
Citation: Luo, Q.; Wang, J.; Gao, M.;

He, Z.; Yang, Y.; Zhou, H. Multiple

Mechanisms to Strengthen the Ability

of YOLOv5s for Real-Time

Identification of Vehicle Type.

Electronics 2022, 11, 2586. https://

doi.org/10.3390/electronics11162586

Academic Editor: Silvia Liberata

Ullo

Received: 29 July 2022

Accepted: 16 August 2022

Published: 18 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Multiple Mechanisms to Strengthen the Ability of YOLOv5s for
Real-Time Identification of Vehicle Type
Qiang Luo 1,2,3 , Junfan Wang 1,3, Mingyu Gao 1,3,*, Zhiwei He 1,3 , Yuxiang Yang 1,3 and Hongtao Zhou 4

1 School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
2 School of Communication and Electronics, Jiangxi Science and Technology Normal University,

Nanchang 330038, China
3 Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China
4 Zhejiang Leapmotor Technology Co., Ltd., Hangzhou 310018, China
* Correspondence: mackgao@hdu.edu.cn; Tel.: +86-133-8651-0408

Abstract: Identifying the type of vehicle on the road is a challenging task, especially in the natural
environment with all its complexities, such that the traditional architecture for object detection
requires an excessively large amount of computation. Such lightweight networks as MobileNet are
fast but cannot satisfy the performance-related requirements of this task. Improving the detection-
related performance of small networks is, thus, an outstanding challenge. In this paper, we use
YOLOv5s as the backbone network to propose a large-scale convolutional fusion module called the
ghost cross-stage partial network (G_CSP), which can integrate large-scale information from different
feature maps to identify vehicles on the road. We use the convolutional triplet attention network
(C_TA) module to extract attention-based information from different dimensions. We also optimize
the original spatial pyramid pooling fast (SPPF) module and use the dilated convolution to increase
the capability of the network to extract information. The optimized module is called the DSPPF. The
results of extensive experiments on the bdd100K, VOC2012 + 2007, and VOC2019 datasets showed
that the improved YOLOv5s network performs well and can be used on mobile devices in real time.

Keywords: vehicle type detection; object detection; G_CSP; C_TA; DSPPF

1. Introduction

Object detection [1] is a basic task in computer vision that has attracted growing
research interest in recent years. Designing a valid neural network structure based on the
CNN is the main means of object detection in natural scenes. For example, object detection
methods are used to efficiently identify the type of vehicle and its license plate number in
the context of intelligent transportation. One-stage and two-stage methods are the major
frameworks used for object detection. When predicting the classes and locations of objects,
the one-stage method can be used to directly extract features from the feature map. The
YOLO series is an example of this [2,3]. This study uses logistic regression to predict the
objectiveness score of each bounding box (bbox) [4]. In the implementation of the algorithm,
if a bounding box overlaps with the ground truth object more than any other bounding box
a priori, its value is set to one. When the prior value of the bounding box is not optimal,
the algorithm ignores the predicted value even if it overlaps with the real ground truth
value of the object beyond a certain threshold. Gaussian YOLOv3 [4] can not only improve
the accuracy of detection of the algorithm, but can also support its real-time operation. It
involves redesigning the loss function and using Gaussian parameters to model the bbox
of YOLOv3.

A considerable amount of research has been reported on the one-stage object detection
network. The SSD [5] uses the feature pyramid network to extract feature-related infor-
mation. It can improve the capability of the algorithm to detect large and small objects by
extracting feature maps at different scales. The shape of the detected object can be better
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matched by adjusting the prediction box. CenterNet [6] is an object detection framework
from the anchor-free series that is responsible only for predicting the center of the object
for the detection task. This detector can, thus, efficiently explore the visual pattern in each
clipping area of the whole image at the lowest cost. Each object is detected as a triple of
key points, instead of a pair, to improve the accuracy and recall of the detection network.
While these networks achieve good performance on object detection tasks, the number of
parameters of their models is too large, and they require considerable hardware resources
to run on mobile devices.

It is often necessary to detect and identify the types of vehicles on the road in the
context of intelligent transportation before detecting whether they have violated any traffic
law. The traditional methods of detection often suffer from such defects as inaccurate iden-
tification, a high cost, and fixed location of detection. Convolution neural networks (CNNs)
have been used as a superior alternative to identify the type of vehicle. Zhao et al. [7]
strengthened the feature extraction ability of the down-sampling algorithm by adding
to it an attention mechanism and a feature pyramid model based on the YOLOv4 object
detection algorithm, but did not test their model on an embedded mobile platform. Khalifa
et al. [8] used the YOLOv5s model and the k-means clustering algorithm to improve the
detection of the type of vehicle under different lighting conditions, and achieved especially
good results in cases involving low illumination. However, their method can only detect
vehicles in images acquired from fixed monitoring equipment and not in images obtained
by on-board monitoring equipment. Park et al. [9] developed an algorithmic framework
that can simultaneously detect the type of vehicle and its license plate information using the
YOLOV4 algorithm, and created a dataset of types of vehicles. However, their algorithm has
stringent requirements on the performance of the equipment used, and cannot satisfy the
real-time requirements of Jetson AGX. Li et al. [10] used images obtained from unmanned
aerial vehicles (UAVs) for vehicle identification and proposed a data enhancement method
to solve the problem of class imbalance. They separated the vehicle from the background
information in a given image through semantic segmentation, and randomly replaced
instances in the over-represented class with those in the under-represented class. This algo-
rithm does not require additional high-quality segmentation masks. Li et al. [11] proposed
a multi-view vehicle detection system that uses part models to solve the problem of partial
occlusion and the differences between vehicle types. The part model proposed was visual
and could be replaced at any time. Although these algorithms can detect vehicles on the
road, the file of the model is too large to be deployed to the on-board mobile terminal, and
their inability to extract features related to the vehicle leads to a poor overall accuracy of
detection. The attention mechanism can increase this capability of the network without
increasing the amount of required computation.

