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Abstract: In this study, we design an interface optimized for the platform by adopting deep learning
in an asymmetric virtual environment where virtual reality (VR) and augmented reality (AR) users
participate together. We also propose a novel experience environment called deep learning-based
asymmetric virtual environment (DAVE) for immersive experiential metaverse content. First, VR users
use their real hands to intuitively interact with the virtual environment and objects. A gesture interface
is designed based on deep learning to directly link gestures to actions. AR users interact with virtual
scenes, objects, and VR users via a touch-based input method in a mobile platform environment. A
text interface is designed using deep learning to directly link handwritten text to actions. This study
aims to propose a novel asymmetric virtual environment via an intuitive, easy, and fast interactive
interface design as well as to create metaverse content for an experience environment and a survey
experiment. This survey experiment is conducted with users to statistically analyze and investigate
user interface satisfaction, user experience, and user presence in the experience environment.

Keywords: asymmetric virtual environment; gesture interface; text interface; immersive interaction;
virtual reality; augmented reality; deep learning; immersive experiential metaverse content

1. Introduction

Virtual reality (VR) is a technology that maximizes the sense of reality by providing
an immersive environment for users wearing head-mounted displays (HMD) such as the
Oculus Quest and HTC Vive. Users experience a virtual environment via visual information
that is completely cut off from the real world, as well as from senses such as hearing and
touch. Augmented reality (AR) is a technology that synthesizes digitally produced content
with the real world. Here, users experience interactions with elements that have been
augmented in the real world. AR is based on reality, and it provides virtual environments
and objects in the real world. Therefore, compared with VR, users can feel familiar with
AR and experience it without significant inconvenience. Users can experience AR easily
using smart devices such as mobile devices, and they can experience high immersion with
wearable devices such as smart glasses or Microsoft Hololens [1,2]. Expanded reality is
an umbrella term, and the related technology encompasses VR, AR, and mixed reality
(MR); presently, the sense of reality is expanding into a virtual environment that can
provide new experiences and opportunities beyond time and space [3]. In addition to
technological advancements, studies on core technologies that enable users to directly and
realistically interact with a virtual environment or objects, such as user interface, haptic
and motion platforms, and applied research related to the production of applications, are
being conducted from various perspectives [4–8].

Relevant studies address topics such as calculating the movement of joints in the
human body and reflecting it in a virtual environment, or providing haptic feedback as
physical responses from the perspective of a single user’s presence in immersive VR. In
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addition, studies have been conducted on redirected walking, which allows a user to walk
freely in a limited space, as well as motion platform technology [9–11]. These studies are
being applied and developed as multi-user experience environments. Moreover, research
is being conducted on collaborative interactions that can efficiently process collaborative
work among users via an experience environment and system design that allows multiple
HMD users to participate immersively. Based on these studies, research can be conducted
on an asymmetric virtual environment in which non-immersive users who use PCs or
mobile devices and AR users can participate together with VR users [12–15]. With the
growing interest in the Metaverse, which is an expanded virtual world where reality and
virtual reality coexist, and as interoperability and openness as key components evolve,
there is a need for an experience environment that considers various platforms and a user-
centered intuitive interface technology in virtual space [16]. In this study, we design a deep
learning-based interface that considers the characteristics of the platform and experience
environments in an asymmetric virtual environment where VR users wearing HMDs with
hand tracking function and mobile platform-based AR users participate together. This
approach seeks to minimize the use of additional equipment in an expanded virtual space
where many users using multiple platforms participate together; to this end, we propose a
highly immersive and intuitive interface via the direct expression of thoughts using body
movements. The key objective is a deep learning-based asymmetric virtual environment
(DAVE), a novel asymmetric experience environment which can provide all users with
interesting experiences and satisfaction. The core structure of the proposed interface is
designed by dividing the users’ participating environment.

- For VR users, a convolutional neural network (CNN) to design a gesture interface
that links real hand gestures to actions.

- For AR users, extending the modified national institute of standards and technology
database (EMNIST) dataset and using a CNN to design an interface that links text
to actions.

All user interfaces in the proposed DAVE infer the user’s intentions and actions based
on data trained with a deep learning model as a shortcut key. This approach enables users
to quickly and intuitively interact with other users, the virtual environment, and objects.
Because additional equipment and unnecessary graphical user interface (GUI) elements
have been minimized, it is easy and convenient to use these interfaces. In order to check
whether VR and AR users of DAVE are satisfied with the interface, interactive experience,
and presence, we perfomed a comparative analysis through a survey experiment.

2. Previous Work

Virtual reality provides users with an experience similar to the real world in a
computer-generated virtual environment. However, it is developing into a technology
that blurs the boundary between virtual reality and reality based on various senses such
as sight, hearing, and touch. This is an expanded concept known as the Metaverse, which
is a compound word made up of “meta” and “verse.” This concept is evolving toward
presenting virtual environments in which both reality and virtual unreality are connected
in society, economy, and culture [17].

