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Abstract: Sharding is the widely used approach to the trilemma of simultaneously achieving decen-
tralization, security, and scalability in traditional blockchain systems. However, existing schemes
generally involve problems such as uneven shard arithmetic power and insecure cross-shard trans-
action processing. In this study, we used the Practical Byzantine Fault Tolerance (PBFT) as the
intra-shard consensus and, here, we propose a new sharding consensus mechanism. Firstly, we com-
bined a jump consistent hash algorithm with signature Anchorhash to minimize the mapping of the
node assignment. Then, we improved the process of the cross-shard transaction and used the activity
of nodes participating in intra-shard transactions as the criterion for the shard reconfiguration, which
ensured the security of the blockchain system. Meanwhile, we analyzed the motivation mechanism
from two perspectives. Finally, through theoretical analysis and related experiments, we not only
verified that the algorithm can ensure the security of the entire system, but also further clarified the
necessary conditions to ensure the effectiveness of the shards and the system on the original basis.

Keywords: blockchain; sharding; Practical Byzantine Fault Tolerance; consensus mechanism; jump
consistent hash algorithm; Anchorhash; timestamp

1. Introduction

Blockchain is a new economic organization model built on a series of technologies.
It was created in 2009 during the construction of the Bitcoin system [1]. It has gradually
become a global economic hotspot over the past 10 years and has been widely used in
many applications [2], including IoT [3], cloud computing [4], smart cities [5], and supply
chains [6].

Blockchain technology is developing rapidly, but there are fundamental and practical
obstacles to its wider applicability, the most critical issue being the trilemma of decentral-
ization, security, and scalability [7].

In order to improve the scalability of the system on the basis of ensuring decentral-
ization and security, existing methods can be divided into two solutions: off-chain and
on-chain. The off-chain solution avoids the computational cost of traditional blockchain
systems, requiring each honest node to receive, store, and send relevant data, and to reach
an agreement among all nodes while guaranteeing the total order of valid data. This
scheme has applicability in some cases, but in many application scenarios, a face solution
is required, i.e., recording, validating, and saving all data. A sharding blockchain system is
an on-chain solution designed to improve the scalability of traditional blockchain systems
in order to achieve the same level of security and decentralization.

Based on the composition of each part of the sharding blockchain, this paper studies
the sharding blockchain. The main contributions are as follows:

1. We propose a sharding construction method based on signature Anchorhash and
jump consistent hash function to improve the rationality and security of sharding
while minimizing remapping caused by sharding changes;
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2. We improved cross-shard transaction processing and shard reconstruction in our
study and, here, propose a shard reconstruction method based on the activity of the
nodes participating in intra-shard transactions;

3. We calculated the effectiveness of each shard and the whole system using hypergeo-
metric distribution, and quantitatively analyzed the impact of certain factors on the
effectiveness of the shards by relying on the literature [8].

2. Background and Related Work

Sharding is an innovative aspect of database systems [9], where it describes a method of
dynamically partitioning a database into parts (called shards), each managed by a different
node in a distributed system. In a sharding blockchain system, nodes in the network are
dynamically partitioned into shards (subsets), and each shard individually performs part
of the storage, communication, and computing tasks. The sharding blockchain system can
be roughly composed of seven parts: node selection, epoch randomness, node allocation,
intra-shard consistency, cross-shard transaction processing, shard reconfiguration, and the
incentive mechanism [10]. The schematic diagram is shown in Figure 1.
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Figure 1. The schematic diagram of a sharding blockchain.

The following is a brief introduction to the construction method, typical solutions, and
existing problems of the sharding blockchain.

2.1. Shard Construction

The sharding blockchain has the following three characteristics: communication
sharding, computing sharding, and storage sharding.

Communication sharding refers to the division of the entire network into different
shards. Each shard is handled by a corresponding committee. The members of each
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committee only need to conduct the internal communication most of the time. Other
clients and nodes within each shard can obtain the current state of the blockchain by
communicating with the intra-shard committee.

Computing sharding means that each sharding committee is only responsible for
processing its corresponding transaction, such as judging its corresponding sharding based
on the transaction ID and verifying the legitimacy of the transaction for the distributed
consensus algorithm in the transaction operation committee, in order to decide whether
these transactions can be added to the blockchain. Computing sharding enables different
transactions to be processed by different committees in parallel. When the number of nodes
in the network increases, more committees can be added, so that different transactions
can be processed in parallel by different committees at the same time. The transaction
processing performance is enhanced with the number of nodes in the network, which in
turn enables the scalability of transaction processing. The main sharding methods are the
UTXO-based ledger model [11] and account-based ledger model [12,13].

Storage sharding means that different sharding committees store the processed transac-
tions in shards. Each sharding committee is only responsible for processing the transactions
corresponding to this shard and placing the transactions on the blockchain dedicated to
this shard in order to reduce the storage burden of the nodes. In this case, cross-shard com-
munication is unavoidable. Compared with the other two sharding mechanisms, storage
sharding is the most difficult to implement: firstly, the possible centralization risks must be
avoided; secondly, one must ensure that the cross-shard communication does not exceed
the performance benefits of the storage shards to ensure high data availability [14]; and
thirdly, the impact of the shard reconfiguration on storage needs to be considered.