Attention mechanisms are commonly used in object detection tasks as they can extract
useful information from feature maps to improve detection performance. One example is
the SE [12] network in which the attention-related information for each channel is obtained
by using a global pooling layer. After it passes through a fully connected layer and the
sigmoid operation has been applied to it, it is multiplied by the original feature map to
strengthen attention-related information. CBAM [13] contains an attention mechanism
composed of spatial and channel attention, in which channel attention is used to extract
the channel-related information of the feature map. The mechanism of spatial attention
involves extracting information on the global maximum pooling and global average pooling
of the feature map. This attention mechanism can help improve the performance of the
object detector by extracting attention-related information. The TA [14] has a triple attention
network that can explain cross-dimensional informational interaction. It consists of three
branches, and each extracts the attention-related information of the spatial and channel
dimensions from the feature map. The efficiency of this method allows the network to fully
extract information in the feature map. FcaNet [15] contains an attention mechanism based
on the customized discrete cosine transform (DCT). However, this operation only extracts
information in the channel or the spatial dimension, and ignores feature-related information
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from other dimensions. The TA uses the rotation operation to obtain 3D attention-related
information from the feature map but integrates the information of each dimension by using
the summation method, where this renders the network unable to highlight important
information in the feature map. M. Hamed Mozaffari et al. [16] simulated the peripheral
ability of human eyes. A novel convolution module was proposed, which combined
standard and generalized convolution to extract features. By using this module in encoder
decoder configuration, good results were achieved in several common datasets.

Although the above studies have achieved good results in the detection of vehicles,
they still cannot meet the requirements of real-time deployment on mobile platforms. It
is important to develop such a vehicle detection algorithm. To this end, we propose a
modified YOLOv5s network called YOLOv5s+, which can enhance the capability of the
network for feature extraction by introducing a large-scale convolution layer, optimizing
the rotating attention module, and using dilated convolution instead of the maximum
pooling operation. This not only improves performance in terms of detection of the type of
vehicle, but also satisfies the requirement of real-time operation on mobile devices. The
main contributions of this work are as follows:

• We have devised a G-CSP module based on YOLOv5s’ cross-stage partial network
(CSPNet). It can efficiently extract information from feature maps by using a large-
scale separable convolution network to improve the accuracy of detection of types
of vehicles.

• We have developed a C_TA module based on the TA module. We used concatenation
and convolution operations to fuse multi-dimensional attention-related information,
such that the network can assign different attention scores to different dimensions of
this information to improve detection performance.

• We propose the DSPPF module based on YOLOv5s’ SPPF module that replaces the
maximum pooling operation in the original SPPF module with a dilated convolution
operation. It can increase the perceptual field of the network for detecting targets with
only a slight increase in the requisite computational effort.

