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Abstract: Automatic classification of benign and malignant breast ultrasound images is an important
and challenging task to improve the efficiency and accuracy of clinical diagnosis of breast tumors
and reduce the rate of missed and misdiagnosis. The task often requires a large amount of data to
train. However, it is difficult to obtain medical images, which contradicts the large amount of data
needed to obtain good diagnostic models for training. In this paper, a novel classification model
for the classification of breast tumors is proposed to improve the performance of diagnosis models
trained by small datasets. The method integrates three features from medical features extracted from
segmented images, features selected from the pre-trained ResNet101 output by principal component
analysis (PCA), and texture features. Among the medical features that are used to train the naive
Bayes (NB) classifier, and the PCA-selected features are used to train the support vector machine
(SVM) classifier. Subsequently, the final results of boosting are obtained by weighting the classifiers.
A five-fold cross-validation experiment yields an average accuracy of 89.17%, an average precision
of 90.00%, and an average AUC value of 0.95. According to the experimental results, the proposed
method has better classification accuracy compared to the accuracy obtained by other models trained
on only small datasets. This approach can serve as a reliable second opinion for radiologists, and it
can also provide useful advice for junior radiologists who do not have sufficient clinical experience.

Keywords: computer-aided diagnosis; breast tumors; lesion classification; ultrasound images; deep
neural networks; machine learning; weighted fusion; ensemble learning

1. Introduction

Breast cancer is one of the worst diseases threatening women’s health, ranking first
among female malignant tumors [1]. Global cancer statistics in 2020 showed that there were
about 2.3 million new female breast cancer cases worldwide each year. Additionally, breast
cancer is one of the most commonly diagnosed cancers in women [2]. Clinical medical
research showed that early detection of breast cancer will be of great significance for helping
breast cancer patients’ recovery and survival [3]. There are many breast imaging screening
techniques, such as X-ray [4], CT [5], MRI [6], ultrasonic [7], etc. Due to the advantages
of ultrasonic, such as safe, non-invasive, non-radiation, it is suitable for any age and is
not affected by the type of breast glands. What is more, it can also observe the lesions at
multiple angles and in real-time dynamics [4,7]. Therefore, breast ultrasound examination
is one of the most basic methods for diagnosing breast lesions and has been widely used in
breast cancer screening [7,8].

With the continuous development of computer technology, the application of computer-
aided technology in medical imaging has been greatly developed and used [9]. Breast
tumor recognition and benign and malignant classification prediction models based on
ultrasound images have become a research hotspot in the field of computer-aided diagnosis
(CAD). The main research contents of ultrasound image classification include ultrasound
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image pre-processing, feature extraction, feature selection, benign/malignant tumor dis-
crimination, and disease prediction modules. Among them, feature extraction is one of the
most important steps. The features extracted in traditional methods are often extracted
texture features or combined with other features [10]. Moon et al. [11] extracted as textu-
ral, morphological, and descriptor features, and provided these features to a classifier to
classify tumors. Uniyal et al. [12] generated malignancy maps based on estimated cancer
likelihood from ultrasound radiofrequency (RF) time series to classify malignant breast
and benign tumors. Flores et al. [13] improved the accuracy of ultrasound classification of
breast tumors by analyzing different morphological and textural features. Liang et al. [14]
estimated the edges by using the Laplacian of Gaussian (LoG) method. The box-counting
method was employed to estimate the texture images and extract the values of the ex-
tracted features, such as average, standard deviation, skewness, and kurtosis. Finally, we
used logistic regression to classify breast ultrasound as benign or malignant tumors. Wei
et al. [15] proposed an effective method of combining textural features and morphological
(the compactness, the elliptic compactness, the mean, and the variance of the radial dis-
tance spectrum) features to improve the accuracy of breast ultrasound image classification.
The extracted texture features were used for the training of an SVM classifier, and the
morphological features were used for the training of an NB classifier. Menon et al. [16]
extracted multi-feature fusion such as histogram features, morphological features, and
textural features from breast ultrasound images for the classification of breast ultrasound
images. Wei-Chung Shia et al. [17] extracted the histogram pyramid of directional gradient
descriptors and used the method to obtain feature vectors. The correlation-based feature
selection method was used to identify malignant breast tumors. Pomponiu et al. [18]
extracted features based on the histogram directional gradient (HDG) and used SVM to
classify the tumors.

Due to the reliance on custom hand-crafted features, the traditional method lacks
robustness, though it has made great achievements in assisting breast cancer diagnosis of
breast cancer. In addition, hand-crafted feature selection is very cumbersome and subjec-
tive, so it is difficult to improve the accuracy of the classification of benign and malignant
breasts by using these methods. Moreover, due to the limitations of the ultrasound imaging
mechanism, ultrasound images have high noise and low grayscale contrast. The method us-
ing only traditional hand-crafted features cannot accurately classify benign and malignant
breast tumors.

