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Abstract: The paper develops a methodology for the online built-in self-testing of deep neural
network (DNN) accelerators to validate the correct operation with respect to their functional specifi-
cations. The DNN of interest is realized in the hardware to perform in-memory computing using
non-volatile memory cells as computational units. Assuming a functional fault model, we develop
methods to generate pseudorandom and structured test patterns to detect hardware faults. We also
develop a test-sequencing strategy that combines these different classes of tests to achieve high fault
coverage. The testing methodology is applied to a broad class of DNNs trained to classify images
from the MNIST, Fashion-MNIST, and CIFAR-10 datasets. The goal is to expose hardware faults
which may lead to the incorrect classification of images. We achieve an average fault coverage of 94%
for these different architectures, some of which are large and complex.

Keywords: functional testing; pseudorandom testing; in-memory computing; deep neural networks;
non-volatile memory

1. Introduction

Deep neural networks (DNNs) are pervasive in artificial intelligence applications
involving computer vision, image processing, speech recognition, and robotics. When
deployed on resource-constrained edge devices, the DNN model performs inference on
a continuous basis to analyze the information gathered from its operating environment—
consuming a considerable amount of energy in this process. Therefore, high-performance
yet low-power operation is a critical requirement.

In-memory computing using non-volatile memory (NVM) cells as computational
units can provide significant power and speed benefits for machine-learning inference
tasks. Crossbar-based architectures are typical, consisting of an array of n rows by n columns
with NVM-based storage elements located at their crosspoints [1,2]. Synaptic weights
are specified in terms of the conductivity of the NVM cells, allowing these cells to act as
computational units through the analog summation of the current that flows through them.

The NVM device of a synaptic cell can be implemented using technologies such as
phase-change memory (PCM), oxide-based memory (OxRAM), and spin-based magnetic
memory (STT-MRAM) [1,3,4]. High voltages, generated via on-chip charge pumps built
using CMOS devices, are required to read or to program these NVM cells. High-voltage
operations, unfortunately, have negative consequences for hardware reliability. Common
issues include higher NVM-cell wear-out, increasing the risk of stuck-SET and stuck-RESET
faults; higher resistance drift, leading to data integrity issues; and the accelerated aging
of the peripheral CMOS circuits, resulting in read disturbance issues [5]. Faults affecting
synaptic cells that result in erroneous values being used during inference can lead to incor-
rect results. For example, if the underlying DNN model performs image classification, these
errors may result in more images being misclassified, which is problematic in autonomous
driving or surveillance applications.
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Structural and functional testing methods have been recently developed for accelera-
tors built using systolic-array architectures [6,7]. By contrast, this paper develops testing
methods aimed at exposing faults in NVM cells situated in crossbar architectures. Because
the crossbar structure is similar to that of traditional RAM, test-pattern generation tech-
niques such as March tests can be adapted to test for faults [8]. A common theme is to
program a target conductance value into every NVM cell and then measure variations in
the conductance when reading back [9–12]. Fault models include stuck-at and transition
faults and others based on NVM’s physical characteristics, for example, a read disturbance
fault, which may occur when a read current is applied during read operations but may also
bias the conductance of the cell [9].

Though suitable for production testing, using any of the above methods for the field
testing of crossbars presents significant practical limitations, especially when the trained
machine-learning model is deployed on an edge device. This is because the following steps
must be performed in sequence: (1) the inference operation must be stopped to offload
the model parameters from the crossbars, (2) test patterns must be loaded to detect stuck
faults, (3) preventive measures may be necessary to avoid using the faulty cells, and (4)
model parameters must be reloaded on to the crossbars to continue the inference operations.
Due to the limited storage capacity on edge devices, model parameters cannot be stored
on the device temporarily during testing. Additionally, the offloading and reloading of
the model parameters can incur a significant amount of time, during which the crossbars
cannot perform any inference. The novelty of our testing methodology is that the generated
test patterns are specific to the model being deployed on the crossbars. This way, model
parameters need not be offloaded for testing purposes. These model-specific pseudorandom
test patterns can be generated on demand, further lowering the storage requirements.

We develop a methodology for the online built-in functional testing of NVM-based in-
memory accelerators for DNNs used in image classification tasks. The goal is to validate the
correct operation of the DNN under test (DUT) with respect to its functional specifications
by exposing faults affecting the crossbar that may cause the misclassification of the input
images. This paper makes the following contributions:

• We develop test-pattern generation (TPG) methods which generate pseudorandom
tests in the form of images whose pixel values are chosen from both normal and
uniform distributions. The distributions themselves are created using the statistical
properties of the information present within the training dataset for the DNN, and so,
tests generated using these distributions are able to better sensitize weights within the
DUT and achieve good fault coverage.

• Convolutional layers extract features in the form of edges and contours for the sub-
sequent fully connected hidden layers within DNNs. Based on this observation, we
develop TPG methods to generate structured patterns which mimic such features
and show that these can augment pseudorandom tests to further improve the fault
coverage in convolutional neural networks.

• For DNNs trained to classify color images, we develop a TPG method which uses
template images to capture the underlying chrominance information and applies
geometric transformations to these templates to create diversified tests.

• Output responses from the DNN for a series of test patterns are observed in the form
of one-hot-encoded predicted labels. These are compressed into a signature which can
be compared to a reference to detect faults.

To the best of our knowledge, ours is the first approach to use concepts from pseudo-
random testing for the built-in self test of DNNs. The developed TPG methods are agnostic
to the specific technology used to implement the NVM cell. These methods are integrated
into a built-in self-test (BIST) scheme which aims for a small test-set size while achieving
high fault coverage.

We demonstrate the broad applicability of the developed BIST scheme using some
representative DNNs which are suitable for deployment on edge devices. First, we consider
networks in the form of a three-layer artificial neural network (ANN), a two-layer convo-
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lutional neural network (CNN), and LeNet [13], which are trained to classify grayscale
images from the MNIST and Fashion-MNIST (FMNIST) datasets. We show an average
fault coverage of 95.47% for these networks. Then, using realizations of AlexNet [14] and
ResNet-18 (residual network) [15] which are trained to classify color images from CIFAR-10,
we show an average coverage of 87.28% for these large, more complex architectures.