2. Related Work

Attention mechanisms have been extensively used in many areas of computer vision,
such as image classification [17], object detection [18], instance segmentation [19], semantic
segmentation [20], scene parsing, and action localization. Channel attention and spatial
attention are the two most widely used attention mechanisms. Recent research has shown
that significant improvements in performance can be achieved by employing channel
attention, spatial attention, or both. The SE module is the most commonly used method
of channel attention. This study analyzes the channel-related relationship in the network
structure, and uses the global average pooling operation to extract channel-related informa-
tion from the feature layer to enable the network to pay more attention to the relationship
between feature channels. To satisfy the above requirements, we propose a channel-based
attention mechanism that allows the network to optimize the features when performing the
detection task. Through this mechanism, the neural network can use global information to
strengthen the useful information that it contains and suppress less useful features. The
CBAM uses two independent dimensions of channel and space to obtain attention-related
features in turn, and multiplies the attention map by the input feature map for adaptive
feature refinement. It can be easily embedded into any CNN architecture. Besides the cost
of end-to-end training with the basic CNN, the computations of the system are negligibly
small. The TA improves the performance of attention mechanisms by using different dimen-
sions. We examined a lightweight but effective attention mechanism, and propose triplet
attention. This can be used to capture cross-dimensional interaction in the feature map
through a three-branch structure to calculate the attention weights. For the input tensor,
triple attention interacts with information on different dimensions through the rotation
operation and residual transformation, and the amount of calculation of this method is
sufficiently small to be ignored. It can also be easily applied to other network structures.
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The efficiency of the mobile model is often considered in the context of its use. Mo-
bileNetV1 [21] provides the idea of designing a neural network with two characteristics: a
small number of parameters and a small model, allowing the network to run on a mobile
device. The network replaces the original convolution with a deep, separable convolution
network and a 1 × 1 convolution operation to improve the speed of detection of the net-
work. MobileNetV3 [22] contains a new convolution unit composed of a depth convolution
and a point convolution. A large convolution kernel is used to approximate the original
convolution layer, and its detection-related performance is mostly equivalent to that of
the original convolution. Ghostnet [23] introduces a ghost module that uses few param-
eters while generating the same size of feature maps. The network divides the ordinary
convolution operation into two steps. In the first step, the original convolution operation
is used to output a certain number of feature maps that contain information on different
layers of the original feature map. In the second part, the deep, separable convolution
network is used to generate another part of the feature map. The two parts of the map
are output as a new feature map following the concatenation operation. These operations
can be used to generate the same feature map as the original convolution operation with
a considerably smaller number of parameters. Some researchers use multi-sensor infor-
mation fusion to improve the algorithm’s vehicle detection and traveling area recognition
in road scenes. Zeng X et al. [24] found that the feature fusion using deep convolution
network did not consider the matching degree between different features. Therefore, they
proposed fusion filter as feature maps matching technology to solve the problem of feature
mismatch. At the same time, the layer sharing technology in the deep layer proposed by
them can achieve better accuracy with less computational overhead. The method proposed
by them enables DCNN to learn corresponding feature maps with similar features and
complementary visual backgrounds from different modes to obtain better accuracy. Sorosh
Bateni et al. [25] found that different memory management methods in real applications
would affect the performance of the platform. They proposed a runtime scheduler, which
can reduce the memory pressure during system operation, and achieved good results on
NVIDIA Jetson TX2, drive PX2, and Xavier AgX platforms. Xudong Dong et al. [26] used
the yolov5 network framework to complete the vehicle type detection task. They used the
ghost module to reduce floating-point operations (FLOPs) of the model, and used attention
mechanism and CIOU_ Loss to improve the detection performance of the algorithm.

3. Proposed Approach

In this section, we briefly introduce the framework of YOLOv5, as shown in Figure 1.
This network has a small model, high accuracy of detection, and can easily be deployed.
We subsequently revisit CSPNet and analytically diagnose the efficiency of the G-CSP
module. We also propose our C-TA module, in which we use the convolution operation
to replace the original addition to integrate attention-related information from different
dimensions. Finally, we introduce the DSPPF module, which is extended by the SPPF
module in YOLOv5s. We use dilated convolutions of different convolution cores to replace
the original maximum pooling operation and improve the capability of the network for
feature extraction.
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Figure 1. YOLOv5s module. Conv denotes general convolutions operation. BN denotes Batch
Normalization. RELU denotes Relu activation function. Res unit denotes residual structure. ⊕ de-
notes element-wise addition. CSP denotes the cross-stage partial network. G_CSP denotes the ghost
cross-stage partial network. C_TA denotes convolutional triplet attention network. DSPPF denotes
the dilated convolution with spatial pyramid pooling-fast module. Cat denotes the characteristic
concatenation operation. Focus denotes slice operation.

3.1. YOLOv5s Module

YOLOv5 [27] is the most popular object detection network in the area. Some of its
design has been inspired by that of YOLOv4 [28]. This network has a high speed of
detection and accuracy, and its model is very small, such that it is suitable for deployment
on mobile devices. PANet [29] is also used in this network to improve information fusion at
different scales and optimize the performance of the detector. We use the YOLOv5s module
to identify the type of vehicle. It is a scaled-down version of YOLOv5 that still performs
well on object detection tasks. We have optimized the CSP module in this framework, as
explained in Sections 3.2 and 3.3.

3.2. G_CSP Module

From the perspective of the design of the network structure, CSPNet solves the
problem of a large amount of calculations in the reasoning process encountered in past
work, as shown in Figure 2. It uses two methods to obtain an output feature map; one part
uses a 1 × 1 convolution, and the other part uses a 3 × 3 convolution and the ResNet [30]
network. The results of the two convolutions are fused to generate the output feature map
of this module.

However, this CSPNet convolution module has only 1 × 1 and 3 × 3 convolution
kernels, and cannot extract large-scale information from the feature map. We use the
large-scale depth-separable convolutional network to extract such information, and call
this the G_CSPNet module, as shown in Figure 3. G_conv is a large-scale convolutional
network. This part of the feature map is fused with the feature map of the original CSPNet
module to obtain a feature map containing large-scale information.