Over the last ten years, a number of deep convolutional neural network (CNN) models,
such as ResNet [19], Inception [20], InceptionRestv2 [21], Exception [22], AlexNet [23], and
GoogLeNet [20], have been proposed for application to object detection and classification.
CNN-based methods are widely used to extract high-dimensional abstract features from
ultrasonic images, resulting in high-performance analysis in breast cancer diagnosis fields.
For example, Zeimarani et al. [24] used CNNs with several hidden layers and applied
regularization techniques to classify tumors. Kong et al. [25] designed three CNN models to
fuse multi-view classification information. Zhuang et al. [26] proposed an image decompo-
sition method to obtain fuzzy enhancement, bilateral filtered images, and raw ultrasound
images as inputs presented to a pre-trained VGG16 model for feature fusion. Chiang
et al. [27] proposed a fast and effective computer-aided detection system based on a 3-D
convolutional neural network (CNN) and priority candidate aggregation. Shen et al. [28]
proposed to consist of the following two subnets: an encoder-decoder network for seg-
mentation and a lightweight multi-scale network for classification. Qi et al. [29] proposed
a state-of-the-art method with multi-scale kernels and the method skips connections to
diagnose breast tumors with ultrasound images. Wei et al. [30] used the trained deep
residual network model to classify breast ultrasound malignant tumors by using sequential
minimal optimization (SMO) linear SVM. The accuracy of the method exceeds that of the
average radiologist. M.I.Daoud et al. [31] extracted features from the CONV5, FC6, and
FC7 layers of the AlexNet network, merged the features, and then combined migration
learning to distinguish benign and malignant breast tumors. Yap et al. [32] investigated
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the use of patch-based LeNet U-Net transfer learning in FCN-AlexNet and provided a
comprehensive evaluation of the most representative lesion detection methods.

According to the above analysis, although traditional machine learning methods
can explain the learned features well, however, the disadvantage is that manual feature
extraction is difficult and not necessarily perfect. Compared with traditional machine
learning methods, deep learning methods often have better classification results, but the
datasets required for deep learning for training are very large. As we all know, medical
image datasets involve patient privacy. What is more, the labeling of medical ultrasound
images often adds to the burden of work for physicians. All of the above reasons lead to
the quantity of the datasets not being large enough. However, if only a small dataset is
used to train a deep learning model, it can easily lead to overfitting, which indicates better
performance on the training set, but the performance on the test set may decrease. This will
result in poor generalization of the trained model, making it difficult to apply the model
to clinical applications. Therefore, this paper proposes a method for combing the features
extracted by the traditional hand-crafted and deep learning ways that uses the pre-trained
deep residual network.

This paper focuses on improving the accuracy of benign and malignant breast tumor
classification in ultrasound images under the condition of small datasets. The proposed
method is based on a complementary weighted fusion of two different classifiers with global
deep network features, texture features, and morphological features. The rest of this paper
will cover the following contents. Sections 2–4 describe the materials, methods, results, and
discussion. A conclusion of the research work in this paper is presented in Section 5.

2. Methods

In this paper, we propose an automatic classification method that aims to improve
classification accuracy from a small dataset. The proposed method is based on a complemen-
tary weighted fusion of two different classifiers with global deep network features, texture
features, and morphological features. Figure 1 shows a flow chart of the implementation.

First, the original ultrasound images were denoised. Then, using the pre-processed
data, three different features were extracted, and two different classifiers were trained. Two
classification results were obtained by the two classifiers. After obtaining the classification
results, the final results were obtained by weighting the classifiers. The details of how to
obtain the results are as follows:

1. The steps to obtain the features by deep learning as Branch 1 shown in Figure 1.
First, using breast tumor ultrasound images and classification labels from pre-trained
ResNet101, such features are obtained. Subsequently, the least correlated features are
selected from these extracted features by PCA;

2. The steps to obtain features based on texture features as Branch 2 shown in Figure 1.
First, features of the whole image are extracted from the original breast tumor ul-
trasound image. Subsequently, the least correlated features are selected from these
extracted features by PCA;

3. The steps to obtain features based on medical features as Branch 3 shown in Figure 1. The
segmentation results are obtained using the K-means algorithm. Then, morphological
features of breast tumors are obtained from the segmentation results. Subsequently, the
least correlated features are selected from these extracted features by SPSS;

4. The steps to concatenate the features selected by deep learning with the selected
texture features to obtain a final score using the support vector machine classifier;

5. The steps to concatenate the selected deep learning features and the selected texture
features to obtain a final score using the NB classifier;

6. They integrated all the above by using weighted classifier to obtain the final result of
the improved results.

This section describes the main methods used in the proposed multi-features inte-
grated a weighted double-classifier learning.
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Figure 1. The flow chart of the proposed MfdcModel for benign and malignant classification of
breast tumors. It is based on the fusion of SVM (support vector machine) and NB (naive Bayes)
classifiers with global deep residual network features, texture features, and morphological features.
Σ represents the weighted fusion of the SVM and NB classifiers.