Collaborative virtual environments (CVEs) are used in collaboration and interaction
between several users dispersed over a long distance, and various application programs
are being developed for CVEs based on shared virtual environments, including distributed
simulation, 3D multi-player games, and collaborative engineering software. In addition, var-
ious studies are being conducted, ranging from studies that define the interaction between
the user and environment or between users as an interactive structure, as in a distributed
interactive virtual environment [18], to studies that provide an immersive environment
in distributed collaboration [19]. Studies focused on the interaction between several users
in an immersive virtual environment have evolved into asymmetric virtual environment
research, where non-immersive (non-HMD) users using mobile devices or PCs, AR users,
and various VR users wearing HMDs can participate together. Studies that propose asym-
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metric interactions between HMD and PC users and between HMD users and users using
the tabletop interface present a novel environment in which users experience different roles
based on the user’s platform and experience environment [20,21]. Gugenheimer et al. [12]
proposed the ShareVR experience environment, which assigns more active actions to non-
HMD users in an asymmetric virtual environment. In a role VR study, Lee et al. [14] verified
that both HMD and non-HMD users could be provided with a satisfying experience and
presence by presenting roles and interactions that are applicable to the user’s experience
environment. Furthermore, Cho et al. [15] conducted a study to design interactions and
roles that are optimized for the platform in an asymmetric virtual environment where
VR and AR users participate together. In addition to these studies, various studies are
currently being conducted on the asymmetry of sensory feedback with respect to the user’s
experience environment by comparing the difference to the user between symmetrical and
asymmetrical sensory feedback in a VR system that conveys multiple senses, such as visual,
auditory, tactile, and olfactory feedback [22]. To implement virtual city tours based on these
studies, asymmetric collaborative environments have been presented in which VR and AR
users participate together [23]. In addition, asymmetric multiplayer VR games have been
implemented in which HMD and non-HMD users participate together, and an analysis
performed on the user’s roles and perceptions in an asymmetric environment [24]. Hence,
studies are required on asymmetric virtual environments that consider various experience
environments and platforms to present new experiences and a satisfying presence in a
virtual space via user participation. Accordingly, immersive interactions that are suitable
for the user’s characteristics need to be supported.

Studies are being conducted from various technical perspectives to enhance presence
in virtual environments by providing highly immersive interactions to users utilizing
various senses, such as sight, hearing, and touch. HMDs such as the Oculus Quest convey
stereoscopic visual information in a virtual environment. In addition to HMDs, research
has been conducted on sound processing, which maximizes the auditory sense of space
based on a head-related transfer function (HRTF) [25–27]. Furthermore, studies have been
conducted on interactions that directly utilize bodily movements using the hands, legs,
etc., as well as the gaze of the eyes [15,28,29]. Based on these studies, research is being
conducted on haptic systems that provide physical feedback, such as wearable equipment
like 3-RSR and electric turntable haptic platforms, to implement a realistic virtual environ-
ment by reducing the gap between virtual reality and reality via high immersion [30,31].
Furthermore, as an alternative that improves the cost burden and complexity of haptic
systems, studies are being conducted on pseudo-haptics that induce the illusion of receiving
physical feedback via visual effects from the cognitive response according to the user’s
experience [6]. In addition, studies have been conducted on portable haptic systems [32],
methods for directly controlling virtual objects by using a gaze pointer [28], and a hand
interface that maps the controller and hand gestures [33], for the purpose of providing
high accessibility and immersion in the interaction. In addition, applied research on mo-
tion platforms, such as redirected walking for walking naturally and walking in place,
has been actively conducted [10,29,34]. Recently, a few studies have applied deep learn-
ing technology to VR. For example, previous research adopted deep imitation learning
in a complex and elaborate process of operating a robot remotely, using VR HMD and
hand tracking hardware [35]. Furthermore, another study was conducted on an interface
that allows an easy and convenient way of performing the user’s actions and decision-
making in an intuitive structure via deep learning [33,36]. Hence, interest in convergence
research is growing. However, there has been insufficient applied research on interfaces
that consider various experience environments and platforms to allow users to easily and
conveniently participate in asymmetric virtual environments with high immersion. There-
fore, this study adopts deep learning to propose a novel user-centered interface in a DAVE
experience environment.
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3. DAVE: Deep Learning Based Asymmetric Virtual Environment

This study proposes an asymmetric virtual environment, DAVE, which VR and AR
users can participate and experience together. The purpose of this study is to provide
a novel experience environment that provides a satisfying experience and presence via
an interface design which utilizes deep learning and considers the user’s characteristics,
such as their experience environment and platform. Figure 1 presents the structure of the
proposed DAVE and the common virtual space comprising each interface that considers
the participating user’s characteristics (platform, device, etcetera). VR users wear an HMD
with a built-in hand tracking function; hence, they design interactions using their hands
and gestures. Conversely, AR users design interactions using touch screen input based on
their mobile platform (shown in Supplementary Materials).