Electronics 2022, 11, 2586 6 of 14Electronics 2022, 11, x FOR PEER REVIEW 6 of 14 
 

 

Conv 1×1Conv 1×1

Conv 1×1Conv 1×1 Conv 1×1Conv 1×1 Conv 3×3Conv 3×3
Concate

+
Conv 1×1

Concate
+

Conv 1×1

Input 

Output 

 

Figure 2. CSPNet module. Conv 1 × 1 denotes general convolution operations with kernel = 1. Conv 

3 × 3 denotes general convolution operations with kernel = 3. Concate denotes the characteristic 

concatenation operation. 

Conv 1×1Conv 1×1

Conv 1×1Conv 1×1 Conv 1× 1Conv 1× 1 Conv 3×3Conv 3×3

G_Conv G_Conv 

Concate
+

Conv1×1

Concate
+

Conv1×1

Input 

Output 

 

Figure 3. G-CSPNet module. G_Conv denotes large-scale convolution operation. 

The G_conv module is composed of a CNN, as shown in Figure 4. The 1 × 1 convolu-

tion kernel is first used to change the size of the feature map from C × H × W to 1 × H × W, 

and a 9 × 9 convolutional network is then used to extract large-scale information from the 

feature map by using it in a cascade with the previous 1 × 1 convolutional network, called 

G_conv. This improves the performance of the detector by extracting large-scale infor-

mation from the feature map while adding few parameters. 

Conv 1×1Conv 1×1 Conv 9×9Conv 9×9
Input Output n×H×W 1×H×W 1×H×W

 

Figure 4. G_conv module. Conv 1 × 1 denotes general convolution operations with kernel = 1. Conv 

9 × 9 denotes general convolution operations with kernel = 9. 

3.3. C_TA Module 

Triplet attention (TA) is an efficient, cross-dimensional, and interactive attention 

mechanism. It consists of three branches, each of which is responsible for extracting atten-

tion-related information from the input spatial and channel dimensions. The features of 

each branch are then fused through weight addition. After applying the attention weight 

to the arranged input tensor, the input tensor is permuted into the original input. This 

enables the network to extract information from the feature map along different dimen-

sions by adding the permutation operation, as shown in Figure 5a. 

There is a prominent defect in the default triplet attention mechanism, whereby add-

ing the attention-related information equally from the three dimensions renders the de-

tector unable to filter useful information from the feature map. To solve this problem, we 

have improved the module for the attention mechanism. As shown in Figure 5b, the orig-

inal average addition is changed to weight addition by using the 1 × 1 convolution kernel 

so that the detector can extract the important information from the feature map according 

to the needs of the detection task while ignoring useless information. 

Figure 2. CSPNet module. Conv 1 × 1 denotes general convolution operations with kernel = 1. Conv
3 × 3 denotes general convolution operations with kernel = 3. Concate denotes the characteristic
concatenation operation.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 14 
 

 

Conv 1×1Conv 1×1

Conv 1×1Conv 1×1 Conv 1×1Conv 1×1 Conv 3×3Conv 3×3
Concate

+
Conv 1×1

Concate
+

Conv 1×1

Input 

Output 

 

Figure 2. CSPNet module. Conv 1 × 1 denotes general convolution operations with kernel = 1. Conv 

3 × 3 denotes general convolution operations with kernel = 3. Concate denotes the characteristic 

concatenation operation. 

Conv 1×1Conv 1×1

Conv 1×1Conv 1×1 Conv 1× 1Conv 1× 1 Conv 3×3Conv 3×3

G_Conv G_Conv 

Concate
+

Conv1×1

Concate
+

Conv1×1

Input 

Output 

 

Figure 3. G-CSPNet module. G_Conv denotes large-scale convolution operation. 

The G_conv module is composed of a CNN, as shown in Figure 4. The 1 × 1 convolu-

tion kernel is first used to change the size of the feature map from C × H × W to 1 × H × W, 

and a 9 × 9 convolutional network is then used to extract large-scale information from the 

feature map by using it in a cascade with the previous 1 × 1 convolutional network, called 

G_conv. This improves the performance of the detector by extracting large-scale infor-

mation from the feature map while adding few parameters. 

Conv 1×1Conv 1×1 Conv 9×9Conv 9×9
Input Output n×H×W 1×H×W 1×H×W

 

Figure 4. G_conv module. Conv 1 × 1 denotes general convolution operations with kernel = 1. Conv 

9 × 9 denotes general convolution operations with kernel = 9. 

3.3. C_TA Module 

Triplet attention (TA) is an efficient, cross-dimensional, and interactive attention 

mechanism. It consists of three branches, each of which is responsible for extracting atten-

tion-related information from the input spatial and channel dimensions. The features of 

each branch are then fused through weight addition. After applying the attention weight 

to the arranged input tensor, the input tensor is permuted into the original input. This 

enables the network to extract information from the feature map along different dimen-

sions by adding the permutation operation, as shown in Figure 5a. 