2.1. Image Pre-Processing

In this study, due to the different sizes of breast tumors, the original images were of
different sizes. Therefore, all images were resized to 256 × 256 pixels. To protect patient
privacy, all irrelevant information such as text titles, indicators, related marks, etc., are
removed first. At the same time, due to the mechanism and characteristics of ultrasonic
imaging, breast ultrasound images often exhibit features such as low contrast, low resolu-
tion, high speckle noise, and blurred boundaries between tissues and anatomical structures,
which will inhibit the computer’s feature extraction of ultrasound images. So, all images
were pre-processed by the speckle reducing anisotropic diffusion (SRAD) filter [16] and his-
togram equalization method [16]. All images were pre-processed by the speckle reducing
anisotropic diffusion (SRAD) filter and histogram equalization method. Among them, the
ultrasonic image is processed by SRAD, as shown in Equation (1) as follows:{

∂L(i,j;t)
∂t = div[c(q)∇L](i, j; t)

L(i, j; 0) = L0(i, j),
(

∂L(i,j;t)
∂→n

)∣∣∣∂Ω = 0
(1)
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L0(i,j) and l(i,j;t) represent the initial image and output image respectively,∇ represents
the Laplacian operator, div represents the divergence operator, ∂Ω represents the boundary
of the image Ω continuous domain, and →n represents the external method of ∂Ω vector.
c(q) represents the diffusion coefficient. The pre-processed image is obtained by equalizing
the histogram of the image processed by the SRAD algorithm.

2.2. Feature Extraction

The proposed method contains features of the breast tumor shape and features of
the whole image. Features of the breast tumor regions: In breast tumor ultrasound image
diagnosis, doctors often diagnose benign or malignant breast tumors based on several
widely recognized morphological features. Based on these features, we extracted some
features for the diagnosis of breast tumors. These features are shown in Figure 2, including
convexity, area of breast tumor, area of convex hull, elongation, the smallest rectangular
box, area of box, center distance, and elliptical variance. etc. Features of the whole image:
These features are extracted including deep learning features and texture features. Typically,
the different deep learning features and texture features can reflect the whole breast tumor
image. The main texture features extracted are energy, contrast, correlation coefficient,
entropy, differential moment, inverse differential moment, total mean, and total variance.

Figure 2. Visual depiction of morphological features. (a) Convexity, (b) Area of breast tumor, (c) area
of convex hull, (d) elongation, (e) the smallest rectangular box, (f) area of box, (g) center distance,
(h) Eeliptical variance.

The shape and texture of the tumor often play an important role when diagnosing
breast tumors. Breast tumors tend to show a wide variation in morphology, benign breast
tumors whose borders are clear and smooth, usually have a more regular shape. In contrast,
malignant breast tumors, whose borders are unclear and irregular, usually have an irregular
shape. In terms of other features, in general, benign breast tumors have a clearer texture
with high echo than malignant breast tumors. Meanwhile, malignant breast tumors tend
to be characterized by hypoechoic and a high degree of calcification. In fact, experts also
consider these shape features and textural features when diagnosing breast tumors. The
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visual depiction of morphological features is extracted according to Equations (2)–(11),
whose details are shown as follows:

Convexity: This feature is defined as the ratio of the convex hull to tumor circumfer-
ence. The convex hull is the shape drawn around the outline of the tumor.

FConv =
Pc

Pn
(2)

Solidity: This feature is used to describe the convexity or concavity of the tumor [33].
When the lesion has an irregular shape, the solidity value is less than 1. Generally, benign
breast tumors have a more regular shape, and the area of the convex bundle is closer to the
area of the tumor.

FSol =
An

Ac
(3)

Elongation: This feature refers to the ratio between the length and width of the smallest
rectangular box of the tumor. The value of elongation is generally between 0 and 1. When
the shape of the lesion is close to square or round, the elongation value is close to 1.

FElo =
Wn

Ln
(4)

Compactness: This feature is referring to the ratio of the tumor area to the square of
the circumference.

FCom =
4πAn

Pn2 (5)

Rectangularity: This feature is referred to the ratio of the area of the tumor to the area
of the smallest circumscribed rectangle of the tumor [34].

Fec =
An

Ar
(6)

Roundness: This feature is the ratio of the area of the breast tumor to the square of the
minimum convex perimeter of the breast tumor boundary.

Foud =
4πAn

Pc2 (7)

Center distance: The center distance is the distance between the center of mass of the
breast tumor and the center of mass of the least convex body. The center distance value for
benign tumors is smaller than that for malignant tumors.

Convex Perimeter: This feature is the perimeter of the convex hull of a breast tumor [35].