No matter what type of sharding method is used, the communication between nodes
plays a very important role. The schematic diagram is shown in Figure 2. Nodes in the
same shard only need to perform intra-shard communication most of the time and send
some key information to the shard’s coordinator. The coordinator is usually responsible for
the cross-shard communication and intra-shard consensus, and each shard has at least one
coordinator. In general, coordinators need to have stronger communication capabilities
than other intra-shard nodes.
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2.2. Typical Schemes

The sharding consensus mechanism was proposed by Luu et al. [15], and ELAS-
TICO is the earliest sharding consensus mechanism. It assumes that the network model is
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a synchronous network. The algorithm mainly includes five parts: node identity establish-
ment, node sharding confirmation, internal committee consensus, broadcast confirmation
of the blocks, and random number generation. Kokoris-Kogias et al. proposed Om-
niledger [16], which added committee reconfiguration to ELASTICO and proposed an
anti-locking solution for cross-shard transactions, which effectively solved ELASTICO’s
low operating efficiency and cross-shard transactions. Chainspace [17] was proposed by
Al-Bassam et al. A smart contract application platform was built on the basis of sharding,
which fostered the communication sharding and computing sharding of transactions and
smart contracts. Rapidchain [18] was proposed by Zamani et al. This system used the
message diffusion algorithm to replace the gossip communication protocol adopted by
the traditional blockchain network and optimized the processing method of cross-shard
transactions, which not only enabled computing sharding and communication sharding,
but also enabled state sharding. It also enabled the consensus within its period to be close
to the fast response characteristic.

In addition, Dange [19] used database sharding to achieve the scalability of the
blockchain and used trusted random numbers generated by trusted hardware as the
criteria for the node assignment, which ensured the activity and security of the whole
protocol, to some extent. Kwak proposed a hierarchical negotiation mechanism based on
service area sharding [20] to improve the performance degradation due to the increased
system flow. Yang [21] used sharding technology combined with a hybrid model to set up
an online e-voting system, which ensured the security of the voting process.

2.3. Existing Problems

While achieving transaction processing scalability, the sharding consensus introduces
some new problems [22], including:

Firstly, cross-shard transaction processing. Transactions that contain multiple inputs
require multiple shards to work together not only to process transactions safely and
efficiently, but also to prevent problems, such as double-spending attacks and transaction
lockups, and other problems during processing.

Secondly, the dynamic management of the number of sharded nodes. One option is to
periodically adjust the composition of the shard committee members to effectively resist
the control of the committee by possible malicious nodes. With respect to the other option,
there may be differences in the number of committees corresponding to different shards,
and when the communication between two shards is too frequent, and we can merge them
into one shard to improve the transaction processing speed.

Thirdly, the detection and repair of malicious shards. On the one hand, the uneven
distribution of computing power among the shards directly leads to the emergence of
malicious committees. On the other hand, if the process of assigning new members to
different committees is biased by the adversary, some shards may fail to work properly.

Fourthly, the establishment of motivation mechanisms. The establishment of motiva-
tion mechanisms needs to take into account the differences between shard blockchains and
ordinary blockchains. Not only do we need to design rewards for different nodes based
on the intra-shard consensus, but we also need to consider the impact of the cross-shard
transaction processing.

3. Overview of the Algorithm

In this section, we divide the whole process of the shard consensus mechanism into five
parts: node assignment (including node selection and ephemeral randomness), intra-shard
consensus, cross-shard transaction processing, shard reconfiguration, and the motivation
mechanism. In order to guarantee the strong consistency of the sharding blockchain system
and ensure that all shards can effectively deal with possible malicious attacks, we use the
traditional PBFT [23] consensus algorithm as the intra-shard consistency protocol and, on
this basis, we introduce the process of the remaining four parts of the sharding consensus
algorithm in detail.
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3.1. Node Assignment

Node assignment mainly consists of two parts: node allocation in the initial sharding
stage and node redistribution, when the number of shards changes. Since the intra-shard
consensus protocol uses the PBFT consensus algorithm, there is no need to additionally
consider the differences in computing power of the nodes themselves. For the assignment
of nodes in the initial sharding stage, in order to avoid the possible 1% attack due to the
dispersion of computing power (that is, due to the sharding operation performed in the
system, the computing power of some shards may be weak due to the uneven distribution
of nodes, in which case a malicious node only needs to control a small number of nodes in
the shard in order to make the entire shard fail), all nodes need to be evenly distributed
across all the shards. For the node redistribution, when the number of shards changes, we
must reduce the number of nodes that need to be remapped for the sake of ensuring the
randomness of the node assignment.

A consistent hashing algorithm can effectively solve the abovementioned problem.
These methods use the irregularity of the calculation result of the hash function to achieve
the purpose of randomness. They first perform a hash operation on a key feature value
of a node to take a mode, and then divide the nodes into corresponding shards based
on the result. The existing consistent hashing algorithms are mainly hash ring, the jump
consistent hashing algorithm [24] and the Maglev [25] hashing algorithm. The performance
of the three methods is shown in the Table 1, where “+” indicates a better performance, “−”
indicates a poor performance, and “O” indicates an average performance [26].

Table 1. Performance comparison of existing consistent hash algorithms.

