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Abstract: Alzheimer’s disease is the most common cause of dementia and is a generic term for
memory and other cognitive abilities that are severe enough to interfere with daily life. In this
paper, we propose an improved prediction method for Alzheimer’s disease using a quantization
method that transforms the MRI data set using a VGG-C Transform model and a convolutional
neural network (CNN) consisting of batch normalization. MRI image data of Alzheimer’s disease
are not fully disclosed to general research because it is data from real patients. So, we had to find
a solution that could maximize the core functionality in a limited image. In other words, since it is
necessary to adjust the interval, which is an important feature of MRI color information, rather than
expressing the brain shape, the brain texture dataset was modified in the quantized pixel intensity
method. We also use the VGG family, where the VGG-C Transform model with bundle normalization
added to the VGG-C model performed the best with a test accuracy of about 0.9800. However, since
MRI images are 208 × 176 pixels, conversion to 224 × 224 pixels may result in distortion and loss
of pixel information. To address this, the proposed VGG model-based architecture can be trained
while maintaining the original MRI size. As a result, we were able to obtain a prediction accuracy of
98% and the AUC score increased by up to 1.19%, compared to the normal MRI image data set. It is
expected that our study will be helpful in predicting Alzheimer’s disease using the MRI dataset.

Keywords: Alzheimer’s disease; batch normalization; CNN; VGG-C Transform

1. Introduction

Alzheimer’s disease is the most common stage of dementia, requiring extensive
medical attention. Early and precise analysis of AD prediction is required for initiation of
clinical progression and effective patient treatment [1]. AD is a chronic neurobiological brain
disorder that continuously kills brain cells and causes deficits in memory and thinking skills,
eventually accelerating the loss of the ability to perform even the most basic tasks [2]. In the
early stages of AD, doctors use neuroimaging and computer-aided diagnostic approaches
to classify the disease. According to the World Alzheimer’s Association’s most recent
census, more than 4.7 million people over the age of 65 in the United States have survived
the disease [3]. The report also predicts that around 60 million people will be affected by
AD within the next 50 years. Worldwide, AD accounts for about 60–80% of all forms of
dementia, and there is a 60% chance that one dementia patient every 3 s, due to AD [4].
Alzheimer’s dementia is divided into:

- Mild cognitive impairment: while generally affected by a memory deficit in many
people as they age, in others it leads to problems with dementia.

- Mild dementia: Cognitive impairment that sometimes affects their daily life is found
in people with moderate dementia. Symptoms include memory deficits, uncertainty,
personality changes, feelings of loss, and difficulty performing daily tasks.

- Moderate dementia: daily life becomes much more complex, and patients require
special care and support. Symptoms are comparable to mild dementia but somehow
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get worse. People may need more help, even combing their hair. They can also show
significant personality changes; for example, they become paranoid or irritable for no
reason. Sleep disturbances are also likely to occur.

- Severe Dementia: At this stage, symptoms may worsen. These patients may lack com-
munication skills and may require full-time treatment. The bladder can’t be controlled,
and you can’t do small activities, such as sitting in a chair with your head raised and
maintaining a normal posture. Various research paradises have been conducted to
slow the abnormal degeneration of the brain, reduce medical expenses, and improve
treatment. According to nih.gov’s “Alzheimer’s Disease Fact Sheet”, the failure of
recent AD research studies may suggest that early intervention and diagnosis may
be important for the effectiveness of treatment [5]. Various neuroimaging methods
are increasingly reliant on early diagnosis of dementia, which is reflected in many
new diagnostic criteria. Neuroimaging uses machine learning to increase diagnostic
accuracy for various subtypes of dementia [6].

Implementing a machine learning algorithm requires specific preprocessing steps.
Feature extraction and selection, feature dimension reduction, and classifier algorithms
are all steps in the machine learning-based classification process [7]. These techniques
require advanced knowledge and several optimization steps, which can be time consuming.
Recently, early detection and automatic AD classification [8] have emerged, resulting in
large-scale multimodal neuroimaging results. Other methods of AD research include MRI,
positron emission tomography (PET), and genotype sequencing results. Analyzing different
modalities to make a decision is time consuming. In addition, patients may experience
radioactive effects with modalities, such as PET [9]. It is considered important to develop
better computer-aided diagnostic systems that can interpret MRI [10] images to identify
patients with AD. Existing deep learning systems use cortical surfaces to input CNNs to
perform AD classification on raw MRI images [11].

The important contributions of this study are:

1. As mentioned above, the method of diagnosing AD on MRI images compares the size
of the hippocampus. However, due to the nature of the existing CNN model, it is
difficult to detect because it is not sensitive to image dispersion. Therefore, additional
processing of the color space of the image is required.

2. For Z-score normalization, the interval to which each pixel belongs is converted
to [−1, 1], and for min–max, it is converted to [0, 1]. During the computation of
the convolutional neural network, the pixel intensity of [0, 255] is adjusted for fast
convergence and accurate feature extraction.