FCP =
N−1

∑
i=1
|cxi − cxi+1| (8)

Convex Area: This feature refers to the area of the tumor surrounded by the convex hull.
Perimeter: This feature represents the circumference of the breast tumor.

FPn =
N−1

∑
i=1
|xi − xi+1| (9)

Area: This feature is referred to the total pixels in the area of the breast tumor.
Rectangular box perimeter: This feature is the circumference of the smallest rectangular

box surrounding the breast tumor.
Rectangular box area: This feature is the area of the smallest rectangular box surround-

ing the breast tumor. The area of the rectangular box refers to all pixels that occupy the
rectangular box.
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Elliptic compactness: This feature is referred to the ratio of the fitted ellipse to the
circumference of the tumor contour. The smaller the value of elliptical compactness, the
greater the likelihood that the breast tumor is malignant. The core of the ellipse fitting
method lies in fitting the ellipse to the tumor outline points.

FEC =
π(a + b)

FPn
(10)

The mean of the radial distance spectrum is as follows: This feature is used to quantify
the correlation of tumor margins by defining the distance from the edge of the tumor to
the center of the tumor [15]. The logarithmic amplitude spectrum of the radial distance
is obtained by performing a Fourier transform and logarithmic operation on the radial
distance spectrum. Obtain the mean value based on the logarithmic amplitude spectrum of
the radial distance.

FD =

√
(x1 − x0)

2 + (y1 − y0)
2 (11)

The variance of the radial distance spectrum is as follows: This feature is the variance
value obtained from the logarithmic amplitude spectrum of the radial distance.

Where Pc represents the circumference of a convex hull, Pn is the circumference of the
tumor, and An is the area of the tumor. Ac is the area of the convex hull; Wn is the width of the
tumor. Ln is the length of the tumor, Ar is the area of the smallest rectangular box, cx1 . . . cxn
represents the boundary coordinates of the breast tumor, x1 . . . xn represents the boundary
coordinates of the breast tumor, a represents the semi-approximate axis of the fitted ellipse,
and b represents the semi-body axis of the fitted ellipse, (x1, y1) represents the coordinates of
the edge point of the breast tumor, and (x0, y0) represents the coordinate of the center point of
the breast tumor.

Ultrasound images of benign breast tumors and malignant breast tumors often have
major differences. Their features such as hidden features and texture features are also different.

Deep learning features: Deep residual network is an extremely effective deep learning
method. Its network structure is mainly composed of a stack of various basic modules,
including input layer, convolutional layer, activation function, batch standardization, iden-
tity mapping, global mean pooling, an output layer, etc. [19]. Extracting features uses the
ResNet101 model pre-trained on the ImageNet datasets to extract high-level features for
classification purposes. The network structure of ResNet101 consists of 101 weighted layers.
It contains 33 3-layer residual blocks, which end with an average pooling layer and a fully
connected layer, classified as a SoftMax function, and executed after each convolution
before activation batch normalization [36] to improve the learning rate.

The pre-trained ResNet101 convolutional neural network was subjected to migration learn-
ing to extract the depth features in the ultrasound images. As shown in Figure 3, after feeding
the preprocessed breast ultrasound image set into the input layer and analyzing the network, all
image features are extracted and aggregated in the averaging pooling layer. Extracting features
from the average pooling layer, as shown in Equation (12), converting them into feature vectors,
and finally sending them to a suitable classifier for prediction as follows:

YGAP(1, 1, ich) = averageiro,ico(XGAP(iro, ico, ich)) (12)

where XGAP represents the input features map of the average pooling layer, YGAP represents
the output features map of the average pooling layer, iro, ico, ich represent the index of the
row, column, and channels in Xcov, respectively. Additionally, Xcov represents the input
feature map of the convolutional layer.

Some hidden features are extracted from the pool layer of the pre-trained ResNet101.
This allows these hidden features to be used to reflect features other than the morphological
and texture features of the original image.
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Figure 3. The extraction process of deep residual network features with pre-trained ResNet101.

Texture features: The extraction of these features is based on the LBP, HOG, and
GLCM. Texture is a visual feature that reflects the phenomenon of homogeneity in an
image, and it reflects the property of surface structure organization arrangement with
slow or periodic changes on the surface of an object. LBP [37] is an operator used to
describe the local texture features of an image. It has significant advantages such as rotation
invariance and gray-level invariance [38]. HOG [39] is a descriptor used in computer vision
and image processing that constitutes features by calculating and counting the histogram
of gradient directions in local regions of an image. GLCM [40] extracts the relationship
between pixel pairs and obtains the partial eigenvalues of the matrix by calculating the
co-occurrence matrix to represent certain texture features of the image. The main texture
features extracted are energy, contrast, correlation coefficient, entropy, differential moment,
inverse differential moment, sum average, and sum variance. These features were extracted
according to Equations (13)–(22).