There is a prominent defect in the default triplet attention mechanism, whereby add-

ing the attention-related information equally from the three dimensions renders the de-

tector unable to filter useful information from the feature map. To solve this problem, we 

have improved the module for the attention mechanism. As shown in Figure 5b, the orig-

inal average addition is changed to weight addition by using the 1 × 1 convolution kernel 

so that the detector can extract the important information from the feature map according 

to the needs of the detection task while ignoring useless information. 
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The G_conv module is composed of a CNN, as shown in Figure 4. The 1 × 1 convolu-
tion kernel is first used to change the size of the feature map from C×H×W to 1 × H ×W,
and a 9 × 9 convolutional network is then used to extract large-scale information from
the feature map by using it in a cascade with the previous 1 × 1 convolutional network,
called G_conv. This improves the performance of the detector by extracting large-scale
information from the feature map while adding few parameters.
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3.3. C_TA Module

Triplet attention (TA) is an efficient, cross-dimensional, and interactive attention
mechanism. It consists of three branches, each of which is responsible for extracting
attention-related information from the input spatial and channel dimensions. The features
of each branch are then fused through weight addition. After applying the attention weight
to the arranged input tensor, the input tensor is permuted into the original input. This
enables the network to extract information from the feature map along different dimensions
by adding the permutation operation, as shown in Figure 5a.

There is a prominent defect in the default triplet attention mechanism, whereby adding
the attention-related information equally from the three dimensions renders the detector
unable to filter useful information from the feature map. To solve this problem, we have
improved the module for the attention mechanism. As shown in Figure 5b, the original
average addition is changed to weight addition by using the 1 × 1 convolution kernel so
that the detector can extract the important information from the feature map according to
the needs of the detection task while ignoring useless information.
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Figure 5. Comparisons of different triplet attention modules: (a) Default triplet attention (TA) module.
(b) Concatenation-based and convolutional triplet attention module (C_TA) (ours). The feature maps
are denoted by feature dimensions, e.g., C × H ×W denotes a feature map with C channels, height
H, and width W. Conv denotes general convolution operation. Permute denotes rotation operation
for rotating dimensions. Avg denotes mean operation. � denotes element-wise multiplication and ⊕
denotes element-wise addition. SA denotes spatial attention.

3.4. DSPPF Module

The SPPF module is used as the backbone of the framework of YOLOv5s. It is com-
posed of maximum pooling operations of different sizes to further improve the capability
of the network for feature extraction. In addition, maximum pooling operations of different
sizes are used in the network to extract useful information. The three pooled outputs are
concatenated with the original feature map as the overall output of the module. The SPPF
module as shown in Figure 6a.
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Figure 6. Comparisons of different SPPF and DSPPF modules: (a) Default SPPF module. (b) DSPPF
module (ours). The feature maps are denoted by feature dimensions, e.g., D_conv denotes dilated
convolutions, and k = 3, 5, and 7 are the mean sizes of the convolution kernel. maxpool denotes
maximum pooling operation. CBL denotes general convolution operation, batch normalization, and
Relu activation function. “Cat” represents the characteristic concatenation operation.

The traditional SPPF network has a disadvantage in that it extracts only the maximum
value of each element while ignoring the other elements. This leads to a loss of useful
information in the feature map. We, thus, designed a dilated convolution, called the DSPPF
module, to replace the maximum pooling operation, as shown in Figure 6b. The dilated
convolution is similar to the original convolution operation. Different convolution cores are
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set to obtain information from different receptive fields, but it has a larger receptive field
than the original convolution operation. Although this operation increases the amount of
computation compared with maximum pooling, it can extract more useful feature-related
information to enhance the detection performance of the algorithm.

4. Experiments and Results
4.1. Experiment Environment

In this section, we mainly show our work through detailed experimental steps and
data analyses. In several groups of comparative experiments, we compared the improved
attention mechanism with ones reported in the literature. We verified our method on several
challenging computer vision tasks, such as object detection on a car dataset VOC2019 [30]
that we created, PASCAL VOC [31], bdd100k datasets [32], as well as. We used the YOLOv5s
network as the basic network. This object detection network, with a size of only 14.5M, is
suitable for running object detection tasks on embedded devices. Our improved network is
called YOLOv5s+, and we compared its performance with that of YOLOv5s. To further
verify our method, we conducted ablation experiments on the G_ CSP and C_TA modules
to verify their effectiveness in extracting feature-related information from the feature map.
Our experiments were performed on a Linux Ubuntu 18.04 with 8 × TITAN XP and 12 GB
of memory. The parameters of our algorithm were set as follows: The input image size
was set to 640 × 640 and mosaic was used for data augmentation. The initial learning rate
was set to 0.01 and the weight_decay was set to 0.0005. Momentum was set to 0.937. The
training epoch was set to 300. In all experiments, the same super parameters were used. We
trained on bdd100K, VOC2007 + 2012, and VOC2019 vehicle type datasets, while one GPU
was used for training. The performance in terms of frames per second (FPS) was tested on
embedded development boards, such as Jetson Xavier NX.

We appraised the performance of our algorithm along the following dimensions:
model parameter quantity (Params (M)), floating point operations per second (flops,
1 Gflops = 109 flops), model weight file size (weights (MB)), mean average precision
IOU = 50% (mAP50), mean average precision IOU = 50%:0.05:95% (mAP50_95), and frames
per second (FPS). The results are detailed below.