3. The size space of pixels constituting the Alzheimer’s MRI data set is [0, 255]. Among
them, patients with AD with reduced hippocampus will have more pixels close to
zero than normal people. On the premise of this, the average value of pixel intensities
in each MRI image is set as a threshold value. Alzheimer’s should recognize changes
in size contraction rather than changes in brain function. Based on this information, it
is necessary to set the space as an important feature for the color information of MRI
rather than a feature representing the shape of the brain.

4. Among the VGG family, the VGG-C Transform model with batch normalization
added to the VGG-C model showed the highest performance with a test accuracy
of about 0.9999. However, since the size of the MRI image is 208 × 176, distortion
and loss of pixel information occur in the process of resizing to 224 × 224. Therefore,
we propose a VGG model-based architecture that can learn while maintaining the
original MRI size. Existing CNNs report high performance for images with the same
aspect ratio. This is because images in the real world vary in size and need to be
transformed into fixed-size metrics to learn through CNN. However, since all images
in a given data set have the same aspect ratio, it is important to find input values of
appropriate size. Moreover, due to the data imbalance problem, the AUC score is
used as an evaluation indicator. The rest of the paper is arranged as follows: Section 2
describes the related studies. The proposed method is explained in Section 3. Section 4
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summarizes the results. The discussion is presented in Section 5, and the conclusion
is given in Section 6.

2. Related Work

It is believed that deep learning focuses on its use in the diagnosis of AD. Several
in-depth study methods have recently been proposed to help diagnose AD and help
physicians make informed health decisions. In this section, we present some studies that
are closely related to our study. Lu nar. [12] proposed a multimodal deep neural network
with a multi-step technique for identifying people with mental disabilities. The method
has an accuracy of 82.4% in patients with mild cognitive impairment (MCI) and AD within
three years. The model has a sensitivity of 94.23% in the AD category and an accuracy of
86.3% in the non-dementia category. Using ADNI and the National Center for Dementia
Research (NRCD) data sets, Gupta nar. [13] proposed a diagnostic method for classifying
ADs using cortical, subcortical, and hippocampal region features from MRI images with
an accuracy of 96.42%. AD and healthy control (HC). Ahmed et al. [14] proposed a CNN
model of a character extractor and a SoftMax classifier to diagnose AD. This model uses
the right and left hippocampal sections on MRI to prevent overload and has an accuracy
of 90.05%. Bashar nar. [15] developed a method of localization of the target region from
a large MRI scale to automate the process. Based on the left and right hippocampus, this
method achieves 94.82% and 94.02% accuracy, respectively.

Navaz nar. [16] proposed a pre-prepared Alexnet model to classify the stages of AD
to solve the class imbalance model. The prefabricated model is used as a feature sorting
device and is classified with the highest accuracy of 99.21% using support vector machine
(SVM), k-nearest neighbor (KNN) and random forest (RF). Ieracitano et al. [17] proposed
a data-based approach to differentiate subjects with AD, MCI, and HC by analyzing non-
invasive EEG recordings. The energy spectral densities of the 19-channel EEG traces reflect
their corresponding spectral profiles on a two-dimensional gray image. The CNN model is
then used to classify binary classes and multi-categories from 2D images with 89.8% and
83.3% accuracy. Jain sun. [18] used the pre-prepared VGG16 model for feature unpacking,
which uses “FreeSurfer” library for pre-processing, selection of MRI slices using entropy,
and classification using a transfer training called PFSECTL mathematical model. Using the
ADNI database, the researchers classified normal control (NC), early mci (EMCI), and late
mci (LMCI) with a 95.73% accuracy. Mehmood sun. [19] used tissue segmentation to extract
gray matter (GM) from each subject. This model achieves a classification accuracy of 98.73%
for AD and NC and 83.72% for EMCI and LMCI patients. Shi et al. [20] proposed a deep
multi-member network that works well for small and large data sets to diagnose AD. The
model uses an ADNI data set with an accuracy of 55.34% in both binary and multi-class.
Liu et al. [21] proposed the Siamese neural network to study the ability to differentiate all
brain volume inequalities.

The team used a unique nonlinear nuclear approach to normalize features and elimi-
nate package effects in the data set and population, while using MRI Cloud processes to
create low-dimensional volume characteristics in a predetermined atlas brain structure.
Networks use the ADNI data set to achieve a balanced accuracy of 92.72% in the MCI
and AD categories. Van et al. [22] introduced a 3D ensemble model integration with AD
and MCI using a collapsible grid method. The 3D-DenseNets were optimized using a
probability-based melting method. This model uses ADNI data sets to achieve 97.52% class
accuracy. Shankar nar. [23] used the wolf solution optimization method with the decision
tree, KNN, and CNN models to diagnose AD with an accuracy of 96.23%. Jangel and
Rator [24] proposed a pre-prepared VGG16 to extract AD features from the ADNI database.
In their classification, they used clusters and decision tree algorithms meaning SVM, Linear
Discriminate, and K. Their method had a 99.95% accuracy of functional MRI images and an
average of 73.46% accuracy of PET images. Ge et al. [25] proposed a 3D multidimensional
in-depth learning architecture to learn the features of AD. On a randomly isolated brain
scanned data set of the subject, the system achieved an experimental accuracy of 93.53%
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and an average accuracy of 87.24%. Wang [26] introduced the Spike Convolutional Deep
Boltzmann Machine model for early detection of AD with a multi-task learning technique to
prevent hybrid mapping and over-tuning. Sarraf et al. [27] introduced an in-depth training
line trained with multiple training drawings to perform specific classifications on scale and
transition invariant processes. The model achieved 94.32% and 97.88% for functional MRI
and MRI imaging. Preferred sun. [28], using data extension system, solved the problem of
class imbalance in the detection of AD, achieving a classification accuracy of 98.41% in one
view of the OASIS data set and 95.11% in 3D imaging.

