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Abstract: In this paper, an ultra-wideband (UWB) polarizer with high performance based on the
metasurface is designed and demonstrated, which is composed of a dielectric substrate with a double-
gap circular pattern and metal film. Multiple strong resonance points enable the design to achieve
the conversion from incident linearly polarized waves to cross-polarized waves at 6.49–11.64 GHz,
with a fractional bandwidth of 56.8% and a corresponding polarization conversion rate (PCR) of 90%.
The PCR remains above 90% at 6.49–11.52 GHz when the electromagnetic wave is obliquely incident
between 0◦ and 30◦. Furthermore, the surface current distribution of the polarizer is discussed to
explain the physical mechanism. The sample is fabricated for microwave validation. Compared with
previous reports, the proposed polarizer has a larger bandwidth and higher efficiency and is expected
to be used in microwave communications, antennas, radar cross section reduction, and other fields.

Keywords: broadband; polarizer; high performance; metasurface

1. Introduction

Metamaterials (MMs), as artificially designed sub-wavelength materials, exhibit exotic
characteristics compared with natural materials [1]. Over the past few decades, MMs have
rapidly gained the attention of researchers owing to their unusual response to electromag-
netic (EM) waves. The permittivity and permeability can be designed arbitrarily, which
provides the possibility of using peculiar functional devices such as negative refraction [2],
cloaks [3,4], holograms [5], images [6], perfect lenses [7], perfect absorption [8], sensors [9],
and antennas [10]. The metasurface (MS) is a two-dimensional structure of the MMs. By
designing the microstructure, the EM wave can be manipulated artificially. Among them,
the control of EM wave polarization has aroused increasing interest [11–18]. However, the
previously proposed MS devices suffer from narrow bandwidth and low efficiency, which
limits their practical applications. To solve this problem, researchers have successively
proposed a series of wideband high-efficiency polarization conversion devices [19–21].
For example, a transmissive-type anisotropic metadevice, consisting of stacks of bilayer
gear-like metallic patterns, is proposed to manipulate the polarization state of electromag-
netic waves. It can simultaneously achieve nondispersive cross-polarization conversion
for both linearly and circularly polarized incident waves in a broadband frequency re-
gion. However, they are still generally limited due to the large device thickness. In recent
years, researchers have proposed many ultrathin polarizers operating in the microwave
band [22,23]. For example, an ultrathin linear-to-cross-polarization transmission MS con-
verter [24] with a thickness of 0.8 mm (0.0235λ) was proposed that gives near-unity PCR
at 8.8 GHz. Moreover, a tunable wideband reflective cross-polarization converter [25]
with a T-shaped carved-hollow array based on the metasurface was designed, with a PCR
greater than 80% and a fractional bandwidth of 40%. Similarly, a reflective broadband
linear polarizer [26] composed of metallic disks and asymmetric arc metallic wires was
presented, and its PCR value can be maintained over 90% in the range of 11.2–20.3 GHz
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when the incident angle varied from 0◦ to 40◦. However, the operating bandwidth and
efficiency need to be further improved. In addition, ultra-thin and wide-angle manipulated
EM waves have also been extended to terahertz and near-infrared applications [27,28].
Therefore, the design of ultra-thin, UWB, and high-performance polarization devices still
faces a series of challenges.

In this work, we propose an ultra-thin, UWB, and high-performance linear polarizer
based on the MS. The thickness of the polarizer is only 3 mm (0.09λ). The device converts
linearly polarized (LP) waves to orthogonally polarized waves. By decomposing the electric
field, the working principle is explained. The surface current distribution at three response
points is also detected to analyze the physical mechanism. The experimental results show
that the PCR is higher than 90% within 6.49–11.64 GHz under the normal incidence of EM
waves. When the oblique incidence angle is between 0◦ and 30◦, the PCR can still reach
90% at 6.49–11.52 GHz. Since the proposed polarization device is ultra-thin and efficient, it
is easier to integrate into other systems.