4.2. Quantitative Evaluation
4.2.1. bdd100k

The bdd100k dataset was formulated and is sponsored by the Berkeley DeepDrive
industry alliance. This dataset is the largest, most complex, and most diverse open dataset of
automatic driving videos. It contains labeled information on vehicles, lanes, and pedestrians
on urban roads. Many studies on object detection have used this dataset for performance
verification. It contains 10 categories of GT box labels and a large number of objects from
natural scenes that pose a daunting challenge to the detection task. We improved the
YOLOv5s object detection framework to increase map_50 by 1.9% and map50_95 by 1.6%.
Table 1 shows that our algorithm improved detection performance even on this large-scale
and multi-scene dataset.

Table 1. Test of improved YOLOv5s on bdd100k dataset.

Model Params (M) Gflops Weights (MB) map50 map50_95

YOLOv5s 7 M 15.9 14.1 0.493 0.260
YOLOv5s+ (ours) 10 M 22.7 20.1 0.512 0.276

4.2.2. VOC2019

We created the VOC2019. It can be used for detecting the types of vehicles. We
captured the images of vehicles in Wenzhou, China, by using MV-CA050-10GM/GC digital
cameras with 5,000,000 pixels. This dataset contained scenes from roads. Table 2 shows
that map50 in this dataset was improved by 2.1%.
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Table 2. Test of improved YOLOv5s on VOC2019 car dataset.

Model Params (M) Gflops Weights (MB) map50 map50_95

YOLOv5s 7 M 15.9 14.5 0.741 0.542
YOLOv5s+ (ours) 10 M 22.7 20.25 0.762 0.553

4.2.3. VOC2007 + 2012

We also tested our framework on the VOC2007 + 2012 datasets, which are general
datasets for target detection tasks. It contains 20 classes. We used images from VOC2012
and the training set of VOC2007 as the training data, and the test set of VOC2007 as the
test images. Table 3 shows that our algorithm improved detection performance on the
VOC2007 + 2012 datasets.

Table 3. Test of improved YOLOv5s on the VOC2007 + 2012 dataset.

Model Params (M) Gflops Weights (MB) map50 map50_95

YOLOv5s 7 M 15.9 14.5 0.796 0.550
YOLOv5s+ (ours) 10 M 22.7 20.7 0.825 0.589

4.3. Ablation Study

We examined the impact of using different bag-of-freebies (BOF) detectors in the object
detection network on its accuracy of training. To study the influence of different strategies
on the performance of the detector, we significantly expanded the BOF list, as shown in
Table 4. Case 1 involved using YOLOv5s as the basic network, case 2 used G-CSP module
replacement Cross-Stage Partial Network (CSPNet) in YOLOv5s, case 3 added TA network
behind CSPNet, case 4 added C_TA network behind CSPNet, case 5 used G_CSP to replace
CSPNet and add C_TA module in YOLOv5s network, and case 6 used DSPPF to replace
the SPPF module in YOLOv5s network.

Table 4. Ablation studies on bag-of-freebies using different components (YOLOv5s, 640 × 640).

Case Our Basic G_CSP Default_TA C_TA DSPPF Params (M) map50 map50_95 FPS

1
√

7 0.796 0.550 60
2

√ √
7.8 0.807 0.562 58

3
√ √

9.3 0.801 0.555 42
4

√ √
9.3 0.810 0.565 40

5
√ √ √

10 0.816 0.582 37
6

√ √ √ √
10.1 0.825 0.589 35

Figures 7–9 show the results of detection of our YOLOv5s network on the PASCAL
VOC, bdd100k, and VOC2019 datasets. As shown in the figures, the algorithm directly
outputs the category, probability, and coordinate information of the detection target. Our
research team developed a small object detector, such that the entire model could run in an
embedded mobile system for the real-time detection of vehicles on the road. Our algorithm
correctly identified conventional vehicles on the road.
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5. Conclusions

At present, many researchers use convolutional neural networks to complete specific
visual tasks [33–35], and use attention mechanism [36], large-scale convolution and other
strategies [37,38] to improve the performance of algorithms. In this paper, we mainly
completed the task of detecting vehicle types in the road scene. In order to meet the real-
time operation of the algorithm in embedded devices, we used yolov5s as the main detection
framework, and improved the detection performance of the algorithm by introducing a
large-scale convolution function, a multi-dimensional attention mechanism, and increasing
the correlation between adjacent pixels. However, in the experiment, we found that the
above strategy can increase the detection accuracy of the algorithm, but it increases the
detection time of the algorithm. Therefore, in the next work, we will study more efficient
vehicle type detection algorithms, further reducing the detection time of the algorithm.

Author Contributions: Conceptualization, Q.L. and M.G.; methodology, Q.L.; software, Q.L. and J.W.;
validation, Q.L. and Y.Y.; formal analysis, Z.H.; investigation, H.Z.; resources, M.G.; data curation,
Q.L. and J.W.; writing—original draft preparation, Q.L. and J.W.; writing—review and editing, Y.Y.;
visualization, Y.Y.; supervision, M.G.; project administration, M.G.; funding acquisition, M.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Zhejiang Provincial Major Research and Development Project
of China, under Grant 2022C01062, and by the Zhejiang Provincial Key Lab of Equipment Electronics.