Table 1 provides an overview of the literature study, and accordingly, many techniques
have been proposed for classifying AD using machines and in-depth learning methods.
However, high design parameters and class imbalances in the multi-category AD category
remain a problem. To solve this problem, we proposed a CNN model with few parameters.
We used the SMOTE [29] technique to resolve data classification imbalances, and our
proposed model can accurately identify and predict the four stages of dementia that may
lead to AD.

Table 1. A summary of the literature survey.

Ref. Method Author’s Name No. of. Classes Accuracy (%)

[12] Multiscale deep learning Lu nar Binary Class
(AD vs. HC) 82.4

[13] Combined feature
technique Gupta nar Binary Class

(AD vs. HC) 96.42

[14] Ensemble model Ahmed et al. Binary Class
(AD vs. HC) 94.03

[17] 2D CNN Ieracitano et al. Binary Class
(AD, MCI) 89.8

[18] CNN Jain sun Three class
(NC, EMCI, LMCI) 95.73

[19] Transfer Learning Mehmood sun Binary class
(AD vs. NC) 98.73

[20] Deep polynomial network Shi et al. Multiclass
(AD vs. NC) 55.34

[21] Siamese network Liu et al. Binary class
(MCI vs. AD) 92.72

[22] 3D CNN Van et al. Binary class
(AD vs. MCI) 97.52

[24] VGG16 Jangel and Rator Binary class
(AD vs. NC) 73.46

[25] 3D CNN Ge et al. Binary class
(AD vs. NC) 93.53

[28] 3D View model Preferred sun Binary class
(AD vs. NC) 95.11

3. Materials and Method

Alzheimer’s disease can be diagnosed by magnetic resonance imaging (MRI) of the
brain [10]. In general, AD is diagnosed when the size of the hippocampus shown on
the cerebral cortex is smaller than that of a normal person. MRI data set provided the
information about the size of each patient’s hippocampus. However, due to the shape of the
human brain, the AD machine learning model requires a great deal of complexity. Given a
set of data, there is a major problem of information imbalance. As shown in Figure 1, of
Kaggle, MildDementia has 717 units, Moderate Dementia has 52 units, NonDementia has
2560 units, and VeryMild Dementia has 1792 units.
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3.1. Data Preprocess

As mentioned above, the method of diagnosing AD on MRI images [30] is to compare
the size of the hippocampus. However, due to the characteristics of the existing CNN
model, it is difficult to detect it because it is not sensitive to the variance of the image.
Therefore, additional processing for the color space of the image is required. Moreover, this
is a grayscale image, but it is stored as a 3D RGB value, so it needs to be converted to 2D.
Therefore, additional processing for the color space of the image is required. To this end,
the following activities have been proposed and implemented, as shown in Figure 2.

In the case of Z-score standardization, the section to which each pixel belongs is
converted to [−1, 1], and in the case of min–max, it is converted to [0, 1]. The pixel
intensity of [0, 255] is scaled for fast convergence and accurate feature extraction during
the computation of the convolutional neural network. Pixels constituting the Alzheimer’s
MRI dataset have a size space of [0, 255]. Among them, Alzheimer’s patients with reduced
hippocampus will have more pixels close to zero as compared to those of the normal people.
Based on this premise, the average value of pixel intensity in each MRI image is set as the
threshold. Alzheimer’s should recognize changes in size contraction rather than changes
in brain features. Based on this information, it is necessary to set the empty space as an
important feature for the color information of the MRI rather than the feature representing
the shape of the brain. Therefore, Figures 3–6 show examples of brain structure dataset
changed to the Quantization Pixel intensity methodology.
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3.1.1. Scaling

Z-score is a variation of scaling that represents the number of standard deviations
away from the mean. z-score is usually used to ensure that the feature distributions have
mean = 0 and std = 1. It is useful when there are a few outliers, but not so extreme that you
need clipping. One of the major sources of confusion between scaling and normalization is
when the terms are sometimes used interchangeably and very similar. In both cases, it is
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necessary to transform the values of numeric variables so that the transformed data points
have specific helpful properties. The difference is that, in scaling, you are changing the
range of your data, while in normalization, you are changing the shape of the distribution
of data. In the case of Z-score standardization, the section to which each pixel belongs is
converted to [−1, 1], and in the case of Min–Max normalization, it is converted to [0, 1].
The pixel intensity of [0, 255] is scaled for fast convergence and accurate feature extraction
during the computation of the convolutional neural network.
Scaling A. Z-score