The paper is organized as follows. Section 2 familiarizes the reader with the system
architecture and associated reliability concerns, as well as the concept of functional testing.
Section 3 develops the DNN and the associated fault models. The technical approach
is developed in Sections 4 and 5. The performance of the BIST scheme is discussed in
Sections 6 and 8. The error detection using a signature analysis on the test responses is
discussed in Section 7. We discuss the related work in Section 9 and conclude the paper in
Section 10.

2. Preliminaries

We describe the crossbar-based system architecture which uses NVM cells as storage
elements. The various reliability concerns associated with popular NVM technologies are
also discussed.

2.1. System Architecture

The DNN of interest is mapped onto a tile-based architecture in which each tile consists
of a crossbar array and communicates with other tiles via a network interconnect. Each
crossbar is an array of n rows by n columns with NVM-based storage elements located at
the crosspoints. Figure 1 shows a 3D view of a crossbar in terms of the top electrodes (TEs)
which form rows and the bottom electrodes (BEs) which form columns. A synaptic cell is
connected at a crosspoint via an access transistor. The NVM is shown as a resistive element.
The pre-synaptic neurons are mapped along the TEs and post-synaptic neurons along
the BEs. The synaptic weight between a pre- and a post-synaptic neuron is programmed
as the conductance of the corresponding synaptic cell at the crosspoint. A pre-synaptic
neuron’s voltage v, applied on the TE, is multiplied by the conductance to generate a current
according to Ohm’s Law. The current summation occurs on each BE according to Kirchoff’s
Current Law, when integrating excitation from other pre-synaptic neurons. The figure
shows the integration of the input excitation from two pre-synaptic neurons to one post-
synaptic neuron via synaptic weights w1 and w2, respectively. The current summations
along the column implement the multiply and accumulate operation, w1v1 + w2v2, needed
for the forward propagation of neuron activation.

top electrodes 
(TEs)

bottom electrodes
(BEs)

NVM cell

𝑤
"

𝑤
#

TiN

Ti

Hfo2

TiN

(OxRAM)

(PCM)

to TE

to BE

control
chalcogenide

resistive 
heating element

a. b. c. 

NVM

Figure 1. Crossbar organization showing the top and bottom electrodes. Each synaptic cell consists
of an NVM device (resistive element) and an access transistor. The NVM device can be implemented
using technologies such as PCM or OxRAM.

Take, for example, the PCM-based cell shown in Figure 1 which is built using a
chalcogenide semiconductor alloy called GST in whose amorphous phase exhibits higher
resistance than the crystalline phase [1]. To compute wivi, a controlled current is injected
into the resistor–chalcogenide junction via the heater element to ensure that the phase of the
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PCM cell is not disturbed. This is the fundamental operation of the forward propagation of
neuron excitation during inference. To program or update a synaptic weight, the injected
current is controlled to heat the GST, thereby changing its conductivity. The current practice
is to set voltages of 5.7 V for SET (0→ 1), 13.1 V for RESET (1→ 0), and 3.85 V to read the
weights. These voltages are generated using an on-chip charge pump.

Each NVM cell can be programmed to a low-resistance state (LRS) or a high-resistance
state (HRS) by appropriately setting its conductance. To represent multiple bits per cell,
an intermediate LRS can be programmed into the cell [1]. To implement two bits per cell,
for instance, it can be programmed for one HRS to represent zero or one of three different
LRSs to represent non-zero values.

2.2. Reliability Issues

To read or to program an NVM cell, a peripheral circuit drives the current through
it using a bias voltage which must be high enough to compensate for both the ohmic
potential drop and the built-in potential of the access device which connects the cell to a
row and a column in the crossbar [1,16]. Therefore, high-voltage operations are common
in crossbar architectures with PCM, FeRAM, and Flash NVMs, and these voltages are
generated via on-chip charge pumps built using CMOS devices. High-voltage operations
lower the NVM cell reliability. Common issues include higher wear-out and increasing
the risk of stuck-at-SET and stuck-at-RESET faults; higher resistance drift leading to data
integrity issues; higher electro-migration in the metal contacts leading to cell lifetime issues;
and higher probability of threshold switching during read operations resulting in read
disturbance issues.

High-voltage operations also cause aging of the access transistor in each synaptic cell in
a crossbar and also of the transistors in each neuron connected along the TEs and the BEs
of the crossbar [17]. Aging accelerates when the transistor is exposed to a high overdrive
voltage, defined as the voltage between the transistor gate and the source in excess of the
threshold voltage which is the minimum voltage required between the gate and the source
to turn the transistor on. The failure mechanisms include the Time-Dependent Dielectric
Breakdown, Bias Temperature Instability, and Hot-Carrier Injection [5]. Referring back to
Figure 1, these failure mechanisms may cause the access transistor to be stuck at 0/1 or to
switch incorrectly when reading from/writing to NVM cells.

Aging-induced defects differ from endurance failures, which are due to the repeated
programming of NVM cells [18]. Aging-related issues arise during inference (reading
of synaptic weights) and training (update of synaptic weights) in supervised machine
learning, while endurance issues arise only during training [19].

3. Neural Network and Fault Modeling

Full-precision DNNs that use 32-bit floating-point values to hold synaptic weights
are not suitable for deployment on edge device due to high computational and memory
costs. Therefore, starting with a full-precision model, we use an existing state-of-the-art
approach to prune and quantize the DNN, aiming to compress the model and to speed up
inference [20,21].

From the viewpoint of applying BIST, a well-trained compressed model makes it easier
to achieve good fault coverage using fewer tests. This is because there are fewer weights to
test, and because pruning removes less salient weights that minimally impact the network’s
accuracy, the surviving weights are now quite sensitive to changes caused by stuck-at-SET
and stuck-at-RESET faults in the hardware, and therefore are easier to sensitize using the
pseudorandom tests.