Figure 1. DAVE Configuration where VR and AR users participate together.

The goal of the proposed user interface is to utilize deep learning to interact with the
virtual environment, objects, and users in an intuitive structure. In addition, the interface
is designed such that users can learn and utilize the interface easily and conveniently,
similar to operating shortcut keys. The main objective of this study is to provide a transition
between various modes (e.g., movement, settings, communication, implement, picture,
etc.) using this interface for broad participation, action, and communication in the virtual
space. First, VR users use gestures, while AR users use text as the interface that corresponds
to the mode based on a uniform input method using alphabets to maintain a consistent
experience environment. The interface is designed to enhance learning, ease of use, and
accessibility by mapping gestures to sign language and text to handwriting. Via this process,
we present an experience environment that allows users to quickly and conveniently select
and control desired actions, similar to shortcut keys (keys or a sets of keys) that perform a
predefined function.

To implement the novel asymmetric virtual environment (DAVE) presented in this
study, VR users use Oculus Quest 2 HMD and hand tracking functions [37], while AR
users use a mobile device in the Vuforia development environment [38]. In addition, the
integrated development environment is built in the Unity 3D engine [39], and Photon
Unity Networking (PUN) is used to synchronize communication between the users and
their actions.

3.1. Virtual Reality

In immersive VR, hands are often used to express the user’s intentions or actions
during their interactions with the virtual environment, objects, or other users. Therefore,
a gesture interface is designed to allow VR users to use their hands for interactions in
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the proposed asymmetric virtual environment. The proposed gesture interface comprises
three stages.

1. HMD with a built-in hand tracking function (or that includes equipment for hand
tracking function) is used to realistically match the real hand with the virtual hand
without using an additional input equipment.

2. Gestures that directly link the virtual hand (not the traditional GUI or controller key
input) to the mode transition action are defined.

3. The input gesture is recognized and inferred based on the trained gesture data, and
the defined interaction is performed.

VR applications interact with virtual environments and objects by placing a GUI in
a three-dimensional space and selecting a menu or by using a dedicated controller or
keyboard input. However, this study proposes a gesture interface that can perform the
user’s intentions and actions easily and quickly without a separate GUI or additional
equipment such as a controller. Considering scalability and applicability to a variety of VR
systems, sign language, which conveys meaning by adopting hand gestures, is used as the
gesture. Here, the gestures are defined using manual alphabets rather than fingerspelling
to define specific words. This approach allows users to customize gestures easily and to
make gestures easily and quickly. Figure 2 illustrates the process of making gestures with
the virtual hand using the real hand based on manual alphabets [40].

Figure 2. Gesture configuration of the VR user interface: (a) gesture is input using an HMD with a
built-in hand tracking function, (b) real hand, and (c) virtual hand.

An important goal for the interaction of the proposed gesture interface is to intuitively
reflect the user’s desired action in the virtual environment easily and quickly. When linking
the gesture to the mode transition action, this study utilizes a CNN, a deep learning model
adopted by Kang et al. [33] in the DeepHandsVR interface. The CNN model used in the VR
user’s gesture interface has the structure and parameters of the Inception v3 neural network
model, which has an efficient structure for image recognition (inference). In addition, the
CNN model performs transfer learning, which involves retraining the manual alphabet
gesture dataset that was photographed and classified beforehand [41]. The Inception
v3 is a model that has applied BN(Batch Normalization)-auxiliary + RMSProp + Label
Smoothing + Factorized 7 × 7 to the Inception v2 structure, which comprises 42 layers.

Figure 3 illustrates the process by which the gesture interface processes interactions
via deep learning. Seven gestures and mode transition actions were first defined as the
prototype based on the structure of the Inception v3 model. In addition, a dataset com-
prising 4541 images was built by capturing each gesture image and augmenting them
(shift, rotation, scale, etcetera). Then, training was performed for gesture classification.
The trained data file was converted and generated in the input (jpeg image format) and
output nodes in a format suitable for recognizing and inferring the VR user’s gestures in
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the Unity 3D engine development environment. Finally, the gesture made by the virtual
hand corresponding to the VR user’s real hand was stored as an image, and the single
action was inferred by mapping the stored image to the labeled mode transition action.

Figure 3. Deep learning model structure of the gesture interface and process of inferring mode
transition action.

The CNN model used in the gesture interface adopts the softmax function as the
activation function. Softmax is a function used in multi-class classification; the probability
values are calculated by performing transfer learning based on the seven gesture classes.
The output (ϕ(vi)) of the i-th output node was calculated using Equation (1). Here, vi
represents the weighted sum of the i-th output node, while m denotes the number of
output nodes.

ϕ(vi) =
evi

∑m
j=1 evj

(1)

Each element of the softmax output is a real number greater than or equal to 0.0 and
less than or equal to 1.0. In addition, the sum of the output of all nodes is always equal to 1.
(Equation (2)).