Z − score =
data − mean(data)

std(data)
(1)

Min Max =
data − min(data)

max(data)− min(data)
(2)

3.1.2. Quantize Pixel Intensity

Pixels constituting the Alzheimer’s MRI dataset have a size space of [0, 255]. Among
them, Alzheimer’s patients with reduced hippocampus will have more pixels close to zero
than normal people. Based on this premise, the average value of pixel intensity in each
MRI image is set as the threshold.

Quentized data = i f data[i] ≥ threshold, then data[i] := 255
else data[i] := 0

(3)

The metrics used to analyze the study’s outputs included precision, recall, F-Score, and
accuracy. These metric values were computed using the confusion matrix. These metrics’
equations are:

Accuracy (%) = (TP + TN)/(TP FP TN FN) (4)

Precision (PPV) = TP/(TP FP) (5)

Recall = TP/(TP + FN) (6)

F − score = 2(Percision ∗ Recall) Percion + Recall (7)

3.1.3. ConvNet Configuration

The deep learning model used in the experiment was conducted based on the six
models implemented in the VGG model paper, and the model structure is shown in Table 2
below. The convolutional layers in VGG use a very small receptive field (3 × 3, the smallest
possible size that still captures left/right and up/down). There are also 1 × 1 convolution
filters that act as linear transformation of the input, followed by a ReLU [31] unit. The con-
volution stride is fixed to 1 pixel so that the spatial resolution is preserved after convolution.
Table 2 shows the ConvNet configurations evaluated in this study, one per column. Moving
forward, we will refer to nets by name (A–E). All configurations follow the general design
presented in the Section 3.1.3, differing only in depth: from 11 weighting layers in network
A (8 transitions and 3 FC layers) to 19 weighting layers in network E (16 transitions and
3 FC layers). Transition of width layers (number of channels) start at 64 in the first layer
and increase by doubling after each max pooling layer until 512. Table 2 shows the number
of parameters for each configuration. Despite the great depth, the number of weights in the
net is not greater than the number of weights in shallow nets with larger transitions. Layer
width and receptive field (144M weights (Sermanet et al., 2014)).
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Table 2. Model Structure.

ConvNet Configuration

A A-LRN B C D E

11 weight layers 11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers

Input (224 × 224 RGB image)

Conv3-64 Conv3-64
LRN

Conv3-64
Conv3-64

Conv3-64
Conv3-64

Conv3-64
Conv3-64

Conv3-64
Conv3-64

Maxpool

Conv3-128 Conv3-128 Conv3-128
Conv3-128

Conv3-128
Conv3-128

Conv3-128
Conv3-128

Conv3-128
Conv3-128

Maxpool

Conv3-256
Conv3-256

Conv3-256
Conv3-256

Conv3-256
Conv3-256

Conv3-256
Conv3-256
Conv1-256

Conv3-256
Conv3-256
Conv3-256

Conv3-256
Conv3-256
Conv3-256
Conv3-256

Maxpool

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv1-512

Conv3-512
Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512
Conv3-512

Maxpool

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv1-512

Conv3-512
Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512
Conv3-512

Maxpool

FC-4096

FC-4096

FC-1000

Soft-max

4. Experiment and Results

We performed 5-way cross-validation for all models, and the accuracy of the VGG-C
with Tuning model that added the batch normalization process to the VGG-C model was
0.9800, and 0.9927, and 0.9906 for F1-score, precision, and recall, respectively, and 0.9947.
Table 3 below shows the learning results. As shown in Figure A1, we made our VGG-C
Transform model using Google Colab.

Table 3. Comparison of the result with other methods.

Model VGG A VGG B VGG-C T VGG D VGG E Our Work

Train

Accuracy 0.9876 0.8990 0.9800 0.9663 0.9143 0.9999

F1-score 0.9945 0.9185 0.9927 0.9837 0.9284 0.9998

Precision 0.9945 0.9173 0.9906 0.9941 0.9706 0.9997

Recall 0.9945 0.9197 0.9947 0.9735 0.8897 1.0000

Test

Accuracy 0.7550 0.7480 0.8013 0.7415 0.7245 0.7746

F1-score 0.7696 0.7513 0.8040 0.7380 0.7097 0.7799

Precision 0.7702 0.7372 0.7895 0.7761 0.7553 0.7744

Recall 0.7697 0.7659 0.8191 0.7035 0.6693 0.7855
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4.1. Software Tools for Experimental

We implemented our proposal by experimenting using Python in Google Colaboratory
with Tensorflow 2.0 and Keras 2.4.3; during training, we used a Tesla T4 GPU with 16 GB
of memory provided by Colab.