2. Design, Simulation, and Experiment

In general, the reflective polarizer has a multi-layer structure, including the top layer
of MS, the intermediate layer, and the bottom metal film. The interference of the transmitted
wave between the dielectric and metal layers forms the final reflected waves. Therefore, we
can adjust the phase and amplitude of the reflected waves by adjusting the structure of the
metal layer and the thickness of the dielectric layer.

We propose an ultra-broadband linear polarizer with high efficiency based on the
design concept proposed above. The designed polarizer comprises three layers, as depicted
in Figure 1a. A deformed double-gap circular metal pattern makes up the top layer of this
structure. The intermediate substrate layer is FR-4 with a relative permittivity of 4.3 and
a loss tangent of 0.025. A metal film forms the bottom layer to block EM waves. The
metal layers are copper with a conductivity of 5.8 × 107 S/m and a thickness of 0.035 mm.
The front view of the polarizer is depicted in Figure 1b. The optimized geometries of
the polarizer displayed in Figure 1a are: r0 = 3.1 mm, r1 = 1.4 mm, t = 3 mm, p = 7 mm,
w1 = 2.3 mm, w2 = 1.0 mm, w3 = 0.4 mm, and w4 = 0.1 mm. Figure 1c shows a photograph
of the partially fabricated sample, and Figure 1d presents the experimental environment
and setup.
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To study the EM response of this polarizer, we simulate the designed MS using CST
2019. The infinite model structure is numerically analyzed by setting the Floquet boundary
on the x and y axes. In order to better understand the UWB polarizer, for x-polarized
incident waves, we define rxx = |Exr/Exi| and ryx =

∣∣Eyr/Exi
∣∣ as the reflectance of the

co-polarization and cross-polarization, respectively. The corresponding subscripts i and r
indicate the incident and reflected EM waves, respectively. Here, the PCR and polarization
extinction ratio (PER) are utilized to describe the polarization conversion performance
and the polarization stability of the polarizer, respectively. The PCR and PER are defined
as [29]:

PCRx =
∣∣ryx

∣∣2/
(∣∣ryx

∣∣2 + |rxx|2
)

, (1)

PER = 10lg
(∣∣ryx

∣∣2/|rxx|2
)

, (2)

3. Results and Discussion

First of all, we investigate the cross-polarization conversion performance under
x-polarized incident waves. Figure 2a,b show the simulated reflectance and the corre-
sponding PCR and PER, respectively. We can clearly see that the simulated ryx is above
−1 dB at 6.60–11.22 GHz, and the corresponding rxx is below −10 dB, with a relative
bandwidth of 53.2%. In addition, the reflected waves resonate strongly at 6.93 GHz,
8.57 GHz, and 11.23 GHz, corresponding to a PCR of 100%. The presence of resonance
points explains cross-polarization conversion, while more resonance points leads to a larger
conversion bandwidth. Figure 2b indicates that the calculated PCR is greater than 90%
within 6.49–11.64 GHz. Meanwhile, the PER can reach 15.2 dB, 17.9 dB, and 14.8 dB at the
three resonance points, respectively. The above results prove that the designed polarizer
can efficiently transform LP waves into their orthogonal polarized counterparts in the
broadband range.
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Figure 2. Simulated results (a) reflectance; (b) PCR and PER.

Assuming that the incident EM waves (Ei) propagate along the x axis, the reflected
waves will propagate along the y axis. The electric field can be decomposed along the u and
v directions. The u-v axis is derived by turning the x-y axis 45◦ counterclockwise. Figure 3a
shows a schematic diagram of the electric field decomposition. Therefore, the incident and
reflected electric fields can be expressed as [30]:

Ei =
→
x E0

= uEiuejφ + vEivejφ
(3)

Er = uruuEiue−j(φ+φuu) + vrvvEive−j(φ+φvv), (4)
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where ruu and rvv represent the reflectance of the u axis and v axis, respectively, and φuu
and φvv stand for the reflection phase of the u axis and v axis, respectively. The converter
can exhibit anisotropic properties attributed to the asymmetry of the structure. When
ruu = rvv = 1 and ∆ϕ = φuu − φvv = 180◦ are satisfied, the complex electric field of the
reflected waves (Er) is located along the y axis, indicating that the polarization orientation
of the reflected wave is converted to the orthogonal orientation of the incident wave.
Consequently, for x-polarized incident waves, Formula (4) can be further stated as:

Er = uruuEiue−j(φ+φuu) + vrvvEive−j(φ+φuu−π)

= (uEiu − vEiv)e−j(φ+φuu)

=
→
y E0e−j(φ+φuu)

(5)
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Figure 3. (a) Electric field decomposition diagram; (b) reflectance and phase difference in the
u, v direction.