Acknowledgments: We thank Leapmotor Technology Co., Ltd. Of Zhejiang for providing support
for our tests.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,

30, 3212–3232. [CrossRef]
2. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A review of yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073.

[CrossRef]
3. Thuan, D. Evolution of Yolo Algorithm and Yolov5: The State-of-the-Art Object Detention Algorithm. Bachelor’s Thesis, Oulu

University of Applied Scienc, Oulu, Finland, 2021.
4. Choi, J.; Chun, D.; Kim, H.; Lee, H.J. Gaussian yolov3: An accurate and fast object detector using localization uncertainty for

auton-omous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28
October 2019; pp. 502–511.

5. Kumar, A.; Zhang, Z.J.; Lyu, H. Object detection in real time based on improved single shot multi-box detector algorithm.
EURASIP J. Wirel. Commun. Netw. 2020, 2020, 204. [CrossRef]

6. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Hunag, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6569–6578.

7. Zhao, J.; Hao, S.; Dai, C.; Zhang, H.; Zhao, L.; Ji, Z.; Ganchev, I. Improved Vision-Based Vehicle Detection and Classification by
Optimized YOLOv4. IEEE Access 2022, 10, 8590–8603. [CrossRef]

8. Khalifa, O.O.; Wajdi, M.H.; Saeed, R.A.; Hashim, A.H.; Ahmed, M.Z.; Ali, E.S. Vehicle Detection for Vision-Based Intelligent
Transportation Systems Using Convolutional Neural Network Algorithm. J. Adv. Transp. 2022, 2022, 9189600. [CrossRef]

9. Park, S.H.; Yu, S.B.; Kim, J.A.; Yoon, H. An all-in-one vehicle type and license plate recognition system using YOLOv4. Sensors
2022, 22, 921. [CrossRef]

10. Li, X.; Li, X.; Li, Z.; Xiong, X.; Khyam, M.O.; Sun, C. Robust Vehicle Detection in High-Resolution Aerial Images with Imbalanced
Data. IEEE Trans. Artif. Intell. 2021, 2, 238–250. [CrossRef]

11. Li, D.L.; Prasad, M.; Liu, C.L.; Lin, C.T. Multi-view vehicle detection based on fusion part model with active learning. IEEE Trans.
Intell. Transp. Syst. 2020, 22, 3146–3157. [CrossRef]

12. Li, Y.; Liu, Y.; Cui, W.G.; Guo, Y.Z.; Huang, H.; Hu, Z.Y. Epileptic seizure detection in EEG signals using a unified temporal-spectral
squeeze-and-excitation network. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 782–794. [CrossRef]

13. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

14. Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to attend: Convolutional triplet attention module. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 3139–3148.

http://doi.org/10.1109/TNNLS.2018.2876865
http://doi.org/10.1016/j.procs.2022.01.135
http://doi.org/10.1186/s13638-020-01826-x
http://doi.org/10.1109/ACCESS.2022.3143365
http://doi.org/10.1155/2022/9189600
http://doi.org/10.3390/s22030921
http://doi.org/10.1109/TAI.2021.3081057
http://doi.org/10.1109/TITS.2020.2982804
http://doi.org/10.1109/TNSRE.2020.2973434


Electronics 2022, 11, 2586 14 of 14

15. Singh, V.K.; Abdel-Nasser, M.; Rashwan, H.A.; Akram, F.; Pandey, N.; Lalande, A.; Presles, B.; Romani, S.; Puig, D. FCA-Net:
Adversarial learning for skin lesion segmentation based on multi-scale features and factorized channel attention. IEEE Access
2019, 7, 130552–130565. [CrossRef]

16. Mozaffari, M.H.; Lee, W.S. Semantic Segmentation with Peripheral Vision. In International Symposium on Visual Computing;
Springer: Cham, Switzerland, 2020; pp. 421–429.

17. Bazi, Y.; Bashmal, L.; Rahhal MM, A.; Dayil, R.A.; Ajlan, N.A. Vision transformers for remote sensing image classification. Remote
Sens. 2021, 13, 516. [CrossRef]

18. Wu, X.; Sahoo, D.; Hoi, S.C.H. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [CrossRef]
19. Asgari Taghanaki, S.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, J.; Hamarneh, G. Deep semantic segmentation of natural and

medical images: A review. Artif. Intell. Rev. 2021, 54, 137–178. [CrossRef]
20. Ouyang, C.; Biffi, C.; Chen, C.; Kart, T.; Qiu, H.; Rueckert, D. Self-supervised Learning for Few-shot Medical Image Segmentation.