4.2. Quantize Pixel Intensity

Alzheimer’s disease a should recognize changes in size contraction rather than changes
in brain features. Based on this information, it is necessary to set the empty space as an
important feature for the color information of the MRI rather than the feature representing
the shape of the brain. Figures 3–6 show examples of brain structure dataset changed to the
Quantization Pixel intensity methodology.

4.3. Design Experiments

The performance of the proposed MLR-VGGNet was proven by a comparison on
various CNN models, such as the original VGG16, VGG19, ResNet50, Inception V3, and
Xception. In all comparison models, a transfer learning from pre-trained weights available
was also used. The training parameters on all models is given, such as batch size = 20,
epoch = 60, optimizer = RMSProp, learning rate = 1 × 10−5, loss function = categorical
cross-entropy.

During training, the four blocks of VGGNet were frozen; therefore, the weights did
not change to retain the lower layers generalized to generate low-level features. Additional
components, such as AC, BN, and residuals, are fully trained to achieve weight with
high-level feature generation that corresponds to the fish species classification.

4.4. Experimental Results

Among the VGG Family, the VGG-C Transform model with batch normalization [32]
added to the VGG-C model recorded the highest performance with a test accuracy of
approximately 0.9800. However, since the MRI image has a size of 208 × 176, distortion
and loss of pixel information occur in the process of resizing it to 224 × 224. Our proposed
VGG model-based architecture can learn while preserving the original MRI size [33].
Conventional CNNs report high performance for images with the same aspect ratio. This
is because images have different sizes, so they need to be converted into metrics of a
fixed size in order to learn them through CNN [7]. However, since all images in a given
dataset have the same aspect ratio, it is important to find an input value of an appropriate
size. In addition, due to data imbalance, the AUC Score should be used as an evaluation
index. The Convolution2D layer in TensorFlow is designed to be suitable for convolution of
feature maps with similar aspect ratios. Therefore, not a general Convolution2D layer, but
a SeparableConvolution2D layer is required. The model is implemented so that learning
can proceed through MLP through flattening after convolution operation [34].

The input size of the constructed model is 176 × 208 × 3, and all RGB values for each
channel are data composed by repeating the gray scale of the two-dimensional matrix.
From this image, a feature map is extracted through one block, consisting of a convolutional
layer and a max pooling layer, and a new feature is extracted by passing the extracted
feature map through a second convolutional block. The finally generated feature map
is then flattened and passed through the MLP layer to predict the result. In the model
compilation process, the optimizer used Adam and the learning rate schedule was applied.
The loss function uses categorical cross entropy because it should be possible to predict
four classes. Accuracy uses the AUC score due to the problem of class imbalance. The
graph below is the result of learning by setting the model epoch to 100. The left graph
shows the AUC score, and the right graph shows the loss. As shown in Figures 7–9.
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5. Discussion

In this paper, we proposed an enhanced prediction method for Alzheimer’s disease
using quantize method to MRI Dataset conversion with the convolutional neural network
(CNN) consisting of a VGG-C Transform model and a batch normalization. Four types of
MRI Dataset are used by many pieces of research for predicting AD (Alzheimer’s Disease)
but there is a problem with the imbalance between the class. The number of files was 4600 in
the train dataset and 1279 in the test dataset, and the number of each class shows a difference
of up to 300:1 for the train set. This imbalance not only greatly affects the performance
of the model but also means a model of low judgment that cannot be judged on a small
number of datasets. To solve this imbalance, we apply image quantizing method to simplify
and maximize the feature, which is important to recognize changes in size contraction
rather than changes in brain features. After the experiment, the AUC score improved by
up to 1.19%, compared to the normal dataset, and it can be seen as a meaningful result
because medical images, such as MRI data, are important in the judgment of clinicians. A
limitation of our work is the lack of MRI datasets from real patients, so in future work, we
are trying to find clinicians who can collaborate on clinical trial studies with Institutional
Review Board (IRB) approval.
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6. Conclusions

In this paper, we propose an improved prediction method for Alzheimer’s disease
using a quantization method that transforms the MRI data set using a VGG-C Transform
model and a convolutional neural network (CNN) consisting of batch normalization.
Among the VGG Family, the VGG-C Transform model with batch normalization added
to the VGG-C model recorded the highest performance with a test accuracy of about
0.9999. However, since the MRI image has a size of 208 × 176, distortion and loss of pixel
information occur in the process of resizing it to 224 × 224. Therefore, we proposed a VGG
model-based architecture that can learn while preserving the original MRI size. As a result,
we were able to obtain a prediction accuracy of 98%, and the AUC score increased by up
to 1.19%, compared to the normal MRI image data set. It is expected that our study will
be helpful in predicting Alzheimer’s disease using the MRI dataset. Furthermore, if the
data used are adequate and the available resources can handle the increased computational
complexity, the overall performance of the base model to be enhanced by fine-tuning the
pre-trained convolutional layers.
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Appendix A

Following Figure A1 shows the tensorflow code structure and model configuration of
experiment.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 13 
 

 

  

Figure A1. Tenserflow code and model configuration. 

