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Abstract: The performances of WR-3.4 monolithic amplifiers fabricated using dual-finger 6 µm InP
HBT devices are investigated. While one amplifier uses the dual-finger devices formed by simply
connecting two existing standard single-finger HBTs, the second amplifier uses newly formed devices
that share a common collector metal on a single merged device isolation area. The amplifiers using
two types of devices based on the identical matching networks are fabricated for on-wafer probing
tests. The custom merged-device amplifier shows clear performance advantages over the separate-
device amplifier, showing a peak gain of 10.5 dB and the maximum output power of 5.2 dBm at
255 GHz.
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1. Introduction

Although the overall performance for communication systems is predominantly de-
termined by the amounts of transmitted power, high-power amplifiers are very scarce in
the terahertz frequency range where the transistor devices produce powers only in the
milli-Watt range. Presently, few transistor technologies offer proper amplifier gains above
200 GHz except for the 250 nm InP HBT technology from Teledyne Scientific Company
since 2008 [1]. The Teledyne process nominally permits only single-finger devices with
emitter lengths shorter than 6 µm for the designs of terahertz monolithic circuits [2]. A
pair of single-finger HBT amplifiers from Teledyne were demonstrated in the early stage
of amplifier development. The first example achieved an output power of 9.8 dBm at
305 GHz with an output-stage power-added efficiency of 3.4% by connecting four dif-
ferential common-base amplifier chains [3] utilizing special defective-ground four-way
baluns [4]. In the second example, power cells, each consisting of four single-end cas-
code devices, were first established before they were combined using four-way Wilkinson
couplers to produce 13.5 dBm of output power at 301 GHz [5].

These power amounts still fall short of most system requirements, and microstrip
power combiners become impractical for connecting an exceedingly large number of
devices due to conductor losses [6]. Therefore, the employment of multi-finger devices
is essential to significantly increase the amounts of output power. As early as in 2012, a
two-finger common-base device and a four-finger common-emitter device, both with the
total device periphery of 24 µm, were examined for the purpose of building high-power
amplifiers operating above 200 GHz [7]. Later, cascode power cells were built from these
devices to complete a 16 power-cell amplifier with a total output periphery of 384 µm
producing up to 24 dBm of output power at 220 GHz [8]. More compact four-way combiners
were recently adopted to successfully combine powers from four-finger devices in common-
base configuration to obtain 16.8 dBm at 270 GHz [9]. These previous four-finger HBTs
have one of the transistor terminals directly grounded to form two-port devices. In this
paper, we examine a device geometry for dual-finger HBTs that maintains three separate
transistor terminals to conveniently form the differential configuration. In addition, the
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output powers from two separate amplifiers that employ two different types of dual-finger
devices are fabricated for experimental comparisons.

2. Dual-Finger HBT Analysis

We begin the geometry analysis for the dual-finger devices with a total device width
of 12 µm using the layout shown in Figure 1a. Since standard single-finger devices are
recommended for guaranteed performances, modifications applied to the two-finger device
layout are kept to a minimum. The layout consists of two separate 6 µm single-finger
InP HBTs each with a device isolation area of 4.6 × 7.3 µm2. The analysis is carried out
by using the nonlinear device model provided by Teledyne Scientific Company for the
device fingers and the S-parameter data obtained from ADS Momentum simulations for
the interconnected metal structures. The series parasitic inductor and resistor with a pH
of 1.3 and 5.3 Ω are also added to the base of the device model. Three simulated perfor-
mance parameters, the maximum available gain (MAG) and 1 and 3 dB gain-compressed
output powers (P1 dB and P3 dB) for varying collector-to-collector distance (s) are plotted in
Figure 1b. The results obtained under the optimum gain and power impedance matching
conditions indicate that the performance worsens as the device separation is increased as
the phase offset introduced by the interconnecting wiring becomes substantial. Because the
adjacent isolation areas should have a minimum spacing of 2 µm, the distance between
the two collector posts (s) should be at least 5 µm. In order to further decrease the sepa-
ration distance to zero, we created a new geometry where two isolation areas are merged
into one with a size of 6.6 × 7.3 µm2 such that the two collector posts overlap with each
other. Compared to the separate-isolation device with 5-µm distance, the merged-isolation
device should provide a higher MAG and a larger amount of output power even though
the improvement seems marginal. However, the performance differences between the
separate-isolation and merged-isolation devices should become greater as the number of
fingers increases for the HBT devices.
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Figure 1. (a) Dual-finger device geometry used in the performance analysis, and (b) estimated devices
performances vs. separation distance between two collector posts (s).

3. Amplifier Design

Two amplifiers, each with different types of dual-finger HBT devices, are fabricated
with identical matching networks. The layouts in Figure 2a show the 12 µm devices with
separate and merged isolation areas. The separate-isolation device is formed by connecting
two standard 6 µm single-finger HBTs, with each device flipped horizontally from the
layout used in the analysis in Figure 1a. The separate-isolation device has an equivalent
collector-to-collector distance (s) of 8.4 µm and has a total size of 19 × 16 µm2 including
the structures in the interconnecting metal layers. The merged device, on the other hand,
maintains the same layout used in the analysis in Figure 1a with a collector separation
distance of zero. It is formed by sharing the collector metals of two single-finger HBTs
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implementing a new custom two-finger device that has zero collector-to-collector distance
(s) with a total size of only 15 × 12 µm2. The performances of two types of 12 µm dual
finger devices are estimated once again under ideal impedance matching conditions for
the input and the output. The separate-isolation device is expected to possess an MAG at
255 GHz of 7.2 dB and the maximum frequency of oscillation (fmax) of 596 GHz, slightly
worse than the values expected from a single-finger standard device. However, the 3 dB
gain-compressed output power (P3 dB) of 4.3 dBm is better than that from a single-finger
device by roughly 2 dB. The merged-isolation device shows similar performance with the
single-finger device with an MAG and fmax of 7.4 dB and 608 GHz. The output powers are
improved to a P3 dB of 4.7 dBm, resulting in an enhancement of 0.3 dB over those of the
separate-isolation device.
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Figure 2. (a) Layouts for fabricated dual-finger HBTs with separate and merged device isolation
areas, and (b) their simulated optimum power performances.