Energy:
T1 = ∑

i
∑

j
[g(i, j)]2 (13)

Contrast:
T2 = ∑

i
∑

j
(i− j)2g(i, j) (14)

Correlation coefficient:

T3 =
∑i ∑j ijg(i, j)−∑i i ∑j g(i, j)∑i j ∑j g(i, j)√

∑i (i−∑i i ∑j g(i, j))2 ∑j g(i, j)∑j (j−∑i j ∑j g(i, j))2 ∑i g(i, j)
(15)

Entropy:
T4 = −∑

i
∑

j
g(i, j)log2[g(i, j)] (16)

Differential moments:
T5 = ∑

i
∑

j
(i− µ)2g(i, j) (17)

Inverse differential moments:

T6 = ∑
i

∑
j

g(i, j)

1 + (i− j)2 (18)
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Sum average:
T7 = ∑

i+j
∑

i
∑

j
ig(i, j) (19)

Sum variance:
T8 = ∑

i+j
∑

i
∑

j
(i− T7)

2g(i, j) (20)

Sum entropy:
T9 = −∑

i+j
∑

i
∑

j
g(i, j)log2[g(i, j)] (21)

Difference in variance:

T10 =
2N

∑
k=2

2N

∑
i=1

2N

∑
j=1

g(i, j), k = |i− j| = 0, 1, · · · , N − 1 (22)

where i and j represent horizontal and vertical coordinates respectively, g(i,j) is the GLCM
of each breast tumor image.

After extracting features of the breast tumor region and features of the entire image,
although the morphological features of breast tumor are partially extracted based on the
doctor’s prior knowledge, there may still be useless features. Meanwhile, the features of
the whole image may contain some useless features, so the features above still need to be
filtered before the subsequent training of the classifier.

2.3. Feature Selector

The core of the feature selector is to develop a criterion. This criterion allows us
to measure the importance of each feature. Additionally, all features are classified and
simplified. In this way, the redundant features are removed to obtain the best subset of
features. The selected features remain valid in the classification. In this paper, PCA is used
as a feature selector. Deep learning features and texture features are fed to the feature
selector to obtain the main features. Morphological features were sent to SPSS for statistical
analysis to obtain the features with the lowest correlation.

In order to select the least relevant features to achieve better classification. For morpho-
logical features, statistical analysis of benign and malignant parameters was performed by
using the Man–Whitney test [41]. The default significance level is 0.05, and the confidence
interval defaults to 95%. Finally, except that the significance of solidity and rectangularity
are 0.81 and 0.08, respectively, which are greater than 0.05. Therefore, there is no significant
difference, and other features are all significant. In the proposed method, the morphological
features with significant differences are retained.

When combining texture features and deep learning features, there is a correlation
between texture features and deep learning features, which easily leads to the weak general-
ization ability of the model. For this reason, it is necessary to perform feature dimensionality
reduction on high dimensional texture features to reduce the number of feature attributes
and ensure that the attributes are independent of each other. PCA [42] is a common
approach used to reduce feature size. The details are as follows:

1. Obtain m-dimensional eigenvectors of n ultrasound images, the m-dimensional eigen-
vectors form a feature matrix Xm×n calculate the average value of each m-dimensional
eigenvector in the feature matrix, and then subtract all m-dimensional eigenvectors
from their corresponding Average, obtain the feature matrix after de-averaging;

2. Calculate the covariance matrix of the feature matrix after de-averaging;
3. Diagonalize the eigenvalues and eigenvectors of the covariance matrix so that all

elements except the diagonal are 0, assigning the energy to the principal directions;
4. Sort the eigenvectors by the size of the eigenvalues;
5. Retain the largest former ω eigenvalues, where, ω < m;
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6. Transform the data in the feature matrix into a new space constructed by feature
vectors and obtain n feature vectors after dimension reduction.

The features extracted by ResNet101 and the texture features were combined into a
vector after PCA dimensionality reduction, as shown in Figure 4. Additionally, the fusion
vector with these features was fed into the next classifier for training and testing.

Figure 4. Schematic representation of the extracted feature fusion vector. PCA: principal component
analysis.

Both sets of features are prepared for training. Then, texture features and deep learning
features were used in the SVM classifier for learning and morphological features were used
in the NB for learning. Then, after that, the final results are obtained by weighting the
results obtained from both sets of classifiers to decide whether the breast tumor is benign
or malignant.

2.4. Weighting and Training Double-Classifier

In this paper, radial basis functions are applied as kernel functions in a support vector
machine and five-fold cross-validation is performed using a grid search method to automat-
ically find the optimal parameters. Then, the NB classifier is trained by using the selected
morphological features to obtain the classification results, and the SVM is trained by using the
selected texture features and deep learning features to obtain the classification results.

As for features extracted from the shape of a K-means segmentation, previously,
16 features were extracted based on the output of K-means, and 14 features were obtained
after filtering. These features were used to train an NB classifier.