References 
1. Liu, S.; Liu, S.; Cai, W.; Che, H.; Pujol, S.; Kikinis, R.; Feng, D.; Fulham, M.J. Multimodal neuroimaging feature learning for 

multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 2015, 62, 1132–1140. 
https://doi.org/10.1109/TBME.2014.2372011. 

2. Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series introduction: Neurodegeneration: What is it and where are we?’ J. Clin. In-
vestig. 2003, 111, 3–10. https://doi.org/10.1172/JCI200317522. 

3. Giorgio, J.; Landau, S.M.; Jagust, W.J.; Tino, P.; Kourtzi, Z. Modelling prognostic trajectories of cognitive decline due to Alz-
heimer’s disease. NeuroImage Clin. 2020, 26, 102199. https://doi.org/10.1016/j.nicl.2020.102199. 

4. Patterson, C. World Alzheimer Report 2018 the State of the Art of Dementia Research: New Frontiers; Tech. Rep.: 2018. 
5. Alzheimer’s Disease Fact Sheet. 2019. Available online: https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet (accessed 

on 11 May 2022) 
6. Stamate, D.; Smith, R.; Tsygancov, R.; Vorobev, R.; Langham, J.; Stahl, D.; Reeves, D. Applying deep learning to predicting 

dementia and mild cognitive impairment. In Artificial Intelligence Applications and Innovations (IFIP Advances in Information and 
Communication Technology); Springer: Cham, Switzerland, 2020; Volume 584, pp. 308–319. https://doi.org/10.1007/978-3-030-
49186-4_26. 

7. De, A.; Chowdhury, A.S. DTI based Alzheimer’s disease classification with rank modulated fusion of CNNs and random forest. 
Expert Syst. Appl. 2021, 169, 114338. https://doi.org/10.1016/j.eswa.2020.114338. 

8. Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. novel multi-modal machine learning based approach for automatic 
classification of EEG recordings in dementia. Neural Netw. 2020, 123, 176–190. https://doi.org/10.1016/j.neunet.2019.12.006.  

9. Kim, Y. Are we being exposed to radiation in the hospital?’’ Environ. Health Toxicol. 2016, 31, e2016005. 
https://doi.org/10.5620/eht.e2016005. 

10. KaggleDataset. Available online: https://www.kaggle.com/datasets/jboysen/mri-and-alzheimers (accessed on 19 May 2022) 
11. Moser, E.; Stadlbauer, A.; Windischberger, C.; Quick, H.H.; Ladd, M.E. Magnetic resonance imaging methodology. Eur. J. Nucl. 

Med. Mol. Imag. 2009, 36, 30–41. https://doi.org/10.1007/s00259-008- 0938-3. 
12. Mansourifar, H.; Shi, W. Deep Synthetic Minority Oversampling Technique. arXiv 2020, arXiv:2003.09788. 

http://arxiv.org/abs/2003.09788. 
13. Dubey, S. Alzheimer’s Dataset. 2019. Available online: https://www. kaggle.com/tourist55/alzheimers-dataset-4-class-of-images 

(accessed on 19 May 2022) 
14. Rieke, J.; Eitel, F.; Weygandt, M.; Haynes, J.D.; Ritter, K. Visualizing convolutional networks for MRI-based diagnosis of Alz-

heimer’s disease. In Understanding and Interpreting Machine Learning in Medical Image Computing Applications (Lecture Notes in 
Computer Science); Springer: Cham, Switzerland, 2018; Volume 11038, pp. 24–31. https://doi.org/10.1007/978-3-030-02628-8_3. 

15. Lu, D.; Initiative, A.D.N.; Popuri, K.; Ding, G.W.; Balachandar, R.; Beg, M.F. Multimodal and multiscale deep neural networks 
for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci. Rep. 2018, 8, 5697. 
https://doi.org/10.1038/s41598-018-22871-z. 

16. Gupta, Y.; Lee, K.H.; Choi, K.Y.; Lee, J.J.; Kim, B.C.; Kwon, G.R. Early diagnosis of Alzheimer’s disease using combined features 
from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. PLoS ONE 2019, 
14, e0222446. https://doi.org/10.1371/journal.pone.0222446. 

Figure A1. Tenserflow code and model configuration.

References
1. Liu, S.; Liu, S.; Cai, W.; Che, H.; Pujol, S.; Kikinis, R.; Feng, D.; Fulham, M.J. Multimodal neuroimaging feature learning for

multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 2015, 62, 1132–1140. [CrossRef] [PubMed]
2. Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Investig.