According to Figure 3b, we can observe that co-polarized reflection amplitudes (ruu,
rvv) are almost equal and close to 1, while the corresponding phase difference is 180◦ in the
operating frequency range. This indicates that the polarizer achieves the conversion from
x-polarized incident waves to y-polarized reflected waves.

The surface current distributions are monitored at 6.93 GHz, 8.57 GHz, and 11.23 GHz
resonance points to explain the physical mechanism of the polarizer. Figure 4a,c exhibit the
current distributions at 6.93 GHz and 11.23 GHz for the top and bottom layers, respectively.
We note that the current distributions in the top and bottom metal layers are reversed, and
a current loop is formed in the middle dielectric layer to excite the magnetic dipoles. For
x-polarized incident waves (the electric field E is along the x direction and the magnetic
field H is along the y direction), the magnetic field H0 excited by a magnetic dipole can
be decomposed into a set of orthogonal magnetic field components Hx and Hy. Hy along
the y direction is parallel to the original magnetic field H, and Hx along the x direction
is orthogonal to H. This allows the x-polarized incident waves to be transformed into
its orthogonal y-polarized waves. Figure 4b demonstrates the surface current distribu-
tions at 8.57 GHz. Different from the previous physical mechanism, electric resonance is
the leading cause of polarization conversion, and the analysis is the same as above. In
summary, interaction between surface currents generates magnetic resonance (electrical
resonance). A component of the induced magnetic field H0 (induced electric field E0) is
perpendicular to the original magnetic field (electric field), thus converting the incident
LP waves into the orthogonally polarized waves. Simultaneously, the multiple resonances
extend the bandwidth.
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To validate our proposed linear polarization converter, a sample of 25 × 25 cells with
dimensions of 175 mm × 175 mm is fabricated. The reflectance of the fabricated polarizer
is measured in an anechoic chamber using an analyzer (R&S ZNB/40) connected to two
standard gain horn antennas. It should be noted that the sample should be placed vertically,
and the angle between the two horn antennas should be within 5◦ [31]. A horn antenna
is placed horizontally to emit x-polarized EM waves. Another horn antenna is placed
horizontally and vertically to measure the co-polarized and cross-polarized reflectance (rxx
and ryx), respectively.

A comparison of the simulated and measured results is given in Figure 5. According
to the measured reflectance rxx, we can observe that the three resonant frequencies (at
6.85 GHz, 9.84 GHz, and 11.52 GHz) are below −20 dB at 6.04–12.23 GHz. Furthermore,
the cross-polarized reflectance ryx is approximately consistent with the simulated curve in
such a frequency range. Similarly, we can view that the PCR calculated from the measured
reflectance (rxx, ryx) largely coincides with the PCR calculated from the simulations. The
measurement error can be attributed to the following two aspects. Firstly, an infinite plane
is simulated in the CST; however, the actual measured sample is finite, which leads to
edge diffraction effects. Secondly, the dielectric constant of the substrate in the processed
sample is slightly different from the simulated model. Therefore, the stated reasons lead to
a discrepancy between the simulated and experimental results.
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4. Parameter Analysis