3.1. Compressing the DNN Architecture

Figure 2 shows the design flow to obtain a compressed ternary-weight version of the
original DNN which contains one of only three possible values in {−W, 0,+W} for weights
within each layer. We use an iterative process involving training, pruning, and fine-tuning
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steps. Starting with a full-precision model with random values for weights, our approach
implements unstructured pruning [20,22]; during each iteration, weights within each layer
are ranked in terms of their magnitudes using the L1 norm from largest to smallest and the
m smallest weights are removed from that layer, meaning their magnitudes are set to zero.
The network is then retrained and the process repeated. We choose to prune individual
weights over pruning entire neurons or pruning convolution layers because this approach
generates the smallest models for the DNNs considered here.

Trained & 
pruned model

Trained ternary 
quantized model

Training + 
pruning

Weights of 
trained & 
pruned model

+0.25 0 -0.66

0 +0.71 0

0 -1.25 0

Training + 
quantization

Figure 2. Design flow used to obtain a quantized DNN containing ternary weights.

Precision of the synaptic weights in the pruned model is drastically reduced using an
iterative quantization method developed by Zhu et al. [21]. This method maintains two
sets of weights—full-precision and quantized—during each iteration. During feed-forward,
the full-precision weights are quantized to one of {−s f n

l , 0, s f p
l } values as follows. Letting

w̃l and wl denote the full-precision and quantized weight within layer l, respectively, then
wl = s f p

l if w̃l > ∆l ; wl = 0 if |w̃l | ≤ ∆l ; and wl = −s f n
l if w̃l < −∆l . Here, s f p

l and −s f n
l

are quantization factors for the positive and negative weights, respectively, within layer
l. The per-layer threshold is set to ∆l = t max(|w̃l |), where t is a constant factor across all
layers. During back-propagation, the gradient is used to update both the full-precision
weights (to learn ternary assignments) and the two quantization factors (to learn ternary
values). This process is repeated. Once training is complete, the full-precision weights
are discarded, and only ternary weights are used during inference. The above-described
training-aware quantization of weights is preferred over post-training quantization from
the perspective of minimizing accuracy loss [23]. Quantized weights within each layer l,
except for the input layer, assume one of {−s f n

l , 0, s f p
l } values.

A DNN model with ternary weights can be readily mapped to the crossbar architecture
that uses NVM cells for storage. (Conductance of an NVM cell is positive by definition.
Positive and negative synaptic weights can be realized either by using two NVM cells
per weight or by using one NVM cell as the weight in conjunction with another cell set
to an appropriate reference conductance [24,25]). Synaptic weights that are zeros can be
ignored because they play no role in the multiply-and-accumulate operations related to
neuron activation. Table 1 summarizes the various DNN architectures built using the
above-described flow, along with their key specifications. These architectures are trained to
classify images within the MNIST, FMNIST, and CIFAR-10 datasets (MNIST is a collection
of 70,000 grayscale images of handwritten digits and FMNIST contains 70,000 grayscale
images of individual articles of clothing in 10 different categories; the CIFAR-10 dataset
consists of 60,000 color images in 10 classes, with 6000 images per class).

Table 1. The number of neurons within the fully connected (FC) layers, output (OUT) layer, pooling
(P) layers, and the convolutional (CONV) layers are shown for the ANN-3 and CNN-2 architec-
tures. For CNN-2, MAX_P1, and MAX_P2, refer to the first and second max-pooling layers, re-
spectively. The number of CONV, P, FC, and OUT layers are provided for LeNet-5, AlexNet, and
ResNet-18 architectures.

DNN Architecture

ANN-3 FC1 (128) → FC2 (128) → OUT (10)

CNN-2 CONV1 (16) → MAX_P1 → CONV2 (32) → MAX_P2 → FLATTEN → OUT (10)

LeNet-5 [13] 2 (CONV), 2 (P), 2 (FC), 1 (OUT)

AlexNet [14] 5 (CONV), 2 (P), 2 (FC), 1 (OUT)

ResNet-18 [15] 20 (CONV), 2 (P), 1 (OUT)
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A DNN’s performance depends on various hyperparameters such as number of
training epochs, the activation function, learning rate, number of neurons and convolution
filters, and quantization factors, among others. Hyperparameter values resulting in best
performance were chosen empirically for all DNNs (accuracy of the compressed models can
be improved upon by controlling the degree of pruning along with further optimization of
various hyperparameters; however, this is not the main focus of this paper). When pruning,
the learning rate ranged between 10−3 and 10−5 while the rate was set to 10−5 while
quantizing the network. The constant t was set to a value between [0.05, 0.12]. The ReLU
activation function was chosen for the hidden layers. A 3× 3 filter size was maintained
across all convolutional layers within AlexNet, ensuring that this parameter is agnostic to
the training data. We used 50 k images for training, 10 k for validation, and 10 k for testing
for F/MNIST (image dimension of 28× 28× 1); and we used 40 k images for training,
10 k for validation, and 10 k for testing for CIFAR-10 (image dimension of 32× 32× 3).
Table 2 summarizes relevant metrics for various DNNs, including model parameters and
the achieved accuracy.

Table 2. Model size in terms of number of weights and accuracy reported for full-precision and
compressed versions of the various DNNs.

Key Metrics
MNIST FMNIST CIFAR-10

ANN-3 CNN-2 LeNet AlexNet ANN-3 CNN-2 LeNet AlexNet AlexNet ResNet

Num. weights (full precision) 1.18
× 105

1.28
× 104

6.17
× 104

2.32
× 107

1.18
× 105

1.28
× 104

6.17
× 104

2.32
× 107

4.26
× 106

11.18
× 106

Num. weights (compressed) 2081 1370 1834 4438 2029 1831 2524 4362 15,009 44,014
Accuracy (full precision) 97.26% 97.40% 98.71% 98.74% 86.03% 87.64% 88.76% 90.01% 78.84% 94.85%
Accuracy (compressed) 78.68% 89.30% 84.38% 88.10% 69.11% 77.09% 74.21% 64.61% 53.74% 53.74%

3.2. Fault Model

The TPG method is developed under the following considerations:

• Tests are generated to target faults affecting NVM cells as well as the access transistors
associated with the cells.