2003, 111, 3–10. [CrossRef] [PubMed]
3. Giorgio, J.; Landau, S.M.; Jagust, W.J.; Tino, P.; Kourtzi, Z. Modelling prognostic trajectories of cognitive decline due to Alzheimer’s

disease. NeuroImage Clin. 2020, 26, 102199. [CrossRef] [PubMed]
4. Patterson, C. World Alzheimer Report 2018 the State of the Art of Dementia Research: New Frontiers; Alzheimer’s Disease International:

London, UK, 2018.
5. Alzheimer’s Disease Fact Sheet. 2019. Available online: https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet (ac-

cessed on 11 May 2022).
6. Stamate, D.; Smith, R.; Tsygancov, R.; Vorobev, R.; Langham, J.; Stahl, D.; Reeves, D. Applying deep learning to predicting

dementia and mild cognitive impairment. In Artificial Intelligence Applications and Innovations (IFIP Advances in Information and
Communication Technology); Springer: Cham, Switzerland, 2020; Volume 584, pp. 308–319. [CrossRef]

7. De, A.; Chowdhury, A.S. DTI based Alzheimer’s disease classification with rank modulated fusion of CNNs and random forest.
Expert Syst. Appl. 2021, 169, 114338. [CrossRef]

8. Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. novel multi-modal machine learning based approach for automatic
classification of EEG recordings in dementia. Neural Netw. 2020, 123, 176–190. [CrossRef]

9. Kim, Y. Are we being exposed to radiation in the hospital? Environ. Health Toxicol. 2016, 31, e2016005. [CrossRef]
10. KaggleDataset. Available online: https://www.kaggle.com/datasets/jboysen/mri-and-alzheimers (accessed on 19 May 2022).
11. Moser, E.; Stadlbauer, A.; Windischberger, C.; Quick, H.H.; Ladd, M.E. Magnetic resonance imaging methodology. Eur. J. Nucl.

Med. Mol. Imag. 2009, 36, 30–41. [CrossRef]
12. Mansourifar, H.; Shi, W. Deep Synthetic Minority Oversampling Technique. arXiv 2020, arXiv:2003.09788.
13. Dubey, S. Alzheimer’s Dataset. 2019. Available online: https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images

(accessed on 19 May 2022).
14. Rieke, J.; Eitel, F.; Weygandt, M.; Haynes, J.D.; Ritter, K. Visualizing convolutional networks for MRI-based diagnosis of

Alzheimer’s disease. In Understanding and Interpreting Machine Learning in Medical Image Computing Applications (Lecture Notes in
Computer Science); Springer: Cham, Switzerland, 2018; Volume 11038, pp. 24–31. [CrossRef]

15. Lu, D.; Initiative, A.D.N.; Popuri, K.; Ding, G.W.; Balachandar, R.; Beg, M.F. Multimodal and multiscale deep neural networks for
the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci. Rep. 2018, 8, 5697. [CrossRef]

16. Gupta, Y.; Lee, K.H.; Choi, K.Y.; Lee, J.J.; Kim, B.C.; Kwon, G.R. Early diagnosis of Alzheimer’s disease using combined features
from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. PLoS ONE 2019,
14, e0222446. [CrossRef]

http://doi.org/10.1109/TBME.2014.2372011
http://www.ncbi.nlm.nih.gov/pubmed/25423647
http://doi.org/10.1172/JCI200317522
http://www.ncbi.nlm.nih.gov/pubmed/12511579
http://doi.org/10.1016/j.nicl.2020.102199
http://www.ncbi.nlm.nih.gov/pubmed/32106025
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
http://doi.org/10.1007/978-3-030-49186-4_26
http://doi.org/10.1016/j.eswa.2020.114338
http://doi.org/10.1016/j.neunet.2019.12.006
http://doi.org/10.5620/eht.e2016005
https://www.kaggle.com/datasets/jboysen/mri-and-alzheimers
http://doi.org/10.1007/s00259-008-0938-3
https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
http://doi.org/10.1007/978-3-030-02628-8_3
http://doi.org/10.1038/s41598-018-22871-z
http://doi.org/10.1371/journal.pone.0222446


Electronics 2022, 11, 2601 13 of 13

17. Ahmed, S.; Choi, K.Y.; Lee, J.J.; Kim, B.C.; Kwon, G.-R.; Lee, K.H.; Jung, H.Y. Ensembles of patch-based classifiers for diagnosis of
alzheimer diseases. IEEE Access 2019, 7, 73373–73383. [CrossRef]

18. Basher, A.; Kim, B.C.; Lee, K.H.; Jung, H.Y. Volumetric featurebased Alzheimer’s disease diagnosis from sMRI data using a
convolutional neural network and a deep neural network. IEEE Access 2021, 9, 29870–29882. [CrossRef]

19. Nawaz, H.; Maqsood, M.; Afzal, S.; Aadil, F.; Mehmood, I.; Rho, S. A deep feature-based real-time system for alzheimer disease
stage detection. Multimed. Tools Appl. 2020, 80, 1–19. [CrossRef]

20. Ieracitano, C.; Mammone, N.; Bramanti, A.; Hussain, A.; Morabito, F.C. A convolutional neural network approach for classification
of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing 2019, 323, 96–107. [CrossRef]