ϕ(v1) + ϕ(v2) + ϕ(v3) + · · ·+ ϕ(vm) = 1 (2)

3.2. Augmented Reality

The AR experience environment is classified into a method that involves wearing a
dedicated HMD or glasses for AR/MR and a method that uses a mobile device. This study
proposes a mobile platform-based experience environment and interface in order to reduce
the user’s equipment cost and configure an experience environment that is easy to access.
Compared with the experience environment of VR users, the experience environment of
AR users provides relatively low immersion. However, it has no spatial restrictions, and
AR users have the advantage of being able to freely control and explore virtual scenes.
Therefore, this study provides interactions with various actions and viewpoints by adopting
the characteristics of the AR experience environment. The AR user interface comprises the
following three stages.

1. Handwriting is input by interacting with the screen in a mobile platform environment.
2. Alphabet characters that directly link the input text to the mode transition action are

defined based on the EMNIST dataset.
3. The defined interactions are performed by recognizing and inferring the handwritten

input text using a CNN learning model.

The mobile platform interface is primarily based on touch screen input and interacts
through input methods such as touch, drag, and swipe or through GUI elements such as
buttons and menus. This study designs a text interface that interacts with virtual environ-
ments, objects, and VR users. The proposed interface performs various mode transition
actions in a general structure while minimizing the existing touch input and GUI. This
interface enhances the ease of learning and use by drawing the user’s handwriting; in
addition, it provides an experience environment and interactions consistent with use of
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the alphabet input by VR users. The handwriting is drawn by connecting the coordinates
of the fingertips in order with a line. Here, the line properties (width, color, etc.) are ad-
justed by considering the font properties of the EMNIST dataset used for recognizing
handwriting [42].

The proposed text interface inputs alphabet text by drawing the user’s handwriting.
The text interface utilizes deep learning to recognize and infer the handwriting, then links it
to various mode transition actions easily and quickly using a minimum set of GUI elements.
Accordingly, this study utilizes the extended MNIST (EMNIST) to design the recognition of
handwritten text input from the text interface. The EMNIST extended the MNIST (Modified
National Institute of Standards and Technology database) dataset, which consists of num-
bers, to consider alphabets as well. The EMNIST dataset images, comprising a collection of
handwritten alphanumeric characters, were converted to a 28 × 28 pixel image format. The
training set consists of 697,932 images and the test set of 116,323 uppercase and lowercase
alphabets and numbers 0–9 that map to their corresponding classes. Each image represents
the intensity value of 784 pixels (28 × 28 grayscale pixels), ranging from 0 to 255. The test
and training images have a white foreground and a black background, respectively, and
consist of a combination of 62 characters: 10 numbers from 0 to 9 and 26 alphabet letters in
both upper and lower cases [43,44].

In addition, the AR user interface adopts a CNN for fast and accurate interactions that
link the handwritten text to mode transition actions. The user’s handwriting is recognized
accurately by training the CNN with the EMNIST data and via the inference made by the
CNN. However, because AR users participate in the asymmetric virtual environment with
their mobile devices, the CNN structure of Mor et al. [45] was adopted because it can be
effectively applied to a mobile platform. This CNN structure is based on a CNN consisting
of two convolutional layers and one dense layer to develop an Android handwritten
text classification app for the EMNIST classification. Figure 4 illustrates the process of
recognizing and inferring the handwriting input from the AR user text interface based on
the information learned by training the CNN model with the EMNIST dataset. The diagram
of the CNN model applied to the text interface consists of eight layers, beginning with the
reshape layer that converts the handwriting image stored at 256 × 256 pixel resolution into
a 28 × 28 pixel image using two convolutional layers, a Maxpooling layer, a flatten layer,
dense and dropout layers, and the output layer.

Figure 4. Text interface input method and the inference process using the deep learning model.

Similar to the gesture interface, the text interface adopts the softmax function as the
activation function (Equation (1) and (2)). However, the text interface comprises 62 neurons
(classes) corresponding to numbers 0–9 and letters A–Z in the upper and lower cases, as
it utilizes the EMNIST database. Here, processing is required in order to infer the actions
that correspond to n alphabet letters. Algorithm 1 summarizes the process of selecting
and determining one of the n actions (alphabet) defined by us from the 62 classes. This
determines whether the proposed action can be performed by selecting an alphabet letter
with a high probability among the inferred probability values.
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Algorithm 1 Process for calculating the probability of inferring the AR user’s action.

1: procedure RECALCULATION OF PROBABILITIES FOR THE DEFINED ACTIONS

2: pj, (for j = 1, . . . , 3) ← Top 3 alphabet class probabilities among ϕ(vi), (for

i = 1, . . . , 62).

3: αk, (for k = 1, . . . , n)← Alphabet letters corresponding to n actions (uppercase and

lowercase are distinguished. if there are 7 actions, n = 2 ∗ 7 = 14).

4: p′j = pj ∗ w←Weight is applied if the alphabet letter same as αk is in the j-th class.