Algorithms Balance Minimal Remapping Complexity Weighted Mappings

Hash Ring O +
n
∑

i=2

1
i +

Jump Con Hash + +
n
∑

i=2

1
i +

Maglev-Hash + −
n
∑

i=2

n
i +

Gal proposed a new hashing algorithm, Anchorhash [26], in 2021, which differs from
other hash consistency algorithms in that its decision depends on past events of the system.
Its general principle is shown in Figure 3.
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After establishing a connection with the sharding blockchain, the working set can be
understood as sharding. The increase and removal of the working set can be understood
as the increase and decrease of the number of shards, and the key can be understood
as the characteristics of each transaction. However, in sharding blockchains, if we only
use Anchorhash, we are essentially only relying on previous events to determine the
future transactions. The probability of the entire system being attacked may be greatly
increased. Therefore, according to the characteristics of sharding blockchain systems, this
study combined the jump consistent hash algorithm and the Anchorhash algorithm to
improve the node assignment in three aspects.
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3.1.1. Initialization Phase

The study reported in [27] introduced the mapping method and the remapping method
brought about by the change of the working set, but it did not explain the initialization of
the algorithm. In fact, we can roughly demonstrate the initialization of the Anchorhash
algorithm, as shown in Figure 4.
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Taking Figure 4 as an example, 12 nodes in the system are evenly mapped to 3 different
working sets through the hash operation, because working set 3 is not in use in the initial
stage. Therefore, the corresponding node mapped to working set 3 needs to be mapped
to the remaining two working sets that are working normally through the hash operation
again. If working set 3 is enabled at a certain point, it is only necessary to remap the
corresponding node to this shard according to the historical information.

However, in a sharding blockchain, the total number of shards is not fixed, and it is
necessary to comprehensively consider the number of nodes and the actual situation of the
communication. Therefore, we must use the idea of random number generation of proof of
vote (PoV) to realize the random mapping of all nodes.

First, we use the node’s own signature sign(i) and the timestamp time(i) correspond-
ing to the node to perform the XOR calculation in order to obtain the random number
source Rsource:

Rsource = time(i)⊕ sign(i) (1)

Suppose that the method of intercepting the last 32 bits of the string is SubStringEnd32
(string), and a random number R is obtained, where N represents the number of shards:

R = StrToInt(SubStringEnd32[Hash(Rsource)])modN (2)

Based on this, the random mapping of all nodes can be assigned according to the
number of shards in the current system, avoiding the situation of secondary mapping.
On the other hand, because of the differences between the nodes’ own signatures and the
unpredictable mapping time, Rsource is unpredictable, and R also has a strong randomness.
In this case, all nodes can be distributed to all shards more effectively and evenly, so that the
computing power of all the shards is equal and the risk of them being attacked is reduced.

3.1.2. Changes in the Number of Shards

Anchorhash deals with increasing or decreasing numbers of working sets by intro-
ducing stack Z. Stack Z records the deletion order of different ordinal working sets. For
example, when Z = {3← 2← 1}, this means that the chronological order of the deletion
of the working set is 1, 2, and 3. Therefore, when the number of working sets changes, it
will restore the corresponding working sets in turn, according to the order in which the
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previous working sets were deleted. In the above example, the restoration order of the
working sets should be 3, 2, and 1.

Although the abovementioned method can minimize the extent of remapping caused
by the changes, its strong regularity enables malicious nodes in the system to easily com-
plete attacks by grasping onto the changing laws of sharding, which may pose a great
threat to the security. Based on this, this paper introduces the concept of the timestamp on
the basis of Anchorhash. We used the randomness of time to solve the security problems
involved in the application of Anchorhash to the blockchain, so that the change in the
number of shards is no longer fixed, and the predicted attack is avoided. We assumed that
all nodes are eventually evenly distributed to all shards; that is, the computing power of
all shards is equal. The following is a brief description of the process of the deletion and
addition of the shards:

• Deletion of shards:

The decision about whether or not to delete a shard needs to be determined according
to the order of three factors: the number of transactions in the system, the cross-shard
communication, and the work efficiency of the shard.
First, we should consider the number of transactions E in the system. Assuming that
the number of transactions that each shard Ni can process at the same time is Ca, when
the condition of E < (N − 1)Ca is satisfied, the operation of deleting shards needs to
be performed in the system. Then, it is necessary to count the number of cross-shard
communications between shards within a period of time and filter out one or more
groups of shards with the most frequent cross-shard communications. Finally, we
must compare the working efficiency of each shard in one or more sets of shards and
delete the shard with the least work efficiency.

• Addition of shards:

If Z exists, the added shards are randomly selected in Z. Assuming that shards need
to be added at time τ, take Z = {x ← y← z} as an example:
First, obtain Z = {x(0)← y(1)← z(2)}, according to the order of the elements in Z.
Then, use the formula to calculate the shards that need to be added:

Add shard = StrToInt(SubStringEnd16[Hash(τ)])mod((length(Z)) (3)

If Z does not exist, add any shard at random.

3.1.3. Node Remapping

Anchorhash uses historical data to realize the node remapping. Although this method
can minimize the extent of the remapping, it is not suitable for blockchain systems. In
addition, Anchorhash’s treatment of the node remapping is not comprehensive. It only
considers the remapping caused by the increase or decrease of the working set when the
stack exists.

Based on this, considering the security of the system and the complexity of remapping,
we adopted the jump consistent hash function to perform the remapping operation of the
nodes, regardless of the existence of Z. Compared with the traditional algorithm, this
method not only fully considers all possible situations in the process of node remapping,
but also works through the combination of the two algorithms. Although the complexity of
the time of the remapping process is increased to a certain extent, it can effectively solve
the security problems involved in Anchorhash.