Parameter analysis is then performed to reveal the geometric influence of the designed
broadband metasurface. Figure 6a shows that the bandwidth of the polarization conversion
grows gradually as the radius of the outer ring r0 increases, and the PCR decreases sharply
when r0 exceeds 3.1 mm. However, with an increase in the inner ring radius r1, the
bandwidth of polarization conversion progressively becomes narrower, as indicated in
Figure 6b. A change in the outer ring radius r0 and inner ring radius r1 affects the inductive
and capacitive effects in the u-v direction, resulting in a change in the corresponding
polarization phase, thus affecting the performance of polarization conversion. Next, we
focus on the effect of the opening slit on PCR, as depicted in Figure 6c,d, where the PCR
remains almost unchanged with an increasing slit width for both the outer and inner ring
slits. The outer and inner ring slits w1 and w4 are located in the horizontal and vertical
directions, respectively, and the decomposed components along the u-v direction are
unchanged, so they have little effect on the polarization conversion performance. Moreover,
we can also explore the impact of different incident angles and polarization angles on
conversion efficiency, as shown in Figure 7. From Figure 7a, the PCR exceeds 90% in the
range of 6.49–11.64 GHz when the oblique incidence angle is 0◦–30◦, and the PCR decreases
with an increase in the polarization angle, as displayed in Figure 7b. This is primarily due
to the fact that the designed polarizer is not centrosymmetric. From the foregoing analysis,
we can conclude that the polarizer shows good conversion performance after selecting
the appropriate geometric parameters. Finally, Table 1 gives a performance comparison
between the proposed polarizer in this paper and the previous works.



Electronics 2022, 11, 2599 7 of 9Electronics 2022, 11, x FOR PEER REVIEW 7 of 9 
 

 

  

  

Figure 6. PCR with different parameters (a) r0; (b) r1; (c) w1; (d) w4. 

  

Figure 7. PCR with (a) a different incident angle; (b) a different polarization angle. 

Table 1. Performance comparison with previous works. 

Paper Frequency Range Fractional Bandwidth PCR 

[24] 8.8 GHz / 1 

[32] 9.65–14.16 GHz 38% 80% 

[25] 10.29–15.46 THz 40% 80% 

[33] 8–12 GHz 40% 90% 

[26] 11.3–20.2 GHz 53.4% 85% 

This work 6.49–11.52 56.8% 90% 

5. Conclusions 

To summarize, we propose an ultra-thin, UWB, and high-efficiency linear polarizer. 

The thickness of the polarizer is only 3 mm (0.09λ). The UWB of the polarizer is derived 

Figure 6. PCR with different parameters (a) r0; (b) r1; (c) w1; (d) w4.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 9 
 

 

  

  

Figure 6. PCR with different parameters (a) r0; (b) r1; (c) w1; (d) w4. 

  

Figure 7. PCR with (a) a different incident angle; (b) a different polarization angle. 

Table 1. Performance comparison with previous works. 

Paper Frequency Range Fractional Bandwidth PCR 

[24] 8.8 GHz / 1 

[32] 9.65–14.16 GHz 38% 80% 

[25] 10.29–15.46 THz 40% 80% 

[33] 8–12 GHz 40% 90% 

[26] 11.3–20.2 GHz 53.4% 85% 

This work 6.49–11.52 56.8% 90% 

5. Conclusions 

To summarize, we propose an ultra-thin, UWB, and high-efficiency linear polarizer. 

The thickness of the polarizer is only 3 mm (0.09λ). The UWB of the polarizer is derived 

Figure 7. PCR with (a) a different incident angle; (b) a different polarization angle.

Table 1. Performance comparison with previous works.

Paper Frequency Range Fractional Bandwidth PCR

[24] 8.8 GHz / 1

[32] 9.65–14.16 GHz 38% 80%
[25] 10.29–15.46 THz 40% 80%
[33] 8–12 GHz 40% 90%
[26] 11.3–20.2 GHz 53.4% 85%

This work 6.49–11.52 56.8% 90%

5. Conclusions

To summarize, we propose an ultra-thin, UWB, and high-efficiency linear polarizer.
The thickness of the polarizer is only 3 mm (0.09λ). The UWB of the polarizer is derived
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from three EM resonances. Numerical analysis and measured results show that the PCR is
greater than 90% at 6.49–11.64 GHz, and the corresponding fractional bandwidth reaches
56.8%. Moreover, the PCR is higher than 90% in the range of 6.49–11.52 GHz when the
oblique incidence angle is 0◦–30◦. Finally, the physical mechanism of the polarizer is
analyzed and the effect of geometric parameters on PCR is investigated. The converter
designed in this paper can be applied in wireless communication and RCS reduction.
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