• Tests are generated assuming at most one physical fault present in the system.
• Faults affecting the NVM cells are permanent in nature, remaining in existence indefi-

nitely if no corrective action is taken.
• The DNN is trained offline and then used to perform only inference operations once

deployed in the field.

Our functional fault model attempts to represent the effect of NVM faults on the
operation of the DUT. The model is explicit in that each fault is identified separately and
becomes a target for TPG. Because weights only have values ∈ {−W, 0, W}, the result is a
small fault universe for our explicit model, making it computationally feasible to generate
tests. Without loss of generality, let weights {−W, W} be mapped to appropriate LRS,
called LRS1 and LRS2, within the NVM cell. Faults are defined in terms of a change in the
weight read from the cell during inference, with respect to the value originally programmed
into the cell. Let wl denote a weight within layer l of the DNN that has been programmed
into a synaptic cell. Our model defines two types of hard faults that can affect wl :

• Type 1: Suppose wl ∈ {LRS1, LRS2}, but the value read during inference is HRS. This
behavior can be caused by physical faults such as the cell’s resistance being stuck at
RESET or the transistor connecting the cell to its crosspoint being stuck at zero due
to circuit aging. Alternatively, a read disturbance may occur during or after a read
operation in that the cell’s value becomes HRS while the correct value has been read
out, due to an abrupt change in the cell’s conductance state [9].

• Type 2: Suppose wl was set to LRS1 (or to LRS2), but the value read during inference
is LRS2 (LRS1). This behavior occurs under a scenario where an NVM cell previously
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stored LRS1 (LRS2) but the attempt to now store LRS2 (LRS1) does not succeed due
to a stuck-at-SET fault affecting the cell.

The fault coverage (FC) metric is defined as follows:

FC =
Numbers of Type 1 and Type 2 faults detected

Total number of Type 1 and Type 2 faults

Finally, the problem of detecting errors caused by resistance drift is not considered in
this paper. In NVM cells built using PCM, resistance of the phase-change material does
not remain constant but increases very slowly over time, potentially causing reliability
issues such as read disturbance and data loss [26]. From a functional viewpoint, the DNN’s
accuracy deteriorates over time due to errors in the multiply-and-accumulate operations
that are induced due to minor changes in values of the underlying synaptic weights.

4. Overview of BIST

Our BIST scheme is developed for non-concurrent, online testing of the hardware. That
is, testing is performed online but is non-concurrent in the sense that the normal system
operation must be suspended in order to generate and apply the tests to the hardware.
To minimize disruption, the BIST controller can schedule testing to take place during times
when the system is idle.

Prior to deploying the BIST strategy, we must ensure that the desired fault coverage is
achieved by the generated tests. Also desirable is a reduced test-set size. Conversely, given
a testing budget in terms of the number of patterns, we must quantify the maximum fault
coverage achieved. The analysis of the fault coverage proceeds as follows:

1. Seed the pseudorandom pattern generator.
2. Initialize the set S of uncovered Type 1 and Type 2 faults; neural weights are assumed

to be susceptible to one fault of each type as per our fault model.
3. Generate pseudorandom test pattern t.
4. Simulate the DUT and calculate the fault coverage in terms of numbers of Type 1 and

Type 2 faults detected by t.
5. Remove faults covered by test t from S.
6. If fault coverage is deemed adequate or if the testing budget is exhausted, stop. Else,

return to Step 3.

Step 4 in the above process deserves additional discussion. Simulating the DUT in this
context means running it in inference mode on the test image t. It is irrelevant from a testing
perspective that the DNN would not encounter pseudorandom images during normal operation
and therefore has not been trained on them. All that matters is that the fault-free DNN assigns
some class label i to this test image. Iterating through each uncovered weight w in the DUT,
we inject a Type 1 fault into w and present t again to the faulty DUT for classification. If the
DUT now assigns a label other than i to t, we know that t can detect the change in w and
thus covers the underlying Type 1 fault. The process to determine whether t detects a Type
2 fault affecting w is similar.

The proposed BIST infrastructure is shown in Figure 3. It operates as follows:

• The pattern generator contains logic to generate the pseudorandom test patterns,
supplied to the hardware as 2D images. Three types of test patterns are generated:
unstructured patterns in which pixel intensity values are chosen from either normal
or uniform distributions; structured patterns that mimic edges and contours; and
patterns from template images which capture chrominance information.

• The DUT is the quantized model obtained using the procedure described in Section 3.
The ternary weights are mapped to the underlying crossbar architecture.

• Because the DUT is trained to classify the input into one of k labels, the response for
each test consists of a one-hot-encoded predicted label wherein exactly one out of
k output bits is set to 1. The signature generator compresses these bit patterns into a
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signature using cyclic redundancy checking (CRC) [27]. The signature generated per
output line is compared to a previously calculated fault-free signature.

• The controller sequences and schedules tests. Control can be tied to a system reset
so that the BIST occurs during system start-up or shutdown. The BIST can also be
carried out when the system is idle, with the process being interruptible any time so
that normal operation can resume.

                                                              BIST controller

 DNN under test
        (DUT)

   Selector

  Signature             
  generator

  Pattern             
  generator Select

=Signatures

Classification

Error

R
ef

er
en

ce

Input
image

Test

Figure 3. Proposed BIST infrastructure.

5. Test-Pattern Generation

This section develops the TPG methods that generate pseudorandom and structured
tests for the DUT.

5.1. Pseudorandom Testing

Test patterns are applied to the DUT in the form of 2D images where pixel-intensity
values are chosen from a suitable distribution. In each case, we supply 10,000 test patterns
to the DUT and calculate the ratio of covered faults to all possible faults. Table 3 lists
the fault coverage achieved for our DNNs. The simplest approach constructs tests TUD
using pixel-intensity values from a uniform distribution (UD) between [0, 1]. However,
the fault coverage achieved is very low. Conversely, tests, TND, constructed using a normal
distribution (ND) with appropriately chosen mean and standard deviation achieve much
higher coverage.