5: p′x = max(p′x + p′y, 1.0) ← Accumulate the two probabilities if the x-th alphabet

letter and the y-th alphabet letter are the same, except the letter cases are different (the

probability should not exceed 1.0).

6: Update the calculated p′j value in ϕ(vi).

7: end procedure

Similar to VR interaction, the AR interaction defines mode transition actions that
correspond to seven texts. If the user inputs one of the defined alphabet text via handwriting,
the CNN infers the handwriting. Then, one of the mode transition actions corresponding to
the input text is directly performed without interacting with a separate GUI.

3.3. Metaverse Experience Environment

An asymmetric virtual environment in which all users participate together is built
based on the VR user’s gesture interface and the AR user’s text interface. All users have
independent roles in the same virtual space. They can perform actions such as collaboration
and exchange to achieve common goals. To present an experience environment where both
VR and AR users can perform various roles and actions using an input method with a mini-
mum set of GUI in the asymmetric virtual environment of this study, we design a structure
in which the proposed interface controls the actions that effectively changes the mode (e.g.,
movement, settings, communication, gathering, implement, picture, etcetera). The key is to
maintain a consistent interface with a uniform input pattern using the alphabet, regardless
of the platform used by the users participating in the asymmetric virtual environment.
This concept is similar to that of shortcut keys used for quick commands in many software
applications. Although users need to learn the shortcut keys, they are convenient and easy
to use when the users become familiar with them. This characteristic of shortcut keys was
applied to the proposed interface.

This study adopts a virtual farm as the background and classifies VR users and AR
users by considering the possible activities and roles on the farm as an example. In addition,
the same seven types of mode transition actions are defined for all users. Figure 5 presents
the process by which each user performs the seven mode transition actions using the
proposed interface. A gesture made by a VR user and a text input by an AR user are
recognized and inferred via deep learning based on the seven defined gestures for VR users
and the seven defined texts for AR users. Then, the mode transition action corresponding
to the recognition and inference result is performed. The defined mode transition actions
are communication, settings, back, movement, gathering, implement, and picture. The
alphabet letters C, S, B, M, G, I, and P are adopted as the input for these actions. The seven
mode transition actions are described as follows.

1. Communication: A chat mode for users. Users can communicate with each other by
exchanging messages preset using a macro function.

2. Settings: In this mode, users can change settings for the virtual environment.
3. Back: Cancel or return mode. Users can cancel the current input or action or return to

the previous state.
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4. Movement: In movement mode, VR users move through portals, and AR users create
3D avatars and move them with a virtual joypad.

5. Gathering: In gathering mode, users can collect objects in the virtual environment.
VR users use their hands to grab objects, and AR users select objects by touching
the screen.

6. Implement: A tool operation mode for manipulating and controlling virtual ob-
jects. Again, VR users interact using their hands and AR users interact by touching
the screen.

7. Picture: A sharing mode in which users can share the scene they see with other users.

Figure 5. Process by which VR and AR users perform the mode transition action based on the
proposed interface via deep learning: (a) VR user and (b) AR user.

The inferring of the seven types of actions and the alphabet letters corresponding to
them is determined according to the highest probability value calculated using Equation (1).
Here, the number of output nodes (m) refers to the seven types of action. However, for AR
users the probability values are updated using Algorithm 1, based on the seven actions and
the alphabet texts corresponding to these actions from the 62 classes. Through this process,
a single action is selected. If the calculated probability value is less than 80%, the input
gesture or text is considered inaccurate, and the mode transition action is not performed.

Figure 6 presents the result of creating the proposed DAVE experience environment
via the process illustrated in Figure 5. In this study, commercial graphic resources were used
for the 2D GUI and 3D objects required for content creation of the metaverse experience
environment [46–48]. This example illustrates the process of experiencing the virtual farm
via the adoption of various mode transition actions. The important point is that this process
is not limited to the seven types of actions and alphabet letters presented in Figure 5,
including the corresponding gestures (VR users) and texts (AR users). However, it is
scalable, such that it can be modified or customized in various ways according to the
application field and application methods.

Figure 6. Results of creating an asymmetric experience environment with a virtual farm background:
(a) Results of creating the virtual environment and the experience process, (b) VR user, (c) AR user.
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4. Experimental Results and Analysis

The deep learning model applied to the proposed interface was implemented using
Anaconda 3, conda 4.6.12, and TensorFlow 3.6.8. The experiment for the training model
was implemented in the Unity 3D engine using the TensorFlowSharp 1.15.1 plug-in [49].
In addition, the DAVE experience environment, in which VR and AR users participate
together, as well as the content, were developed using Unity 2019.2.3f1(64bit), Oculus SDK,
and Vuforia 9.7. VR users used Oculus Quest 2 HMDs to interact, and AR users used
Samsung Galaxy S20+ mobile devices to interact. Finally, the PC used for the integrated
development environment and experiment was equipped with an Intel Core i7-6700, 16GB
RAM, and a GeForce 1080 GPU. Figure 7 presents the process in which VR and AR users
participate in the DAVE experience environment. The environment was configured with
sufficient space (1.5 m × 1.5 m) for a VR user to experience DAVE while comfortably
sitting on a chair or standing. For AR users, the environment was configured with a roomy
space (2 m × 2 m) for the user to freely control virtual objects on the image target.