The algorithm of the jump consistent hash function is shown in Algorithm 1:



Electronics 2022, 11, 2597 8 of 21

Algorithm 1 Jump Consistent Hash Algorithm

Input: Node number j; shard number i
Output: Shard number i′

Int JumpConHash (int j, int i)
1: random. seed (j)
2: int a = −1, i′ = 0
3: while b < i;
4: a = i′

5: double r = random.next()
6: i′ = floor((i′+1)/r)
7: return i′

The JumpConHash function returns the number of the corresponding shard after
the node is remapped. If it is assumed that the nodes are evenly distributed after the
remapping, we can draw the following conclusions:

• When i = 1, it returns i′ = 0, which means that all nodes are mapped to the shard
numbered 0;

• When i = 2, theoretically, each shard needs to have j/2 mappings; that is, j/2 nodes
are required for remapping;

• When i changes from n to n + 1, there are j/(n + 1) nodes in the whole system that
need to be remapped.

Next, we will discuss the nodes that need to be remapped.
When the number of shards decreases, no matter whether the stack exists, we only

need to remap the nodes in the shard to be deleted, so that they are evenly distributed in
the remaining shards. When the number of shards increases, if the stack does not exist, we
should perform the remapping operation on all nodes, and randomly remap some nodes
to the newly added shards, according to the ratio of active nodes to inactive nodes, 1:1.
Otherwise, we should first use (3-3) to determine which shard will be restored, and the
corresponding active nodes will be directly transferred back to the shard. After that, all the
other nodes that have been remapped due to the reduction in the number of shards in the
previous stage need to be remapped again, until the members of the newly added shards
reach the expected value.

Since the intra-shard consensus protocol is the PBFT consensus algorithm, we can
ignore the problem of the different computing powers of the nodes in the system. According
to the preconditions of PBFT, it is necessary to ensure that the total number U in the node
system satisfies U ≥ 3 f + 1, where f represents the number of malicious nodes in the system.
When all nodes are allocated to i shards, according to the method shown above, due to
the randomness of the assignment, we cannot be sure that the number of internal nodes in
each shard satisfies Ui ≥ 3 fi + 1. Thus, there may be a scenario where the Byzantine nodes
in some shards exceed the threshold. The case in which the Byzantine nodes exceed the
threshold is depicted in Figure 5, assuming the same number of nodes in all the shards.
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Figure 5. Risks of shard failure. Figure 5 shows that there is a certain probability that the proportion
of Byzantine nodes in the shards will exceed 1/3 after sharding. In Figure 5, after the node assign-
ment, the number of Byzantine nodes in shards 1 and 3 exceeds 1/3, resulting in a failure to reach
a consensus within the shards. Section 4.2 discusses the relationship between the effectiveness of the
intra-shard consensus and the number and size of the shards.

3.2. Cross-Shard Transaction Processing

When committees exist in the shards, the most common ways to handle cross-shard
transactions are the two-phase commit (2PC)-based and transaction split-based methods.
Compared to the former one, the latter only considers the multi-input and single-output
situation. In fact, some transactions may include multiple outputs. In this case, if the multi-
input and multi-output situation is split into a single-input and single-output, the whole
process will be very complicated. In addition, transaction splitting results in an increase
in the number of transactions, which in turn greatly increases the processing and storage
overhead of the entire system. Based on this, in this paper, we improved the traditional
method based on a two-stage submission (as shown in Figure 6). The improved method is
mainly composed of four parts: the transaction processing stage, confirmation stage, audit
stage, and submission stage. The specific process is shown in Figure 7.
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• Transaction processing phase. In the transaction processing phase, the client sends
the transactions to be confirmed to the corresponding input shard.

• Confirmation phase. The confirmation phase mainly completes the verification and
submission of transactions by the input shards. After each input shard receives the
transaction sent by the client, the intra-shard consistency protocol PBFT is triggered to
verify the validity of the transaction. After the audit is completed, the master node of
each shard will send the verified information to the output shard of the corresponding
transaction in the form of <tx, T, C, i, 1>. If the verification fails, a message in the form
of <tx, T, C, i, 0> is sent. In this message, tx represents the summary information of
the transaction processed in the shard, T represents the time when information is sent,
C represents the set of numbers of all the input shards responsible for processing the
transaction, i represents the number of the shard, and “1” represents the verification
passed, while “0” means the verification failed.

• Review phase. The output shard first classifies the received information, according to
C, and checks whether the verification information of the corresponding transaction is
consistent (whether it is “1”), according to the classification result. It then calculates the
sending time interval ∆t of each set of information, ∆t = maxT−minT, and compares
it with the theoretical detection delay ∆T. If ∆t > ∆T, the warning information will be
sent to the corresponding input shard, and the corresponding shard will review all the
nodes; otherwise, the output shard processes all the received information and sends
the processed information <Con f irmed tx, T> to all nodes except the master node in
all input shards. After the node in the input shard receives the information sent by the
output shard, it carries out a final confirmation of the information. If the information
is correct, it will not give any response, or it will reply <Error, i>.