As for features extracted from the pooling layer of ResNet101 and texture features,
previously, we extracted 2048 features and 5620 texture features based on the pooling layer
output of ResNet101 and obtained 140 features after filtering. These features are used to
train an SVM classifier.

Thus far, two sets of classification results have been obtained. In addition, weighted
classifier is used to integrate these two sets of classification results to obtain the final results.
A single classifier does not sufficiently learn the relevant features of breast ultrasound
images, and the complementary between two or multiple classifiers can increase the
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classification effect. The classifiers used to learn breast ultrasound features are divided into
parametric and nonparametric classifiers. Parametric classifiers are often used to learn high-
dimensional features and nonparametric classifiers are often used to learn low-dimensional
features. According to Occam’s razor theory [43], the following are the results and the
weighted matrix of the linearly weighted fusion sub-classifier (Equation (23)).

→
S =

2

∑
i=1

Wi
→
Si =

2

∑
i=1

pi1 · · · 0
...

. . .
...

a31 · · · pim


Si1

...
Sim

 =


2
∑

i=1
Si1 pi1

...
2
∑

i=1
Sim pim

 (23)

where,
→
Si represents the result of the sub-classifier, and Wi represents the weighting matrix

of the corresponding sub-classifier.

Sλ = max
0≤j≤m

{
2

∑
i=1

SijPij

}
=

2

∑
i=1

SikPik (24)

Based on the maximum rule, such as Equation (24), where Pij is the recognition rate at
which the i-th picture is recognized as the j-th category; j ∈ {0,1}. The benign and malignant
state with the highest score is the final recognition result. Sλ represents the score after the
fusion of the two classifiers. When 0 < Sλ < 0.5, the tumor is considered to be a benign
tumor. When 0.5 < Sλ < 1, the tumor is considered to be a malignant tumor.

3. Experiments and Results

During the experiments, to avoid overfitting, the breast ultrasound dataset was split
into five for five-fold cross-validation. Divide the breast ultrasound dataset into five equal
parts. Use the first 20% as the test set and the other parts as the training set to obtain accuracy.
In turn, use the second 20% as the test set, the remaining part is used as the training set,
and a total of 5 results are obtained. Take the average of these five results as the result of
the model. In this study, all experimental results were also derived from the arithmetic
mean after five-fold cross-validation. The results of feature selection, classification of breast
tumor ultrasound images, and the classification of breast tumor ultrasound images by dual
weighted classification are presented. These results are described and analyzed in detail in
this section.

3.1. Image Acquisition

The 2D breast ultrasound images involved in this study were obtained from the
Department of Ultrasonics, First Affiliated Hospital of Fujian Medical University, Fujian
Province, China, with instrument models including Philips, Siemens, etc. The other color
ultrasound diagnostic equipment has a probe frequency of 12 MHz. The study has passed
the medical ethics review, complying with the principles of medical ethics and with consent
from the patients involved. Ultrasound breast images of women aged from 14 to 80 years,
collected between 2018 and 2021, were compared to pathological findings with a clear
diagnosis. Among these, 418 were benign breast tumors and 373 were malignant breast
tumors. Figure 5 shows the sample ultrasound images with benign and malignant breast
tumors. In addition, the diagnosis of the images was verified by biopsy. The region of
interest (ROI) of each breast ultrasound image was manually annotated by a radiologist
with extensive experience and verified by another radiologist who has more than 10 years
of breast ultrasound diagnosis experience. To protect the privacy of patients, the patient
information around each breast ultrasound image has been removed.
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Figure 5. Examples of breast ultrasound images in our datasets. (a–d) are benign, (e–h) are malignant.

3.2. Evaluation Indicators

To quantitatively assess the classification performance, we used the following five metrics:
(1) Acc (Accuracy) = (TP + TN)/(TP + TN + FP + FN); (2) Pre (Precision) = TP/(TP + FN);
(3) Rec (Recall) = TN/(TN + FP); (4) F1 = (2 × Precision × Recall)/(Precision + Recall);
(5) AUC (area under the ROC curve). Here, TP (true positive) and TN (true negative) represent
the number of correctly classified positive and negative samples, respectively, while FP (false
positive) and FN (false negative) represent the number of incorrectly classified negative and
positive samples, respectively. In the classification of breast tumors, positive samples were
malignant tumors and vice versa.

3.3. Classification Results Based on the Selected Features

Since the texture features and the dimensionality of the deep residual network ex-
tracted are too large. PCA is used to perform feature selection on the eigenvector matrix so
as to filter out unimportant features. Using statistical analysis to analyze morphological
features and select useful features to reduce the time required for feature extraction. To
provide a more visual indication of the effectiveness of the selected features. As shown in
Table 1, we verified this by using the required classification accuracy and time before and
after feature selection.

Table 1. Time consuming for before and after feature selection.

