only on ViT-based frameworks, we find that
frameworks with KD performed better than the traditional method. Compared with the
FedAUX (ViT) on the ImageNet, the test accuracy of the proposed fedVKD (ViT) was
improved by 4.12%. We found that our KD strategy could aggregate more knowledge from
edge devices. In particular, the edge-side CNN networks generalized better when facing
insufficient amounts of data, and our method was able to aggregate such generalization
using KD.

In Table 1, we summarize all the numerical results for our method and the base-
lines in both IID and non-IID settings. As confirmed by this study, as well as earlier FL
work [11,22,23], it is common for the test accuracy under non-IID to be lower than that
under IID. As well as benefiting from KD and transformer structure, the fedvkd (ViT)
with released performance also exhibited better stability in the test accuracy in the face of
non-IID datasets.On the ImageNet, the test accuracy of the fedvkd (ViT) only decreased
by 2.79%, but the FedAUX (ViT), the FedGKT (CNN) and the FedAvg (ViT) decreased by
4.47%, 7.31% and 3.79%, respectively.
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Figure 4. Test accuracy curves of the four frameworks in the four datasets of CIFAR-10, CIFAR-100,
CINIC-10, ImagrNet.

Figure 5. Comparison of the test accuracy of the edge-side model over the four datasets of CIFAR-10,
CIFAR-100, CINIC-10, ImagrNet.

We tested the performance of small CNN networks on the edge side under three
different frameworks. As shown in Figure 5, the performance of ResNet-18 with the KD
strategy was better than that with FedAvg. This means that a small network can acquire
more knowledge from a large network using KD. Our ViT-based distillation method
outperformed the CNN-based distillation method. Therefore, a stronger and more studious
student network can teach teacher networks. We believe that this finding is meaningful.
The use of ViT-based KD in FL not only boosts the performance of the global model but
also the edge-side model. An efficient and generalized small model is very useful when the
deployment conditions of the model are resource constrained.
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Table 1. Comparison of the test accuracy of our method and several state-of-the-art methods over
four datasets in IID and non-IID settings.

Method
CIFAR-10 CIFAR-100 CINIC-10 ImageNet

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

FedVKD (ViT) 75.88 69.93 65.86 60.79 79.74 76.18 82.72 80.41
FedAUX (ViT) 77.99 74.17 68.04 62.44 80.04 77.46 78.6 75.09
FedAvg (ViT) 73.91 68.10 61.87 57.84 77.77 74.24 73.79 70.99
FedGKT (CNN) 91.96 85.17 71.86 65.31 83.62 77.27 75.78 70.24
FedAUX (CNN) 93.6 90.05 74.98 70.56 83.5 78.81 77.01 74.31
FedAvg (CNN) 92.74 84.36 72.71 66.44 82.75 75.18 75.86 69.83

5. Discussion and Conclusions

In this paper, we have presented a framework (FedVKD) to train ViTs in resource-
constrained FL. In the process of periodic transfer, the server-side transformer encoder
learns from multiple small edge-side CNNs using KD. This strategy offloads computation-
ally intensive tasks to the server and takes full advantage of the inductive biases of CNNs.
Moreover, the small edge-side CNNs learn more from the server-side transformer encoder.
Essentially, our FedVKD is a process of learning and meriting from each other and makes
full use of the unique advantages of the models.

Currently, data have become a basic strategic resource; however, data always come
from resource-constrained edge devices (such as smartphones, smartwatches, IoT devices,
and personal computers). Therefore, as demonstrated by this study, it is meaningful to
introduce a stronger model to edge devices while maintaining data privacy. Our current
study focuses on CV. In addition, the transformer structure provides a very good bridge
between CV and NLP. Our future work will expand the scale of the experiments and explore
the performance of our framework when applied to the field of multimodal learning.

6. Limitations of the Study

We have sought to make our analyses as comprehensive as possible, but FL is an art of
trade-offs among many factors. We acknowledge that it is a challenge to design a universal
system that can solve all problems, thus we discuss some limitations of our framework.

Byzantine robustness: Due to its distributed characteristic, FL is vulnerable to hostile
operations on malicious edges, which could be fake edges injected by an attacker, or genuine
edges invaded by an attacker. Traditionally, malicious edges can poison the global model by
sending poisoned local model updates to the server (called local model poisoning attacks)
or poisoning their local training data (known as data poisoning attacks). In our framework,
malicious edges can corrupt the global model by poisoning the local feature map sent to
the server.

Privacy: As [11] points out, existing technologies, such as multi-party computation
(MPC) and differential privacy (DP), are capable of defending data privacy against a hidden
vector reconstruction attack; exchanging hidden feature maps appears to be a safer option
than exchanging the model or gradient. However, the lack of analysis and comparison of
the degree of privacy leakages between these three settings (model, gradient, and hidden
map) represents a further limitation of our work.
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Abbreviations

Notations Meanings
X i i-th training sample
yi Corresponding label of Xi, yi ∈ {1, 2, . . . , C}
N(k) Sample number in dataset Dk
W Network weights of a global model
f (k)(W) i-th edge’s local objective function
` Loss function of the global model
`t General loss functions for the server-side model
`c General loss functions for the edge-side model
ft Server-side model

f (k)e i-th edge’s feature extractor

f (k)C i-th edge’s classifier

f (k) Edge-side model including f (k)e followed by f (k)C
W t Network weights of ft

W (k)
e Network weights of f (k)e

W (k)
c Network weights of f (k)C

W (k) Combination of W (k)
e and W (k)

c

H(k)
i i-th sample’s feature map (a hidden vector or tensor)

`CE Cross-entropy loss between the predicted values and ground truth labels
`KD Kullback–Leibler (KL) divergence function
zF Output of the last fully connected layer in the server-side model

z(k)c Output of the last fully connected layer in the edge-side model
T Temperature hyperparameter of the softmax function
Xclass Class token
Xdistill Distillation token
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12. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model compression. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2016; pp. 535–541.

13. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531v1.
14. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation

through attention. In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021;
pp. 10347–10357.

15. Sun, S.; Cheng, Y.; Gan, Z.; Liu, J. Patient knowledge distillation for bert model compression. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, Hong Kong, China, 3–7 November 2019; pp. 4323–4332.

16. Xiao, T.; Singh, M.; Mintun, E.; Darrell, T.; Dollár, P.; Girshick, R. Early convolutions help transformers see better. In Proceed-
ings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual Event, 6–14 December 2021;
pp. 30392–30400.

17. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [CrossRef]

18. He, C.; Li, S.; So, J.; Zeng, X.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Qiu, H. Fedml: A research library and
benchmark for federated machine learning. In Proceedings of the 34th Conference on Neural Information Processing Systems
(NeurIPS 2020 SpicyFL Workshop), Online, 6–12 December 2020.

19. Fang, M.; Cao, X.; Jia, J.; Gong, N. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. In Proceedings of the
29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020; pp. 1605–1622.
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