We use Figure 4 to gain insight into this phenomenon. The image in Figure 4a visual-
izes a sample test from TUD and the stacked bar graph in Figure 4b shows the counts for the
various output labels predicted by DNNs trained on FMNIST when supplied test patterns
from TUD. Clearly, the models are unable to assign a diverse set of labels to these patterns.
For example, ANN-3 assigns the “Bag” label to most of its tests. This behavior indicates the
lack of diversity among the patterns within TUD—not enough weights are being sensitized
because these patterns are not representative of the data used to train these models.

The rationale behind generating tests using an ND is best explained by describing
how DNNs are trained. Instead of using raw feature values, these are standardized such that
the transformed values are centered around the mean with standard deviation; if x is the
raw value, then its scaled counterpart is obtained as x̃ = (x− µ)/σ, where µ and σ denote
the mean and standard deviation, respectively, of the training dataset. This is performed to
improve the performance of the model and for a faster convergence of the optimizer as it
learns the weights.
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Table 3. Fault coverage achieved by pseudorandom testing for various DNN models.

Workload Model Uniform Dist. (UD) Normal Dist. (ND)

MNIST

ANN-3 34.02% (1416/4162) 92.04% (3831/4162)
CNN-2 42.22% (1157/2740) 86.49% (2370/2740)
LeNet-5 36.09% (1324/3668) 77.99% (2861/3668)
AlexNet 52.67% (4577/8689) 93.72% (8144/8689)

FMNIST

ANN-3 43.83% (1779/4058) 95.29% (3867/4058)
CNN-2 58.90% (2157/3662) 83.01% (3040/3662)
LeNet-5 63.03% (3182/5048) 77.85% (3930/5048)
AlexNet 64.74% (5496/8489) 91.58% (7775/8489)

CIFAR10 AlexNet 37.78% (11,304/29,922) 59.63% (17,845/29,922)
ResNet-18 45.99% (38,840/84,447) 52.59% (44,412/84,447)
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(d)
Figure 4. Images in (a,c) visualize tests generated using uniform and normal distributions, respec-
tively. Here, pixels are colored using a heat map in which smaller values appear darker. Graphs in
(b,d) count the output labels predicted by the DNNs when supplied with test patterns from TUD and
TND, respectively. (a) A sample test from TUD. (b) Labels predicted by DNNs trained on FMNIST
for tests ∈ TUD. (c) A sample test from TND. (d) Labels predicted by DNNs trained on FMNIST for
tests ∈ TND.

The summary statistics (µ, σ) for the features within MNIST and FMNIST are calcu-
lated as (0.13, 0.31) and (0.29, 0.32), respectively. Once standardized, most pixel values
for the MNIST and FMNIST datasets lie within one standard deviation of a normal distri-
bution centered around a mean of zero, as shown in Figure 5, indicating that the DNNs
were trained using data ranging mostly within [−1, 1]. Therefore, pseudorandom tests
are generated from a normal distribution having (µ, σ) = (0, 1) so that each test contains
pixel-intensity values also mostly in the range [−1, 1]. Figure 4c shows an example test
image generated using values from this distribution. Because the DUT has been trained
on similar values, these test patterns sensitize a greater fraction of the weights within it,
resulting in an improved distribution in the count of predicted output labels (Figure 4d).
If a weight becomes faulty, there is higher likelihood that the DUT will assign a label to
one of the test images which is different from the one assigned in the fault-free case. This
improves the fault coverage as confirmed by the results shown in Table 3.
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Figure 5. Standardized pixel values lie within the one σ of a normal distribution centered at µ = 0.

Given its simplicity, we also generate tests using a UD whose values lie within the
range of the raw pixel-intensity values found within the training dataset. The diversity is
increased by applying different geometric transformations to each test, such as horizontal
flipping, vertical flipping, random rotation, and affine transformation.

It is important to incorporate the summary statistics of the training dataset during the
TPG to generate tests with a high likelihood of sensitizing faulty weights within the DUT.

5.2. Testing Using Structured Patterns

A CNN’s convolution layers extract features in the form of edges and contours for
the subsequent fully connected neural layers. To improve upon the fault coverage in these
DNN models, we generate structured patterns aimed at mimicking such features. The following
primitive patterns are used as the basic building blocks.

• The [0, f ] primitive sets the intensity value of the current pixel to zero and that of its
neighbor to f .

• The [ f , 0] primitive sets the value of the current pixel to f and that of its neighbor
to zero.

• The [ f , f ] primitive sets values of both the current and neighbor pixels to f .

In the above, f denotes a value chosen from the normal distribution. To generate a struc-
tured pattern, m rows are chosen at random, and for each such row, we choose one of the
three primitives, again at random, and replicate this primitive across the entire row. This
process is repeated for n randomly chosen columns by replicating the chosen primitive
along each column. The values at the intersection of a row and column are overwritten
by the pattern used for that column, and the values outside of the shaded cells are set
to zero. Figure 6 (top) illustrates this process. Once the basic structure is generated, we
apply the same different geometric transformations used for UD-based tests to increase
diversity. These simple operations result in complex test patterns such as those shown in
Figure 6 (bottom).
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Figure 6. Generation of structured patterns and examples. (a) Structured pattern constructed by
repeating the [0, f ], [ f , 0], [ f , f ] primitive patterns. (b,c) Example of a structured pattern.

5.3. Testing Using Template Images

The above TPG method focuses on grayscale images. It generates edges, shapes,
contours, and shadows but ignores the chrominance information present in the color images.
These patterns may not achieve high fault coverage when applied to DUTs trained to classify
color images. Thus, we develop the TPG method shown in Algorithm 1 which specifically
targets color images which comprise red, green, and blue channels. We select, at random,
template images from each class and generate test patterns by applying different geometric
transformations on them to introduce diversity. This is similar to the approach used to
capture statistical properties of the training dataset to create tests, but here, templates
are used to capture the chrominance information present in the training images. Here, C
denotes the number of classes, X is the set of training images, xCi ⊂ X is the set of templates
used per class, and |xCi | is the number of templates per class.