• Submit phase. The output shard starts timing after sending <Con f irmed tx, T>. If
the information sent by the relevant node is not received within 2∆T, Con f irmed tx
will be submitted to the client, and the cross-shard communication will be completed.
If an <Error, i> message is received, the number of received messages needs to be
counted. When the amount of information received by the output shard is greater than
1/2 of the amount of the information sent, or the amount of information received from
a shard is greater than 1/3 of the amount of information sent to the shard, the output
shard discards the transaction. In other cases, the output shard will also commit the
Con f irmed tx to the client.

Comparing Figures 7 and 8, it can be seen that the newly proposed method of cross-
shard transaction processing not only avoids the high communication complexity caused
by the multiple calls of the intra-shard consistency algorithm in the traditional algorithm,
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to a certain extent, but also can better cope with various possible malicious attacks and
situations where the master node is a malicious node.
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3.3. Shard Reconfiguration

Sharding blockchain systems require periodic reconfigurations of the system, including
the adjustment of the members and the transfer of states between shard members after the
reconfiguration. This is because, if the original structure is stable, attackers can easily launch
attacks on particular nodes after a period of observation, thus allowing the proportion of
nodes controlled by the adversary to exceed a predefined security threshold, e.g., 1/3 of the
PBFT. This will directly lead to the failure of the corresponding slice, and further destroy
the vitality and security of the whole system. Based on this information, we propose a shard
reconfiguration method based on the activity of the nodes’ participation in the transaction.
The general process is shown in Figure 8. The main flow is as follows.

3.3.1. Node Activity Determination and Node Classification

First, we used the following formula to calculate the node activity (Aj):

Aj = α
Mj

M
+ β

mj

Mj
(4)

where j represents the node number; M indicates the total number of transactions to be
processed in the consensus phase; and Mj denotes the number of transactions that node j

is involved in. In the equation, Mj ≥
⌈

1
2 M
⌉

, mj indicates the number of transactions that
passed authentication, and α, β are weight parameters, α + β = 1.

Then, we arranged Aj in descending order according to the results, where half of the
modes with higher activity are active nodes, and the remaining nodes are inactive nodes.
Compared with the traditional methods, the node activity in this study not only depended
on the transactions but was also related to the validity of these transactions. The main
reason for this is that, even if a particular node is involved in all transactions, if none of
these transactions pass the validation, all the work is invalid, which not only causes a waste
of resources but also, on the other hand, means that the node is not essentially involved in
any transaction.

In addition, in principle, the nodes within the shard prefer to process transactions
with a higher probability of passing the validation, in order to obtain higher payoffs, and
not to choose those are doubtful. Therefore, we not only need to pay attention to the size
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of
mj
Mj

, but must also consider the relationship between
Mj
M and

mj
Mj

. Specifically, all nodes

that are defined as active must satisfy
mj
Mj
≥ max

(Mj
M , 50%

)
. Those that have a lower

mj
Mj

cannot be listed as active nodes and, subsequently, need to be further observed.

3.3.2. Shard Reconfiguration

Active nodes are those that are actively involved in transaction processing and have
a high transaction verification rate. Thus, we did not change the active nodes in the
previous stage for the following reasons. Firstly, we can determine that the active node is
not malicious and has a positive effect on the transaction processing in the shard. Retaining
it can ensure the security of the system, to a certain extent. Secondly, active nodes tend
to participate in processing more transactions, and keeping them in the corresponding
shard can ensure the stability of the initial shard transaction processing in the next stage.
Finally, when new nodes are added to the shard, these nodes can serve to defend possible
corruption attacks [28].

Inactive nodes are those that are not actively involved in transaction processing or
have a low validation rate for the transactions they are involved in, so that they will be
reallocated to a shard by random assignment after one particular stage. The reasons for
this are as follows: firstly, inactive nodes are often more vulnerable to corruption attacks
due to their low participation, and, therefore, random arrangement can ensure the real-
time changes in the stored data in such nodes and thus ensure the security of the shard;
and secondly, this process can cause nodes to participate in transaction processing in
different shards and stimulate the nodes to participate in transaction processing through
the differences in the motivation mechanism.

For the newly joined nodes, the allocation is performed in the same way as that of
the inactive nodes. The reasons for this are as follows: firstly, we cannot be sure whether
all these nodes are honest and, therefore, random allocation can disperse all nodes to the
respective shards in order to minimize the proportion of malicious nodes; and secondly,
the nodes do not have access to prior data related to the shard, and thus they are more
vulnerable to corruption attacks by malicious nodes. Random assignment can reduce the
proportion of nodes that are subjected to corruption attacks and ensure the security of
the shard.

3.4. Motivation Mechanism

The motivation mechanism of the blockchain is used to encourage nodes to participate
in the protocol. In general, nodes participating in the protocol need to consume a certain
amount of communication bandwidth and computing power [29], and if they do not receive
the corresponding rewards, the nodes will lose the incentive to participate in the protocol.
Therefore, it is necessary to establish a motivation mechanism to maintain the liveness of
honest nodes in the system.