Experiments Features Selection Time (s) Acc (%)

1 N 0.4034 87.90
2 Y 0.0521 89.17

As shown in Table 1, the features that were filtered played a more active role in the
classification. The overall accuracy obtained after feature selection increased by 1.27%;
meanwhile, the training time was reduced to 0.0521 s. In clinical application, it can also
improve the efficiency of the doctor’s diagnosis.

3.4. Classification Results Obtained Based on the Weighting of the Double-Classifier

Considering the differences among the performance of different classifiers, a weight
is assigned to each classifier to make the weighted classifier method more reasonable. In
general, the weight assigned to each classifier is related to its performance. Figure 6 shows
the analysis of weighted fusion. When accuracy, precision, recall, F1, and AUC values
are taken into account, the highest accuracy is achieved when the weight is 0.9. In this
condition, the model achieves the best results.
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Figure 6. Classifier complementary weighted fusion analysis results with different fusion weights.

To demonstrate that the deep learning feature extraction network (ResNet101) involved
in the designed experiments has better performance in extracting breast ultrasound image
features compared to other methods. We have designed experiments to classify breast
ultrasound images by using popular neural networks such as ResNet18 [19], ResNet50 [19],
ResNet101 [19], GoogleNet [21], AlexNet [23], and InceptionRestv2 [21] respectively. The
results are shown in Table 2. ResNet101 has the highest breast ultrasound classification
accuracy of 83.44%. Its accuracy was 1.91% higher than the second-ranked ResNet18 model.

Table 2. Classification results based on different CNNs.

Methods Acc (%) Pre (%) Rec (%) F1 (%)

ResNet18 81.53 83.58 75.68 79.43
ResNet50 77.07 73.75 79.73 76.62
ResNet101 83.44 84.29 79.73 81.95
GoogleNet 79.62 75.68 81.48 78.47

AlexNet 81.53 80.00 81.08 80.54
InceptionResNetv2 66.23 62.26 81.48 70.59

Xception 80.89 85.14 76.83 80.77
Efficientnetb0 78.98 74.32 79.71 76.92

3.5. Classification Results Based on Single Breast Tumor Features Combined with Different Classifiers

To find the most suitable classifier for the proposed features, we have designed experi-
ments in which different classifiers learn the extracted features separately and compared
them. As for texture features with high dimensionality, we chose SVM [44], KNN [45],
DT [46], and LDA [47] classifiers for learning texture features. As for morphological fea-
tures with low dimensionality, we chose SVM and NB classifiers for learning. As for the
features extracted by ResNet101, which have high dimensionality, we chose SVM [44], and
SoftMax classifiers for learning texture features. The average values of the classification
results of the above experiments after five-fold cross-validation are shown in Table 3. From
Table 3, we can see that the SVM classifier has a better learning effect for texture features
extracted from breast ultrasound images. The NB classifier has a better learning effect for
morphological features. The SVM classifier has a better learning effect for extracting deep
residual network features from breast ultrasound images.
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Table 3. The classification results with a single feature combined with different classifiers.

Features Classifiers Acc (%) Pre (%) Rec (%) F1 (%) AUC

Texture

SVM 80.80 83.10 79.73 81.38 0.82
KNN 80.89 79.73 79.73 79.73 0.77

DT 64.99 62.03 66.22 64.05 0.50
LDA 75.16 87.23 55.41 67.77 0.88

Morphological SVM 63.69 60.24 67.57 63.69 0.69
NB 73.83 69.23 78.26 73.47 0.72

ResNet101
SVM 86.62 84.42 87.83 86.09 0.85

SoftMax 83.44 84.29 79.73 81.95 0.83

In this study, we chose to combine texture features with deep residual network features,
then feed the combined features into SVM for learning, and finally use the NB classifier to
learn the morphological features and weight the classification results of both for scoring.
It will improve the final classification result. We designed comparison experiments in which
each feature is fed into the SVM classifier separately for learning. Specifically, the texture
features after feature selection and the deep learning features after feature selection were
first fed into the SVM classifier for learning, and then the texture features were classified
by a support vector machine, and the results of the three were weighted and scored. The
average of the experimental results after the five-fold cross-validation is shown in Table 4.
The results show that the method proposed in this paper can improve the classification
accuracy of breast tumor ultrasound images.

Table 4. The classification results with different features combined with different classifiers.