Let {τ1, τ2, . . . , τk} denote k geometric transformations wherein each transformation τi
applies a bijective function τi : template −→ I. The transformations used for the TPG
are: random rotation, horizontal flip, vertical flip, and affine transformation. Because a
geometric transformation is any bijection of the set of template images to itself or to another
such set with some salient geometrical underpinning, this one-to-one mapping between
template images and the corresponding transformed images generates diverse test patterns
which are all unique. Figure 7a shows a template image from CIFAR-10, and Figure 7b
through Figure 7f show the corresponding test patterns generated using the TPG method
discussed above.
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Algorithm 1: TPG for color images using templates.
TP← { } /* Initialize test-pattern set */
for j = 1 : C do

for template in xCj do
angle← random(0, 360)
i← random(1, k)
I ← τi(template, angle)
TP← TP ∪ I /* Add new pattern to test set */

end for
end for

(a) (b) (c)

(d) (e) (f)
Figure 7. Examples of color images generated using templates after applying the various geomet-
ric transformations. (a) Original image. (b) Vertical flip. (c) Horizontal flip + affine. (d) Rotation +
affine. (e) Rotation + horizontal flip. (f) Rotation + horizontal flip + affine.

5.4. Test Sequencing

We combine the different testing approaches discussed in this section to maximize
the effectiveness of the BIST. Given a budget of N tests, the transition points for the test
sequencing are determined as follows:

1. Initialize the status of all faults to be uncovered.
2. Generate N ND-based tests. Obtain the fault–coverage curve and find the point on

this curve, say after n1 tests have been applied, after which coverage levels off. Mark
the faults detected up to this point as covered.

3. Generate N− n1 structured patterns and obtain the coverage for the remaining uncov-
ered faults. Determine the point, after n2 tests have been applied, at which coverage
levels off and mark the detected faults as covered.

4. Generate N − n1 − n2 UD-based tests for the remaining uncovered faults. To reduce
the test-set size, we can stop before exhausting the testing budget, when the coverage
achieved by these tests stagnates.

To eliminate run-time overhead, transition points can be obtained via an offline analy-
sis of the coverage curve.
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6. Performance Analysis

We evaluate the efficacy of our TPG method in terms of the fault coverage achieved
for the DUTs trained on grayscale and color images. We also evaluate the performance
when multiple faults may be present in the system. The experiments reported here are
performed using the PyTorch framework.

Note that when reporting fault coverage, we exclude dead neurons in the network from
consideration. Though the ReLU activation function improves the DNN performance, there
is a downside in that some ReLU neurons may “die” during training and always provide an
output of zero for any input from the dataset. These neurons cannot discriminate between
different inputs (and from a testing viewpoint, cannot be sensitized by any test pattern).
In practice, dead neurons are detected and removed from the final network structure prior
to mapping it on to the hardware.

6.1. Results for Grayscale Images

Assuming a budget of 10,000 tests, these are sequenced using the approach discussed
previously: the first 4000 are chosen from TND, the next 3000 are structured grayscale
images, and the final 3000 tests are chosen from TUD. Figure 8 contains two curves for
each of the three CNN architectures trained on FMNIST—one showing the fault coverage
achieved via test sequencing and the baseline in which all 10,000 tests are chosen from TND.
By sequencing multiple types of tests, we are able to achieve higher coverage relative to
the baseline case, especially for more complex CNN architectures such as AlexNet ( the
results for MNIST are qualitatively similar and therefore are omitted from the paper). We
theorize this is because tests ∈ TND sensitize easy-to-detect faults. Then, the structured
tests along with tests ∈ TUD which have been geometrically transformed further to increase
their diversity sensitize the harder-to-detect faults, improving the fault coverage.
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Figure 8. Fault coverage achieved via test sequencing versus the baseline for CNN architectures
trained on FMNIST.

Table 4 compares the coverage achieved by our TPG method (column 4) against the
case in which 10,000 random images from the MNIST and FMNIST training sets are used
to detect faults (“Random” in column 3). This is not practical because these images must be
stored onboard the device. Nevertheless, our approach achieves a comparable performance
while incurring a negligible storage cost. For certain models and workloads, it outperforms
“Random”, and in other cases, the coverage is within 3% of that achieved by “Random”.
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Table 4. Fault coverage achieved using 10,000 images from the training set versus our approach.

Workload Model Random (10 k) Our Approach

MNIST

ANN-3 90.02% 98.94%
CNN-2 96.27% 92.84%
LeNet-5 94.62% 92.36%
AlexNet 91.16% 96.78%

FMNIST

ANN-3 95.63% 96.79%
CNN-2 98.77% 96.55%
LeNet-5 96.94% 94.39%
AlexNet 94.31% 95.18%

CIFAR10 AlexNet 91.54% 88.34%
ResNet-18 90.46% 86.34%

6.2. Results for Color Images

Figure 9 shows the progression of the fault coverage as the tests are supplied to
AlexNet and ResNet-18 trained on color images from CIFAR-10. The tests generated from
the templates achieve better fault coverage for these images compared to the sequencing
method used previously. The coverage is also compared against the case in which 10,000
random images are chosen from the CIFAR-10 training set (Table 4). Our TPG approach
which uses two template images per class (twenty images in total) to generate the tests is
comparable in performance while incurring a fraction of the storage cost. The coverage is
within 5% of that achieved by “Random”.
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Figure 9. Fault coverage achieved using templates versus baselines for AlexNet & ResNet-18 trained
on CIFAR10.

6.3. Fault Coverage in the Presence of Multiple Faults

Recall that our TPG strategy assumes, at most, one fault present in the system. How-
ever, the tests derived under this assumption are usually applicable for multiple faults,
because in most cases, a multiple fault can be detected by tests designed for the individual
single faults that compose the multiple one. We now evaluate the fault coverage in the
presence of two and three faults in the system. Given the combinatorial nature of this
problem, the results are obtained by sampling potential double and triple fault sites.

Tables 5 and 6 show the coverage achieved when two and three faults are present
in the system, respectively. Let w denote a weight involved in the faulty transition. We
consider the three cases shown in columns three through five in both tables.