Figure 7. Configuration of the DAVE experience environment where VR and AR users participate.

A survey experiment was conducted with users in the experience environment shown
in Figure 7 to comparatively analyze the user experience of the proposed interface and
presence experienced by the user. The participants consisted of ordinary people who have
had experience with interactive content, including VR and AR, as well as computer science
students and researchers with development experience. The participants understand the
process of interacting with content using traditional GUI methods, and they had the
knowledge and experience to compare their experiences of the proposed interface. The
purpose of the survey comprised three main parts. First, we checked whether the new type
of interface optimized for the platforms and utilizing deep learning is easy to learn, easy
to use, and satisfying to the user. In addition to overall satisfaction, we checked whether
it provides a satisfying experience for all users with each action, role, and interaction
considering the differences in the experience methods and platforms between VR and
AR users. Finally, we compared whether the AR user and VR users were both able to
experience enhanced presence in the immersive experience environment. The survey
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participants experienced the virtual farm content once in VR and once in AR, and the order
of experience was arranged such that ten participants experienced VR first while the other
ten participants experienced AR first. This was intended to reduce any difference in the
survey results owing to the order of experience.

The first survey experiment compared and analyzed the satisfaction level of the VR
and AR users with their respective interfaces. The participants in the first survey comprised
twelve people (male: eight, female: four) between the ages of 22 and 39. Interactions via
the proposed interface provided users with a convenient experience by allowing them
to directly interact with the virtual environment or objects with a minimum GUI set and
without additional equipment. Accordingly, values were recorded on a 7-point scale based
on the four categories, including 30 questions from A. Lund’s USE (Usefulness, Satisfaction,
and Ease of use) questionnaire [50]. Table 1 presents statistical data based on the survey
results. It was confirmed that the proposed gesture and text interface showed improved
results compared to the traditional GUI method in usefulness, ease of use, and overall
satisfaction. However, in the case of ease of learning, most of the survey participants took
time and time to learn a new structure to perform actions in a new way, such as taking a
gesture or entering text, while they familiar with the traditional GUI. In addition to this
extra required effort, the proposed interface showed relatively low results. Nevertheless,
the results when calculating statistical significance using one-way analysis of variance
(ANOVA) confirmed that there were no meaningful differences in any factors or cases.
Although the proposed interface using deep learning for each user affected the overall
improvement in satisfaction compared to the traditional GUI, it did not have a significant
difference. However, it was judged that even a sufficiently significant difference could
be induced if it was improved in such a way that it went through a sufficient adaptation
process, such as shortcut keys, or was mixed with the traditional GUI.

Table 1. Comparative analysis result for satisfaction between the proposed interface using deep
learning and the traditional GUI method.

VR AR

Traditional GUI Gesture Interface Traditional GUI Text Inferface

Mean (SD)

usefulness 5.813 (1.093) 6.021 (1.128) 5.802 (0.844) 6.156 (0.271)

ease of use 5.705 (1.054) 5.712 (1.342) 6.129 (0.770) 6.235 (0.445)

ease of learning 6.146 (0.681) 5.854 (1.431) 6.417 (0.562) 6.396 (0.710)

satisfaction 5.774 (1.223) 6.274 (1.093) 5.929 (1.095) 6.464 (0.535)