Since the sharding blockchain system is more complex than the traditional blockchain,
the setting of the motivation mechanism not only needs to consider the reward and pun-
ishment mechanisms, but also needs to comprehensively consider different shards and
different node types. Since there are few existing studies on the motivation mechanisms of
sharded blockchains, this paper briefly introduces the precautions for setting the motivation
mechanism of sharding blockchains from two perspectives:

• Motivation mechanism between shards. The number of rewards obtained by the
same type of shard is determined by the efficiency of its own transaction processing.
The higher the efficiency, the more bonuses can be shared under certain conditions.
The rewards received by different types of shards should be determined by the total
number of transactions processed by the shard. In principle, for a transaction that
needs to be processed across shards, the total number of rewards for all input shards
and all output shards should be consistent.
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• Motivation mechanism within shards. The motivation mechanisms of different
nodes in the shard need to comprehensively consider the identity of the node in
the intra-shard consistency protocol, the enthusiasm of the node to participate in
the transaction, and the proportion of the corresponding transaction that passes the
verification. Normally, nodes with different identities will receive different rewards
after successfully processing a certain transaction. The more important their role is, the
more rewards they will obtain. For nodes with the same identity in shards, the number
of rewards they receive has a certain relationship with their activity and efficiency
in participating in transactions, as well as the probability of the transactions pass-
ing verification.

In addition, for those malicious nodes, if there are no malicious behaviors involved in
the transaction processing, they will be rewarded according to the motivation mechanism
of honest nodes. Otherwise, malicious nodes will be punished and be included in the
warning list, and it will be hard for them to participate in the transaction processing for
a certain period of time.

4. Experiment Analysis

This section is divided into three main parts: Section 4.1 verifies the security and
liveness of the proposed algorithm based on three types of five attack models; Section 4.2
studies and analyzes the influence of the number of shards and the scale of shards on
the effectiveness of the shards when the intra-shard consistency protocol is PBFT; and
Section 4.3 analyzes the performance of the algorithm.

4.1. Security Analysis

This section mainly analyzes the security and liveness of the algorithm from three
perspectives: the 1% attack, corruption attack, and Byzantine node attack. Here are brief
introductions of these three attack models:

• The 1% attack model. With the system divided into different shards, the 1% attack is
caused by the uneven computing power of the shards; that is, the malicious node only
needs to control a small part of the nodes in the shard to cause the entire shard to be
invalid, thereby threatening the security of the entire system.

• Corruption attack model. This mainly refers to the scenario where attackers destroy
honest nodes. Most of the existing sharding blockchains mainly account for mild
corruption attacks; that is, the attacker needs a certain period of time to complete the
destruction of the nodes, and the target node remains honest during this time. In this
paper, we mainly considered attacks on newly joined nodes and member nodes.

• Byzantine node attack model. This refers to the phenomenon whereby Byzantine
nodes disrupt the consensus process by acting maliciously and forging information.
In this paper, we considered the case where the master node and other nodes within
the shard are Byzantine nodes separately.

Next, we analyzed the security of the system in detail, based on our proposal and
these attack models.

4.1.1. The 1% Attack Model

Malicious nodes often achieve a 1% attack by controlling the shard with the least
arithmetic power. Once any shard is controlled, the security of the whole system will
be threatened.

In order to deal with this problem, we combined the jump consistent hash algorithm
with the improved Anchorhash algorithm to accomplish the process of node assignment un-
der the assumption that all nodes have the same arithmetic power. This method effectively
reduces the probability of a 1% attack in two ways:

• Initialization phase. We first used the specificity of each node’s entry time into the
system and the node’s own signature to generate a random number belonging to
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each node, then we used this number to complete the assignment of the nodes. The
randomness of these numbers ensures that nodes are assigned randomly. Thus, there
is no over-concentration of computing power in one shard.

• Remapping and changes in the number of shards. We improved the Anchorhash
algorithm to enable it to cope with the change in the number of shards, because it only
uses historical data calls to respond to bucket changes. This is very dangerous for the
blockchain, because once malicious nodes obtain these data, they can easily launch
an attack. Therefore, we combined the concept of timestamps and the jump consistent
hash algorithm to ensure the security of the system. Combining the randomness of
time with the variability of the number of shards makes it difficult for malicious nodes
to predict the upcoming addition or removal of shards from the system. The jump
consistent hash algorithm not only ensures that, when one shard changes, all nodes
that need to be remapped are evenly distributed to the remaining shards, but it also
minimizes the number of remapping actions.

4.1.2. Corruption Attack Model

Here, we introduce the concept of node activity, having set up a shard reconfiguration
method to solve the attacks on newly joined nodes and member nodes:

• Node activity. According to the greedy algorithm, all honest nodes aim to receive
the highest reward, and all attackers aim to destroy the entire system. Therefore, the
nodes with higher activity are often honest nodes. Based on this, we established the
node activity index and used the nodes with higher activity to guide the newly added
nodes, which can avoid corruption attacks to a certain extent.

• Shard reconfiguration. We divided all nodes into two categories according to their
activity, and periodically remapped all inactive nodes in the system. By reconfiguring
the shards, it becomes difficult for a malicious node to anticipate the composition
of the next stage of the shard in advance, so that the probability of mild corruption
attacks is reduced.

4.1.3. Byzantine Node Attack Model

We used the PBFT consensus algorithm as the intra-shard consistency and improved
the traditional 2PC method to solve the problem of possible Byzantine node attacks. Since
PBFT itself can withstand Byzantine node attacks to some extent, here, we will only discuss
the case where the master node is a Byzantine node.

When the master node is a Byzantine node, the following two scenarios may occur.
One option is that the master node receives information from other nodes in the shard and
then deliberately does not send the information, causing the failure of the consensus of
the whole system. This kind of behavior can be easily detected. The other option is that
the master node modifies the received information privately, which in turn leads to the
failure of the whole system. This kind of behavior cannot be easily detected. Thus, we
added a “review phase” and “submit phase” to the traditional 2PC method to allow all
nodes in the shard except for the master node to confirm the authenticity of the information
once again.