• Transitions to larger synaptic weights (↑↑
/
↑↑↑). Each potential fault site is set to a higher

synaptic weight value than the original value. That is, −w→ 0 or −w→ +W.
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• Transitions to smaller synaptic weights (↓↓
/
↓↓↓). Each potential fault site is set to a lower

synaptic weight value than the original value. That is, +w→ 0 or +w→ −W.
• Mixed Transitions. For double faults, one of the potential fault sites is set to a higher

synaptic weight value, whereas the other is set to a lower value. That is, −wa →
{0,+W} and +wb → {0,−W}, where wa and wb are the fault sites involved. For triple
faults, we consider all eight combinations involving weights wa, wb, and wc, where wc
is the third site.

Table 5. Fault coverage in the presence of double faults.

Workload Model ↑↑ Transitions ↓↓ Transitions Mixed Transitions

MNIST

ANN-3 96.23% 99.01% 98.53%
CNN-2 94.78% 95.82% 95.47%
LeNet-5 91.52% 95.95% 94.90%
AlexNet 97.85% 98.71% 99.75%

FMNIST

ANN-3 96.21% 98.27% 99.74%
CNN-2 95.46% 99.09% 96.94%
LeNet-5 93.48% 95.62% 97.03%
AlexNet 97.03% 97.12% 98.30%

CIFAR10 AlexNet 93.48% 96.88% 97.03%
ResNet-18 90.04% 86.76% 97.66%

Table 6. Fault coverage in the presence of triple faults.

Workload Model ↑↑↑ Transitions ↓↓↓ Transitions Mixed Transitions

MNIST

ANN-3 97.90% 100.00% 97.66%
CNN-2 97.08% 98.01% 94.45%
LeNet-5 94.43% 97.80% 94.05%
AlexNet 98.24% 98.93% 99.06%

FMNIST

ANN-3 96.94% 98.27% 99.36%
CNN-2 96.55% 99.09% 96.57%
LeNet-5 95.77% 97.93% 95.02%
AlexNet 97.62% 97.46% 98.16%

CIFAR10 AlexNet 95.16% 98.05% 96.24%
ResNet-18 91.15% 87.50% 98.27%

Let us understand the results shown in Tables 5 and 6. During image classification,
the trained DNN assigns the highest probability to one of the neurons within the output
layer to decide the class for the input image. More precisely, a dot product is performed
between inputs from the penultimate layer and weights leading to the output neurons
and is then passed through a sigmoid or softmax function to assign probabilities to output
neurons. Suppose double and triple faults affect multiple weights of the output neurons.
Consider the following cases:

• Transitions to larger synaptic weights (↑↑
/
↑↑↑). For a test pattern, assume that inputs

from the penultimate layer are {x1, x2, x3, x4, x5, x6} = {0.08, 0.15, 0.10, 0.12, 0.07, 0.30}
and the trained weights leading to an output neuron are {w1, w2, w3, w4, w5, w6} =
{1,−1,−1, 1,−1,−1}. The dot product x.wT = −0.42, which when passed through a
sigmoid function 1/(1 + e−wT .x) results in a probabilistic value of p < 0.5. Suppose
a double fault results in both w3 and w5 transitioning to 1. The dot product will be
−0.08, also leading to p < 0.5. Hence, the test will not be misclassified. Now, consider
a triple fault which causes w3, w5, and w6 to transition to 1. The dot product is 0.52,
resulting in p > 0.5. This leads to a misclassification and, therefore, detection.

• Transitions to smaller synaptic weights (↓↓
/
↓↓↓). For a test pattern, assume that inputs

from the penultimate layer are {x1, x2, x3, x4, x5, x6} = {0.30, 0.10, 0.25, 0.10, 0.21, 0.10}
and the trained weights leading to an output neuron are {w1, w2, w3, w4, w5, w6} =
{1, 1,−1,−1, 1, 1}. The dot product is 0.36, leading to p > 0.5. Suppose a double fault
affects w2 and w6, flipping them both to 0. The dot product is 0.16, leading to p > 0.5.
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The test will not be misclassified. However, if a triple fault flips w2, w5, and w6 to 0,
the dot product is −0.05 and p < 0.5. This leads to the test being misclassified.

The above-described phenomenon is the likely reason that coverage in the presence of
multiple faults is higher for most DNNs when compared to a single fault, and that triple
faults are detected at a higher rate than double faults.

Consider coverage in the case of mixed transitions, which can involve the possibility
of fault masking. Assume inputs {x1, x2, x3, x4, x5, x6} = {0.30, 0.20, 0.22, 0.35, 0.25, 0.13}
from the penultimate layer and weights of the output neuron {w1, w2, w3, w4, w5, w6} =
{1,−1, 1,−1, 1,−1}. The dot product is 0.09, resulting in p > 0.5. If a double fault causes
w1 → −1 and w6 → 1, the resulting dot product will be −0.25 with p < 0.5. Therefore, the
test will be misclassified. However, if a triple fault results in w1 → −1, w2 → 1, and w6 → 1,
the dot product will be 0.15 and p > 0.5. The test will be classified correctly. Referring to
column five in Tables 5 and 6, this masking effect is the likely reason why double faults are
detected at a higher rate than triple faults.

To summarize, our experiments indicate that tests generated to detect single faults can
also perform effectively in the presence of two or three faults affecting the system.

7. Error Detection via Signature Analysis

Because the DNN is trained to classify the input into one of k labels, the response for
each test consists of a one-hot-encoded predicted label wherein exactly one out of k output
bits is set to 1. These bit patterns can be compressed using a well-known design based
on cyclic redundancy checking (CRC) [27]. We associate a separate response compactor
with each output line of the DUT and responses observed on the ith line (which could
be 0 or 1) are compressed into a 16-bit signature using the characteristic polynomial
1 + x4 + x7 + x9 + x16 (this polynomial is used in the Hewlett-Packard 5004A signature
analyzer and also in many other applications requiring CRC). The signature generated
per each output line is compared to a corresponding fault-free signature that has been
previously calculated. When using a 16-bit signature, the probability that an incorrect
response will go undetected is very low (2−16).