Features Classifiers Acc (%) Pre (%) Rec (%) F1 (%) AUC

Texture +
ResNet101 SVM

89.17 90.14 86.49 88.28 0.95
Morphological NB

Texture SVM
87.26 82.14 93.24 87.34 0.93ResNet101 +

Morphological NB

Texture SVM
83.44 88.00 89.19 88.59 0.92Morphological NB

ResNet101 SVM

To demonstrate the effectiveness of the proposed method for the classification of benign
and malignant breast tumors in ultrasound images. The method proposed in this article was
compared with related methods published in recent years under the same small datasets.
Figure 7 shows the ROC values of the proposed method in this study and the comparison
methods, including (1) C.YL et al. trained a logistic classifier with average, standard deviation,
skewness, and kurtosis [14]; (2) Wei et al. trained SVM classifier and NB classifier with combin-
ing textural features and morphological features [15]; (3) Wei.CS et al. used the trained deep
residual network model to classify breast ultrasound malignant tumors by using sequential
minimal optimization (SMO) linear SVM [30]; (4) M.I.Daoud et al. extracted features from the
CONV5, FC6, FC7 layers of the AlexNet network, and merged the features [31]. (5) Moon
proposed ensemble VGGNet, ResNet, and DenseNet on US images [48]. (6) Francisco had
extracted 137 morphological and texture features, and these features were trained by the LDA
classifier [49]. The accuracy, precision, recall, F1 value, and AUC value of the area of the
ROC curve are shown quantitatively for the proposed method and other existing methods
for classifying in the same breast ultrasound datasets. The classification results of the above
experiments are shown in Table 5.
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Figure 7. The ROC curves of different related existing methods.

Table 5. The performance comparison of the proposed method and the related existing methods.

Experiments Acc (%) Pre (%) Rec (%) F1 (%) AUC

C.YL [14] 78.98 78.08 77.02 77.55 0.84
Wei [15] 80.89 88.89 75.68 81.75 0.89

Wei.CS [30] 84.71 86.76 79.73 83.10 0.91
M.I.Daoud [31] 80.89 78.48 83.78 81.04 0.91

Moon [48] 86.62 85.33 86.49 85.91 0.92
Francisco [49] 80.89 78.95 81.08 80.00 0.89

Ours 89.17 90.14 86.49 88.28 0.95

By comparing with the other four methods, this method has the highest total accuracy.
The method proposed in this study has 2.55% higher accuracy, 4.81% higher precision,
2.37% higher F1 value, and 0.03 higher AUC value of the area of the ROC curve than the
second-ranked Moon [48]. In conclusion, the method has better results on small datasets
compared with the above methods published in recent years. The method provides better
results in the diagnosis of breast tumors.

4. Discussions

Breast ultrasound is widely used in the diagnosis of breast cancer due to its versatility,
safety, and high sensitivity. However, breast ultrasound examination is a time-consuming
task. Therefore, designing a CAD system for auxiliary analysis of breast ultrasound images
is necessary and it has important clinical application value. The classification of breast
tumors is a challenging task due to the large variation in breast tumor shape and irregular
and blurred breast tumor boundaries. However, traditional single deep network models
and single classifier learning features are not effective in identifying breast ultrasound
image classification.

To address the lack of robustness of traditional hand-crafted features for the classifica-
tion of breast tumor lesions under small datasets and improve the sensitivity for clinical
application when using small datasets. In this paper, a novel classification model and a
multifeatured ensemble double-classifier learning method are proposed. The multi-features
mainly include global depth residual network features, texture features, and morpholog-
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ical features. By comparing the computation time before and after feature selection, it
can be seen that the PCA used in this study can effectively select the extracted features,
reducing computation time and improving accuracy. Multi-features mainly include global
deep residual network features, texture features, and morphological features. The deep
residual network model, ResNet101, is used to extract high-dimensional image features
from the pooling layers of the trained network to describe the latent features of the image.
By comparing with different deep learning algorithms, as shown in Table 2, it can be seen
that our Resnet101 model for extracting global information has better results. Meanwhile,
in order to better feature learning, a non-parametric NB classifier is trained to work with a
parametric SVM classifier that exploits the complementarity of the classifiers. Through the
training results of various classifiers, as shown in Table 3, the two classifiers, SVM and NB,
have better learning abilities after weighting. At the same time, for the selection of weights,
it can be seen from Figure 6 that the weights do not have a linear relationship with the
experimental effect. For example, if the weight value is set to 0.8, the AUC value decreases
instead. When the weight value is 0.9, a five-fold cross-validation experiment yielded an
average accuracy of 89.17%, an average precision of 90.00%, and an average AUC value
of 0.95. In addition, compared with several existing methods, the classification model
designed in this study has better performance under the same dataset. Finally, although the
method proposed in this study can better solve the problem of breast tumor classification
in ultrasound images, the breast ROI area of ultrasound images involved in this study is
manually cropped, and the research on automatic detection of breast tumors in ultrasound
images will be research in our next work.

5. Conclusions

This paper aims to address the problem of obtaining a method that is more effective
in self-diagnosis and has higher accuracy. The method obtained double-classifier comple-
mentary weighted fusion for automatic classification of breast ultrasound images with the
combination of global deep residual network features, texture features, and morphological
features. As a result, the accuracy was 89.17%, the precision was 90.00%, and the AUC of
the datasets was 0.95. In conclusion, the method proposed in this paper successfully solves
the problem of low accuracy due to the use of small samples. The experimental results
show that the method proposed in this paper achieves good accuracy on the test set.
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