In order to further test the effectiveness of the method, we analyzed the detection
results of the algorithm, as described in this paper, and the traditional 2PC through
50 experiments, in which the leader node was malicious and the other nodes in the shard
were malicious in 10 cases each. The experimental results are shown in Table 2.

It can be seen from the data in the table that the algorithm proposed in this paper
exhibited a certain improvement in the total detection accuracy compared with the tradi-
tional 2PC algorithm. In particular, the existence of the audit phase greatly improved the
accuracy of the algorithm in detecting malicious master nodes. However, although the
algorithm proposed in this paper accurately detects the malicious behavior of all the other
nodes, there are cases in which valid transactions are identified as invalid transactions. It is
difficult to finally determine whether the transaction is valid, resulting in misjudgment.
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Table 2. Security analysis of the cross-shard transaction processing phase.

Algorithms Leader Node
Malicious

Other Nodes
Malicious

Leader Node
Malicious

Detection Accuracy

Other Nodes
Malicious

Detection Accuracy
Error Total

Accuracy

2PC 7 9 70% 90% 4 80%
Improved 2PC 9 11 90% 100% 2 90%

4.2. Shard Effectiveness Analysis

We assumed that the proportion of Byzantine nodes existing in the system is R, where
0 ≤ R < 1/3. We defined L as the number of nodes in a shard. It was stipulated that
all nodes in the shard will be verified according to their own identity (Byzantine or non-
Byzantine) in the consensus phase.

Let X =
L
∑

i=1
Xi, where Xi represents the identity of the node as a Byzantine node, and

X represents the total number of Byzantine nodes in the current shard. The literature [12]
designates the probability distribution of X as a binomial distribution, as shown in (5), and
considers that the probability of honesty or maliciousness in each node selection remains
unchanged, but this is only applicable to an infinite number of nodes. In this case, there are
certain limitations.

P(X <

⌊
L
3

⌋
) = 1− P(X ≥

⌈
L
3

⌉
)= 1−

L

∑
X=d L

3 e
Cx

L f x(1− f )L−x (5)

In fact, due to the limited total number of nodes, each node selection affects the ratio of
honest nodes to malicious nodes in the system. Based on this, we adopted a hypergeometric
distribution that is closer to the actual situation to calculate the probability distribution
of X. This is shown in Formula (6), where U represents the total number of nodes in the
system and quantifies the influence of the number of nodes in the shard and the number of
shards on the effectiveness of the shard:

P(X <

⌊
L
3

⌋
) = 1− P(X ≥

⌈
L
3

⌉
) = 1−

L

∑
x=d L

3 e

Cx
bURcC

L−x
U−bURc

CL
U

(6)

Based on the experimental results reported in the literature [12], we firstly set the
number of shards N = {3, 4, 5} and the total number of system nodes M = {60, 120, 180},
and then, based on the fault-tolerant performance of the PBFT algorithm, three experiments
were performed. The experimental results are as follows:

Experiment 1: Effectiveness Analysis of a Single Shard.
The literature [30] pointed out that the validity of each shard in a sharding blockchain

system must be greater than 99%. Based on this, we conducted a comprehensive analysis
of nine possible situations and compared the results with the threshold of 99%. The
experimental results are shown in Figure 9.
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Figure 9. N, M impact on individual shard validity. Among which N represents the number of shards
and M represents the total number of the nodes.

It can be seen from a single graph that, in the same situation, the effectiveness of the
sharding is related to the speed of the completion of the node allocation in the sharding.
The slower the completion speed of the sharding is, the more easily it is affected by the
proportion of Byzantine nodes in the system. Through a horizontal and vertical comparison
of experimental results, we can observe that the effectiveness of each shard is related to the
number of nodes in the system, the number of shards, and the Byzantine ratio in the system.
The more nodes there are in a shard, the more the shard can tolerate a higher proportion of
Byzantine nodes in the system. On this basis, we also conducted additional comparative
experiments for cases where the total number of nodes and the number of shards in the
system are different, but the number of nodes in the shards is the same. There were also
some differences in the effectiveness.

Table 3 lists the specific values for which all shards are valid in the critical cases in the
nine graphs above.
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Table 3. Critical values of fragmentation effectiveness under different conditions.

Numbers 1 2 3 4 5 6 7 8 9

N 3 3 3 4 4 4 5 5 5
M 60 120 180 60 120 180 60 120 180

Pmin 0.9911 0.9949 0.9928 0.9938 0.9917 0.9980 0.9903 0.9977 0.9901
R 0.16 0.2 0.22 0.14 0.18 0.18 0.12 0.14 0.18

Experiment 2: Analysis of the overall effectiveness of the system based on the scale of
shards.

Experiment 3: Overall effectiveness analysis of the total number of nodes in the system
These three figures respectively describe the probability that the entire system is effective
when the total number of nodes is the same and the number of shards is different.Among
which (a) The total number of nodes is 60; (b) The total number of nodes is 120; (c) The total
number of nodes is 180.