In IEEE Transactions on Medical Imaging; IEEE: Piscataway, NJ, USA, 2022; pp. 1837–1848.
21. Su, F.; Zhao, Y.; Wang, G.; Liu, P.; Yan, Y.; Zu, L. Tomato Maturity Classification Based on SE-YOLOv3-MobileNetV1 Network

under Nature Greenhouse Environment. Agronomy 2022, 12, 1638. [CrossRef]
22. Deng, T.; Wu, Y. Simultaneous vehicle and lane detection via MobileNetV3 in car following scene. PLoS ONE 2022, 17, e0264551.

[CrossRef]
23. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.
24. Zeng, X.; Wang, Z.; Hu, Y. Enabling Efficient Deep Convolutional Neural Network-based Sensor Fusion for Autonomous Driving.

arXiv 2022, arXiv:2202.11231.
25. Bateni, S.; Wang, Z.; Zhu, Y.; Hu, Y.; Liu, C. Co-optimizing performance and memory footprint via integrated cpu/gpu memory

management, an implementation on autonomous driving platform. In Proceedings of the 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Sydney, Australia, 21–24 April 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 310–323.

26. Dong, X.; Yan, S.; Duan, C. A lightweight vehicles detection network model based on YOLOv5. Eng. Appl. Artif. Intell. 2022,
113, 104914. [CrossRef]

27. Li, Z.; Xie, W.; Zhang, L.; Lu, S.; Xie, L.; Su, H.; Du, W.; Hou, W. Toward Efficient Safety Helmet Detection Based on YoloV5 With
Hierarchical Positive Sample Selection and Box Density Filtering. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [CrossRef]

28. Li, S.; Cui, X.; Guo, L.; Zhang, L.; Chen, X.; Cao, X. Enhanced Automatic Root Recognition and Localization in GPR Images
Through a YOLOv4-based Deep Learning Approach. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [CrossRef]

29. Zhou, L.; Rao, X.; Li, Y.; Zuo, X.; Qiao, B.; Lin, Y. A Lightweight Object Detection Method in Aerial Images Based on Dense
Feature Fusion Path Aggregation Network. ISPRS Int. J. Geo-Inf. 2022, 11, 189. [CrossRef]

30. Luo, Q.; Wang, J.; Gao, M.; Lin, H.; Zhou, H.; Miao, Q. G-YOLOX: A Lightweight Network for Detecting Vehicle Types. J. Sens.
2022, 2022, 4488400. [CrossRef]

31. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

32. Yu, F.; Xian, W.; Chen, Y.; Liu, F.; Liao, M.; Madhavan, V.; Darrell, T. Bdd100k: A diverse driving video database with scalable
annotation tooling. arXiv 2018, arXiv:1805.04687.

33. Jo, W.; Kim, S.; Lee, C.; Shon, T. Packet Preprocessing in CNN-Based Network Intrusion Detection System. Electronics 2020,
9, 1151. [CrossRef]

34. Xu, Z.; Lan, S.; Yang, Z.; Cao, J.; Wu, Z.; Cheng, Y. MSB R-CNN: A Multi-Stage Balanced Defect Detection Network. Electronics
2021, 10, 1924. [CrossRef]

35. Ku, B.; Kim, K.; Jeong, J. Real-Time ISR-YOLOv4 Based Small Object Detection for Safe Shop Floor in Smart Factories. Electronics
2022, 11, 2348. [CrossRef]

36. Jiang, T.; Li, C.; Yang, M.; Wang, Z. An Improved YOLOv5s Algorithm for Object Detection with an Attention Mechanism.
Electronics 2022, 11, 2494. [CrossRef]

37. Lin, H.-C.; Wang, P.; Chao, K.-M.; Lin, W.-H.; Chen, J.-H. Using Deep Learning Networks to Identify Cyber Attacks on In-trusion
Detection for In-Vehicle Networks. Electronics 2022, 11, 2180. [CrossRef]

38. Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A Review on Autonomous Vehicles: Progress,
Methods and Challenges. Electronics 2022, 11, 2162. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2940418
http://doi.org/10.3390/rs13030516
http://doi.org/10.1016/j.neucom.2020.01.085
http://doi.org/10.1007/s10462-020-09854-1
http://doi.org/10.3390/agronomy12071638
http://doi.org/10.1371/journal.pone.0264551
http://doi.org/10.1016/j.engappai.2022.104914
http://doi.org/10.1109/TIM.2022.3169564
http://doi.org/10.1109/TGRS.2022.3181202
http://doi.org/10.3390/ijgi11030189
http://doi.org/10.1155/2022/4488400
http://doi.org/10.1007/s11263-009-0275-4
http://doi.org/10.3390/electronics9071151
http://doi.org/10.3390/electronics10161924
http://doi.org/10.3390/electronics11152348
http://doi.org/10.3390/electronics11162494
http://doi.org/10.3390/electronics11142180
http://doi.org/10.3390/electronics11142162

	Introduction 
	Related Work 
	Proposed Approach 
	YOLOv5s Module 
	G_CSP Module 
	C_TA Module 
	DSPPF Module 

	Experiments and Results 
	Experiment Environment 
	Quantitative Evaluation 
	bdd100k 
	VOC2019 
	VOC2007 + 2012 

	Ablation Study 

	Conclusions 
	References