Pairwise Comparison

usefulness F (1, 22) = 0.195, p = 0.664 F (1, 22) = 1.757, p = 0.199

ease of use F (1, 22) = 0.0002, p = 0.988 F (1, 22) = 0.157, p = 0.696

ease of learning F (1, 22) = 0.373, p = 0.548 F (1, 22) = 0.006, p = 0.940

satisfaction F (1, 22) = 1.022, p = 0.323 F (1, 22) = 2.126, p = 0.159

VR gesture interface vs. AR text interface

usefulness F (1, 22) = 0.150, p = 0.702

ease of use F (1, 22) = 1.504, p = 0.233

ease of learning F (1, 22) = 1.265, p = 0.273

satisfaction F (1, 22) = 0.296, p = 0.609

The second survey experiment analyzed presence based on immersion. The partici-
pants in the second and last survey comprised twenty people (male: eleven, female: nine)
between the ages of 20 and 53. By analyzing the characteristics of the user’s experience
environment and appropriately designing roles, actions, as well as through the communi-
cation between users that are suitable for these characteristics, this study assumed that all
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users would be satisfied with the presence they experienced. Therefore, a survey experi-
ment was conducted to verify this assumption. The survey participants recorded values
for nineteen questions of the presence questionnaire by Witmer et al. [51] on a 7-point
scale. Table 2 presents the comparative analysis result of the detailed categories based
on the recorded values. Generally, the overall satisfaction level of the VR users was high
because they interacted directly in the virtual space. However, differences were found in
detailed categories according to the experience environment. In the VR case, realism and
the possibility of examination, which is related to manipulation, were high because the
VR users interacted with the virtual environment and objects using their hands without
additional equipment such as a controller. For AR, users could easily adapt to the interface,
and their satisfaction with the interface was high. Owing to these characteristics, it was
easy to predict actions or adapt to situations. Consequently, high values were recorded
for the possibility of acting, quality of the interface, and self-evaluation of performance. It
was confirmed that the presence results, which the AR and VR users were both satisfied
with, could be improved if the experience environment was designed based on an interface
suitable for the experience environment and platform. In addition, the result obtained when
calculating statistical significance using one-way ANOVA confirmed that there were no
meaningful differences in presence for all categories.

Table 2. Comparative analysis result of presence experienced by each user in asymmetric experience
environment (DAVE).

VR AR

Mean (SD)

total 6.132 (0.390) 6.092 (0.471)

realism 6.143 (0.593) 6.050 (0.545)

possibility to act 5.900 (0.718) 5.988 (0.731)

quality of interface 6.300 (0.526) 6.433 (0.507)

possibility to examine 6.400 (0.663) 6.067 (0.478)

self-evaluation of performance 5.900 (0.718) 5.975 (0.798)

Pairwise Comparison

total F (1, 38) = 0.059, p = 0.809

realism F (1, 38) = 0.253, p = 0.618

possibility to act F (1, 38) = 0.139, p = 0.712

quality of interface F (1, 38) = 0.633, p = 0.431

possibility to examine F (1, 38) = 3.156, p = 0.084

self-evaluation of performance F (1, 38) = 0.093, p = 0.762

The last survey experiment was the analysis result of social presence. This experiment
analyzed users’ presence and experience via interactions and social relationships estab-
lished when VR and AR users participated in the virtual environment together using the
DAVE experience environment based on the proposed interface. Three factors (behavioral
interaction, mutual assistance, dependent action) of behavioral engagement among the
dimensions of the Networked Minds Measure of Social Presence [52] questionnaire were
utilized to check the behavioral experience between users. The values of the social presence
questionnaire were recorded on a 7-point scale, and statistical analysis was performed
based on the result values. Table 3 presents the result of the social presence questionnaire.
VR and AR users performed predefined actions using their respective interfaces. During
this process, they had social relationships, such as cooperation and sharing. However, dif-
ferences may exist in the shared information or the results of actions, such as collaboration
and dependence, owing to differences in their experience environments. The experience
environment proposed in this study is based on collaboration between VR and AR users.
Hence, it can be confirmed that they affect each other during the interaction process. In
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the VR case, relatively high values were recorded for mutual assistance because VR users
performed their actions based on help from AR users, because AR users can observe the
overall situation and make decisions based on it. For AR, high values were recorded for
dependent action owing to the ability of VR users to change scenes and scenarios by inter-
acting directly with the virtual environment and objects, while AR users performed actions
depending on these changes. The results obtained when calculating statistical significance
using one-way ANOVA confirmed that there were no significant differences in any factors.

Table 3. Analysis results of social presence via the interactions between users in the asymmetric
experiment environment (DAVE).

VR AR

Mean (SD)

behavioral interaction 4.508 (0.777) 4.500 (0.850)

mutual assistance 4.700 (0.897) 4.675 (0.926)

dependent action 3.975 (1.978) 4.050 (2.018)

Pairwise Comparison

behavioral interaction F (1, 38) = 0.001, p = 0.975

mutual assistance F (1, 38) = 0.007, p = 0.933

dependent action F (1, 38) = 0.013, p = 0.909

The last experiment confirmed the accuracy of gesture or text inference in the process
of performing seven actions through an interface using deep learning. For this purpose, we
recorded whether accurate actions corresponding to the user’s intended input (gesture or
text) were inferred at the same time when the user experienced the content in the process
of the survey experiment. Table 4 shows the results from calculating the interface accuracy
of VR and AR users, respectively, along with the corresponding actions (alphabet B, C, G, I,
M, P, and S) and inferred probability values.

Table 4. Accuracy analysis result in the action inference process (unit: %).