8. Processing and Storage Overhead

Generating pseudorandom and structured patterns incurs minimal storage overhead
because the tests are produced on demand. The overhead involves storing the summary
statistics needed for the TPG along with the fault-free signatures. If templates are used for
the TPG, a subset of the training images must be stored, and test patterns are generated
on demand by applying the previously discussed geometric transforms to these images.
The diversity and uniqueness of the generated tests means that the number of template
images can be kept very small. For example, considering AlexNet and ResNet18 trained on
CIFAR-10, we achieve a fault coverage of 88% by using just two images per class, which is
twenty images in total.

The processing overhead incurred by our TPG method is modest. We report the test
generation times on an Intel Xeon CPU operating at 2.20 GHz with 12 GB of onboard RAM.
The time taken to generate a single pattern derived from the normal distribution TND is
0.1 ms and from the uniform distribution TUD after geometric transformations is 1.6 ms. It
takes 0.9 ms to generate a structured pattern, whereas generating a test from a template
image by applying a geometric transformation incurs about 5 ms on average.

Because the BIST is non-concurrent, the host processor can perform the TPG when
the application is idle. The BIST is interruptible at any time so that normal operation
can resume. The TPG can be fully implemented using software modules, requiring no
specialized hardware support.

9. Related Work

There is a large body of work on fault-tolerant systems, starting with early work on
tolerating permanent faults in memory systems using error correcting codes [28], using
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redundancy to tolerate faults affecting logic circuits [29–32] and the routing fabric [33,34].
However, these approaches are not directly applicable to the crossbar-based architecture
considered in this work.

There has been significant interest in using crossbar arrays to build accelerators for
DNNs due to efficient in-memory computing and the parallelism that these arrays of-
fer [1–4,35]. Researchers have developed various techniques to tolerate failures affecting
crossbars. For example, Liu et al. developed methods to mitigate the effect of cell fail-
ures within crossbar arrays on the accuracy of the underlying calculations [35]. Robust
training of neural networks on memristor-based crossbar arrays by compensating for the
impact of device variations on the accuracy of multiply–accumulate operations has been
proposed [36]. Yeo et al. developed circuit-level techniques along with a training algorithm
to reduce the effect of stuck-at-faults within a crossbar array on the performance of the
neural network mapped on to it [37]. Re-training the neural network in situ, however, risks
reducing the device’s lifetime by increasing the chances of write-endurance failures [38].
Therefore, the applicability of these methods is limited to small networks.

Our work differs from those discussed above because it is a testing scheme rather
than a method for fault tolerance. The BIST scheme aims to uncover faults affecting NVM
cells within the crossbar array. The subsequent reconfiguration of the system is beyond the
scope of this work.

Another line of related work addresses the design of fault-tolerant, systolic-array
based DNN accelerators for high-defect rate technologies [6,7,9,39]. However, the devel-
oped methods are specific to the underlying systolic-array designs and do not apply to
crossbar architectures. Though targeted toward a systolic array, the work described by
Kundu et al. [7] is closest in relation to ours. Their TPG approach identifies images to serve
as test patterns using the Euclidean distance between images from the neural network’s test-
ing set. The idea is to identify a set of images which look very similar from the perspective
of Euclidean distance but belong to different classes. This way, when hardware faults occur,
images within this set are more easily prone to misclassification. However, a limitation is
that computing pairwise Euclidean distance between high-dimensional images does not
provide meaningful similarity information [40], and so the generated test set has reduced
fault coverage for larger networks and images.

The test patterns generated by the approach in Kundu et al. must be stored on the
device, and so, the storage cost will increase for larger DNNs because more tests are typi-
cally required to achieve good fault coverage. Therefore, from the perspective of storage
overhead, our approach has key advantages related to the deployment on edge devices
when compared to methods which require test patterns to be stored. Our technique gener-
ates pseudorandom tests on demand, and though a very small number of templates are
used to generate tests for DNNs trained to classify color images, this overhead is mini-
mal. Another important difference lies in the thoroughness of the validation experiments.
Kundu et al. apply their technique to two simple models, a four-layer ANN and a six-layer
ANN, in which the six-layer ANN is trained on the MNIST dataset. We have shown the
broad applicability of our BIST method using both simple models as well as larger models
such as AlexNet and ResNet-18. The workload considered includes both grayscale and
color images.

10. Conclusions

We have shown that pseudorandom tests generated using information specific to
the DUT achieve good fault coverage under the assumed functional fault model and that
augmenting these tests with structured patterns further improves coverage. Very high
fault coverage—greater than 95% on average—is achieved for DNNs trained on grayscale
images which constitute an important class in image processing. DNNs trained to classify
color images are more complex. Nevertheless, our TPG method which uses a tiny subset of
template images to capture the chrominance information in color images achieves a fault
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coverage of 87% for these networks. Our results demonstrate the viability of BIST schemes
to test DNN accelerators deployed on edge devices for image classification tasks.

A limitation of functional testing is the difficulty in evaluating the effectiveness of the
test sequences at the structural level. Future work will evaluate the fault coverage achieved
by the generated functional tests, using detailed structural models of crossbar hardware.

Our current work can be extended in various directions: (1) We have considered
DNNs trained using the ReLU activation function, whereas other common functions such
as the hyperbolic tangent, leaky ReLU, and Gaussian Error Linear Unit (GELU) can also
be explored. (2) The TPG method can be extended to generate additional structured test
patterns which could potentially increase the fault coverage, for example, patterns in which
the thickness of the edges and contours are varied. (3) We can target faults due to the
resistance drift, a phenomenon which affects PCM cells where the programmed resistance
does not remain constant but increases gradually over time. The resulting cumulative
changes in synaptic weights reduces the accuracy of multiply–accumulate operations
performed within the DNN. Hence, the early detection of this accuracy loss before the
network starts misclassifying input data would be useful. This requires developing online
concurrent testing strategies which can observe and analyze intermediate values flowing
within the DUT.
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