The circuit schematic for the two-stage four-finger differential amplifier chain with a
24 µm output device periphery used in the initial stage of the design is shown in Figure 3a.
The final circuit layout shown in Figure 3b contains separate-isolation devices that are to
be replaced with merged devices for the second amplifier design. Both designs adopt the
common-base configuration where the base terminals are self-biased from a single DC bias
applied through the collector terminals using collector-base resistances of 2848 Ω per 6 µm
finger. While portions of the self-bias resistors shown as 243 Ω and placed on the virtual
ground have no impact on the RF performance, the 948 Ω resistors across the differential
output ports lower the amplifier gain but improve the stability. Additional 10 Ω resistors
are added to the emitter of the first-stage devices to further stabilize the design. A pair
of defective-ground two-way baluns are added to both ends of the differential amplifier
chain for connection to single-end RF probe pads. The whole differential amplifier chain is
only 30 µm wide, meaning that it can be used as a building block to form a linear array
in future power-combining circuit designs. Figure 3c is the photograph of the fabricated
circuit showing a physical chip size of 600 × 270 µm2.
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Figure 3. Differential amplifier chain design showing (a) initial circuit schematic, (b) final layout, and
(c) photograph of the fabricated full amplifier circuit.

4. Measurement Results

The measured small-signal s-parameters for the two amplifiers are plotted in Figure 4
for the total bias voltage of 4 V and the total bias current of 40 mA. This bias condition
translates to an adequate DC-bias for each HBT finger with a VCE of 1.76 V and IC of
10 mA. The measured data show reasonable agreements to the simulated data with no
indication of oscillations in either amplifier. The separate-isolation amplifier shows a peak
gain of 4.6 dB while the merged amplifier shows a peak gain of 10.5 dB at 255 GHz. While
both dual-finger devices are expected to possess similar characteristics, the amplifier gains
are substantially different with a difference of close to 6 dB. We suspect that the output
instability for the common-base configuration [10] causes a large gain change even when
the devices are connected to an identical matching network.
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devices (red) showing measured (solid) and simulated (dashed) results.

The power measurement is also carried out at 255 GHz where the two amplifiers
possess the largest gain by using a pair of Cascade WR-3.4 RF probes, each with roughly
3 dB of insertion loss. The measured gain from the power test setup gives similar results
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to the small-signal gain using a network analyser as shown in Figure 5a validating the
power calibration process. The output powers for separate and merged device amplifiers
are plotted in Figure 5b. Because of the low small-signal gain of only 4.6 dB, the power
saturation is barely noticeable for the separate-device amplifier. However, the measured
1 dB gain-compressed output power is significantly larger at −1.9 dBm for the merged
amplifier compared to −8.3 dBm for the separate amplifier. The maximum output powers
under the full saturation condition are 4.4 and 5.2 dBm for separate and merged ampli-
fiers, respectively, confirming that the merged devices indeed produce a better power
performance, as indicated in our analysis.
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5. Conclusions

Table 1 shows a list of 250 nm InP HBT amplifiers operating above 200 GHz that
have been reported in the past decade. Although SiGe amplifier developments are also
beginning to make some progress in terms of frequency [11] and output power [12], InP
devices are still the dominant technology in most terahertz integrated circuit research. The
output power of an amplifier is proportional to the total periphery of the output devices,
and it is imperative to increase the size of the output device. Thus, we have investigated a
custom two-finger device by modifying standard single-finger HBTs by merging two device
isolation areas. The amplifier tested at 255 GHz confirms that the device with the merged
isolation area offers better power performances compared to the bulkier separate-isolation
device amplifier. Although amplifiers using four-finger devices were introduced earlier, as
listed in Table 1, our device maintains three transistor terminals, allowing the formation of a
differential configuration. Currently, our amplifiers possess a total output periphery of only
24 µm, with a smaller power density per device length due to the use of the stabilization
resistors. A new amplifier design using a four-finger device with an improved stability is
currently being investigated.
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Table 1. List of amplifiers operating above 200 GHz using 250 nm InP HBT technology.

Ref Year Freq.
[GHz]

Psat
[dBm]

Circuit
Size

[µm2]

Finger
Size [µm]

No.
Fingers No. Dev.

Output
Perphery

[µm]

Power/µm
[µW]

[3] 2014 300 9.8 0.59 × 0.52 5 1 8 40 239

[5] 2015 301 13.5 0.67 × 0.68 6 1 16 96 233

[8] 2017 200 24 2.14 × 1.58 6 4 16 384 650

[9] 2021 270 16.8 0.89 × 0.54 6 4 4 96 498

This work,
separate 2022 255 4.4 0.59 × 0.27 6 2 2 24 115

This work,
merged 2022 255 5.2 0.59 × 0.27 6 2 2 24 138
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