C S B G M I P

VR user’s getsture inferface

basic accuracy 100 100 90.7 97.8 97.9 98.6 99.5
threshold (10%) 100 100 97.7 99.4 98.8 99.7 100

AR user’s text inferface

basic accuracy 72.7 66.0 92.0 85.3 89.3 66.7 97.1
recalculation
(Algorithm 1) 97.3 99.3 98.0 96.7 91.3 94.0 98.7

Regarding the results of the accuracy analysis, first, the basic accuracy was high be-
cause the VR users implemented only the seven gestures corresponding to the defined
actions through the manual alphabet. In the gesture image inference process of the ges-
ture interface, a threshold value was applied to the difference between the two gestures
(alphabetic) with the highest inferred value. This study implemented a filtering process
when a similar or ambiguous gesture was input by applying the process of recalculating
the inference when the difference between the upper two inference values was less than
the threshold. As a result of the experiment, it was confirmed that improved accuracy
results were obtained when the threshold was applied at 10%. It can be seen that AR
users show lower accuracy compared to VR users, as they infer using all of the alphabet
collections (62 characters: 10 numbers from 0 to 9 and 26 alphabet letters both in upper
and lower cases) provided by EMNIST. For example, in the case of I, the handwritten text I
is recognized as the number 1 or the lowercase text l (L) of the alphabet, which causes a
problem in that the incorrect answer rate increases. Therefore, we tried to solve this problem
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through the probability recalculation procedure of Algorithm 1. As a result of calculating
the accuracy by applying Algorithm 1, it was confirmed that similar or ambiguous hand-
written texts showed improved results. If these points are comprehensively considered
and learning is conducted by newly combining input (gesture and text) suitable for the
content to be produced, we judge that the inconvenience of the interface due to accuracy can
be prevented.

5. Limitations and Discussion

A few limitations or inconvenient factors exist in the interactions made by VR and
AR users who participate in the asymmetric virtual environment. For example, VR users
wearing the Oculus Quest HMD can use their hands to control the virtual environment
or objects directly; however, they cannot enter keys because they do not have any input
device, such as a controller. They are limited in performing actions and altering various
modes as well. For mobile platform AR users, providing various functions complicates
the GUI. This could be a factor that causes inconveniences to AR users, who quickly and
easily interact in the experience environment where multiple users participate. Accordingly,
further research is required on a novel interface that considers characteristics such as
the user’s experience environment, platform, and equipment in an asymmetric virtual
environment. Nevertheless, there are limitations or factors that need to be improved in the
proposed interface in terms of its effectiveness. For example, a difficult or unfamiliar gesture
can require separate training, as can cases in which each user has different handwriting
in the handwriting process. Therefore, in order to address these limitations, we intend
to improve the deep learning-based interface technology, which includes combining the
gesture and text functions with voice.

The proposed interfaces and interactions can be adopted in various industries, such as
games and education for immersive experiential metaverse content. Ultimately, we attempt
to present a novel direction through which these interfaces and interactions can be applied
as the interface technique in the development of the metaverse technology, as well as in
a new experience environment where users of various platforms participate. Therefore,
an example of metaverse content was created for a purpose other than the virtual farm
experience environment which comprises the seven mode transition actions mentioned
above. Figure 8 presents the results obtained from the content we created, consisting of
five types of actions: communication (C), description (D), selection (S), movement (M),
and back (B). The content allows users to cooperate with each other to achieve educational
goals on the theme of eco-friendly life education (saving electricity, recycling, etcetera).
The interface operates similarly to the previous experience environment; only the alphabet
letters used for gestures and handwritten texts were changed.

Figure 8. Results obtained from creating educational content by applying the DAVE experience
environment: (a) content scene, (b) VR user, (c) AR user.

In addition, the primary purpose of the proposed DAVE is to build an asymmetric
experience environment for several users, not just one VR user and one AR user, as well
as for various platforms such as PCs and mobile devices. Therefore, the breadth of user
participation, roles, and communication between users should be expanded to an expe-
rience environment for several users. Furthermore, in addition to the content created for
the experiment, other content can be created via various plans to verify that DAVE can be
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applied to various fields, such as manufacturing and medical service. We intend to conduct
comparative analysis studies on the experience environment and user experience using
existing studies, such as existing social VR platforms, that enable flexible user participation
through VR HMD, mobile/tablet, and PC [53]. In this way, DAVE can be developed to
present a new user-centered experience environment.

6. Conclusions

In this study, a novel deep learning-based interface was designed by considering char-
acteristics such as the user’s platform and experience environment in an asymmetric virtual
environment where VR and AR users participate together. We proposed a novel experience
environment called DAVE which can provide an experience and presence that satisfies
all users. For VR users wearing an HMD with a hand tracking function, we designed a
gesture interface that directly links real hand gestures to various mode transition actions
via virtual hand gestures in order to interact with virtual environments, objects, and users.
Regarding AR, a virtual environment was superimposed on an actual image captured by a
mobile camera. An AR user exploring and experiencing the general virtual environment
can interact with the virtual environment and other users as well as perform various mode
transition actions via the text interface. The text interface draws the handwritten text based
on the touch-based input method of the mobile platform. We adopted deep learning in
order to directly link the text input to action. Using this process, all users can perform
interactions and roles suitable for their experience environment. Accordingly, they are
provided with a satisfying interface, experience, and presence. To analyze these, a survey
was conducted to compare the VR and AR experience environments, and the obtained
results verified that all users were satisfied. Consequently, if users can directly learn and
adapt to the proposed interface as a shortcut key, it is expected that the novel experience
environment would be able to provide satisfying experiences and interactions.
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