Based on Figures 10 and 11, we can reach the following conclusions:

1. Under certain circumstances, the effectiveness of the entire system increases with
the increase in the number of nodes in the shard. When a certain limit is reached,
the effectiveness of the system will not further increase. The main reason for this
is that, when the proportion of Byzantine nodes in the system is acceptable, and if
the number of nodes in the shard reaches a certain condition, the effectiveness of
each shard almost approaches the maximum value. In this case, further increasing
the number of nodes in the shard may not optimize the effectiveness of the overall
system. However, it may lead to an exponential increase in the complexity of the
intra-shard communication, which is not conducive to the efficiency of the entire
system in processing transactions.

2. Under the conditions set out in this paper, when the proportion of Byzantine nodes
in the system is below 0.2, in most cases, the effectiveness of the system is basically
guaranteed. When it exceeds 0.2, the effectiveness will drop rapidly, even if the
Byzantine proportion of the entire system is satisfied. We can also see that, even if
the ratio does not exceed 1/3, the effectiveness of the entire system is close to 0. Thus,
differently from the traditional blockchain system, in the sharding blockchain system
there are stricter requirements for the proportion of Byzantine nodes, which cannot
only be satisfied with the theoretical upper limit.
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Figure 11. Overall effectiveness analysis of the total number of nodes in the system. These three
figures respectively describe the probability that the entire system is effective when the number of
shards is the same and the total number of nodes is different. Among which (a) The number of shard
is 3; (b) The number of shard is 4; (c) The number of shard is 5.

It can be seen from the above analysis that, in a sharding blockchain system where
the intra-shard consensus protocol is PBFT, regardless of the scale of the entire system,
the primary goal of sharding is to maximize the ratio of sharding to the Byzantine nodes
in the system in order to ensure the validity of all shards. In addition, in the process of
determining the size of each shard, it is necessary to fully consider the communication
complexity of the PBFT on-chip consensus protocol, and in order to ensure the effective
completion of the transaction processing, the efficiency of the transaction processing should
be improved as much as possible.

4.3. Performance Analysis

In this section, we first compare our algorithm with the classic sharding consensus
algorithm ELASTICO. The ELASTICO algorithm is mainly composed of five parts: commit-
tee node confirmation, shard configuration, intra-shard consensus, epoch random number
generation, and shard reconfiguration. The comparison mainly includes three aspects: the
committee node confirmation, shard configuration, and cross-shard communication:

• Committee node confirmation. ELASTICO uses PoW scheme to confirm the commit-
tee nodes by mining, which causes the system to spend too much unnecessary time
waiting for the nodes solving the PoW scheme to fill up the committee. In contrast,
the algorithm proposed in this paper is to confirm the member nodes by the positivity
of the nodes, which saves time to some extent.

• Shard configuration. ELASTICO reduces the communication complexity of the shard
composition through a predefined directory committee. Its communication complexity
is proportional to the directory committee. The proposed algorithm uses the jump
consistency hash function and Anchorhash algorithm. The experimental results are
shown in Figure 12. With the proposed algorithm, the time complexity exists between
the jump consistency hash function and Anchorhash algorithm and is slightly higher
than ELASTICO, because this method reduces the amount of storage of historical data
and memory usage by distinguishing the node types and takes advantage of the low
time complexity of the jump consistency hash algorithm in remapping to achieve the
average mapping of all nodes. In general, the algorithm ensures the uniformity of the
arithmetic power across all shards and the security of the whole system at the expense
of some communication complexity.

• Cross-shard communication. The ELASTICO protocol divides the set of transactions
into subsets of transactions that do not intersect with one another, avoiding a great
deal of cross-shard communication. Once cross-shard communication is involved, the
performance of the ELASTICO algorithm will drop dramatically. We set up a more
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comprehensive cross-shard communication process that fully considers Byzantine
attacks, ensuring the effectiveness of the system to a large extent.
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Then, we compared our algorithm with the traditional sharding consensus algorithms
and identified three advantages of our algorithm:

• It further limited the number of Byzantine nodes allowed in the system. This can
provide a standard for other sharding consensus algorithms. It can also reduce the
resource consumption caused by consensus failure, to a certain extent.

• It can handle the situation where the leader node in the shard is a malicious node.
Thus, it can cope better with the possible monopoly phenomenon and disputes of
interest in various applications.

• The addition of the signature and node activity better ensures the security of the
algorithm. At the same time, it also provides new ideas for the further application of
sharding consensus algorithms in the field of privacy protection.

5. Conclusions

In this paper, we proposed a new and effective sharding blockchain consensus mecha-
nism based on the problems of existing sharding technologies. In regard to the dynamic
management of the number of sharding nodes, we proposed a method based on the sig-
nature Anchorhash and jump consistency hash function, which realizes the minimum
remapping and reduces the average time complexity to ensure the system’s security. In
terms of cross-shard transaction processing, a relatively complete cross-shard transaction
scheme was designed. This scheme not only considers the malicious attacks that may
be launched by the internal nodes of the shard, but also pays attention to the possible
malicious behavior of the leader in the shard. In the design of the incentive mechanism,
the differences between the incentive mechanisms of different shards and different nodes
were fully considered, a method which is more reasonable and effective than the traditional
incentive mechanisms. In addition, we used hypergeometric distribution to calculate the
effective probability of each shard and the system under different conditions. We not only
analyzed the influence of factors such as the number of shards and the total number of
system nodes on the effectiveness of the shards, but also further restricted the proportion
of Byzantine nodes that are actually allowed in the shard block connection system, which
was reduced from the traditional 1/3 to 0.2.
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