21. Jain, R.; Jain, N.; Aggarwal, A.; Hemanth, D.J. Convolutional neural network based Alzheimer’s disease classification from
magnetic resonance brain images. Cognit. Syst. Res. 2019, 57, 147–159. [CrossRef]

22. Mehmood, A.; Yang, S.; Feng, Z.; Wang, M.; Ahmad, A.S.; Khan, R.; Maqsood, M.; Yaqub, M. A transfer learning approach for
early diagnosis of Alzheimer’s disease on MRI images. Neuroscience 2021, 460, 43–52. [CrossRef]

23. Shi, J.; Zheng, X.; Li, Y.; Zhang, Q.; Ying, S. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial
networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Informat. 2018, 22, 173–183. [CrossRef]

24. Liu, C.-F.; Padhy, S.; Ramachandran, S.; Wang, V.X.; Efimov, A.; Bernal, A.; Shi, L.; Vaillant, M.; Ratnanather, J.T.; Faria, A.V.; et al.
Using deep siamese neural networks for detection of brain asymmetries associated with Alzheimer’s disease and mild cognitive
impairment. Magn. Reson. Imag. 2019, 64, 190–199. [CrossRef]

25. Wang, H.; Shen, Y.; Wang, S.; Xiao, T.; Deng, L.; Wang, X.; Zhao, X. Ensemble of 3D densely connected convolutional network for
diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 2019, 333, 145–156. [CrossRef]

26. Shankar, K.; Lakshmanaprabu, S.K.; Khanna, A.; Tanwar, S.; Rodrigues, J.J.; Roy, N.R. Alzheimer detection using group grey wolf
optimization based features with convolutional classifier. Comput. Electr. Eng. 2019, 77, 230–243. [CrossRef]

27. Janghel, R.; Rathore, Y. Deep convolution neural network based system for early diagnosis of Alzheimer’s disease. IRBM 2020, 1,
1–10. [CrossRef]

28. Ge, C.; Qu, Q.; Gu, I.Y.-H.; Jakola, A.S. Multiscale deep convolutional networks for characterization and detection of Alzheimer’s
disease using MR images. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan,
22–25 September 2019; Volume 12, pp. 789–793. [CrossRef]

29. Pan, T.; Zhao, J.; Wu, W.; Yang, J. Learning imbalanced datasets based on SMOTE and Gaussian distribution. Inf. Sci. 2020, 512,
1214–1233. [CrossRef]

30. Bi, X.; Wang, H. Early Alzheimer’s disease diagnosis based on EEG spectral images using deep learning. Neural Netw. 2019, 114,
119–135. [CrossRef] [PubMed]

31. Brownlee, J. A Gentle Introduction to the Rectified Linear Unit (ReLU). 2020. Available online: https://machinelearningmastery.
com/rectified-linear-activation-function-for-deep-learning-neural-networks/ (accessed on 21 May 2022).

32. Sarraf, S.; DeSouza, D.D.; Anderson, J.; Tofighi, G. DeepAD: Alzheimer’s disease classification via deep convolutional neural
networks using MRI and fMRI. bioRxiv 2016. [CrossRef]

33. Afzal, S.; Maqsood, M.; Nazir, F.; Khan, U.; Aadil, F.; Awan, K.M.; Mehmood, I.; Song, O.-Y. A data augmentationbased framework
to handle class imbalance problem for Alzheimer’s stage detection. IEEE Access 2019, 7, 115528–115539. [CrossRef]

34. Jordan, J. Normalizing Your Data. 2018. Available online: https://www.jeremyjordan.me/batch-normalization/ (accessed on 21
May 2022).

http://doi.org/10.1109/ACCESS.2019.2920011
http://doi.org/10.1109/ACCESS.2021.3059658
http://doi.org/10.1007/s11042-020-09087-y
http://doi.org/10.1016/j.neucom.2018.09.071
http://doi.org/10.1016/j.cogsys.2018.12.015
http://doi.org/10.1016/j.neuroscience.2021.01.002
http://doi.org/10.1109/JBHI.2017.2655720
http://doi.org/10.1016/j.mri.2019.07.003
http://doi.org/10.1016/j.neucom.2018.12.018
http://doi.org/10.1016/j.compeleceng.2019.06.001
http://doi.org/10.1016/j.irbm.2020.06.006
http://doi.org/10.1109/ICIP.2019.8803731
http://doi.org/10.1016/j.ins.2019.10.048
http://doi.org/10.1016/j.neunet.2019.02.005
http://www.ncbi.nlm.nih.gov/pubmed/30903945
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
http://doi.org/10.1101/070441
http://doi.org/10.1109/ACCESS.2019.2932786
https://www.jeremyjordan.me/batch-normalization/

	Introduction 
	Related Work 
	Materials and Method 
	Data Preprocess 
	Scaling 
	Quantize Pixel Intensity 
	ConvNet Configuration 


	Experiment and Results 
	Software Tools for Experimental 
	Quantize Pixel Intensity 
	Design Experiments 
	Experimental Results 

	Discussion 
	Conclusions 
	Appendix A
	References

