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Abstract: The received signal strength (RSS) based Wi-Fi fingerprinting method is one of the most
potential and easily deployed approaches for a reliable indoor positioning system. However, due
to the labor intensive and time-consuming radio map construction process, interpolation is often
incorporated. To ensure the interpolated radio map is robust against environmental noise and RSS
fluctuations, we propose two novel interpolation methods, termed as DimRed and DimRedClust,
for an improved radio map construction. The former performs dimensionality reduction prior to
the interpolation while the latter employs both the dimensionality reduction and clustering before
interpolating the radio map. For dimensionality reduction, principal component analysis (PCA) or
truncated singular value decomposition (TSVD) is adopted to profoundly extract essential features
from the RSS data while the K-means algorithm is used to partition the reference points (RPs) into
several clusters. Subsequently, the RSS for all virtual points are interpolated via inverse distance
weighting (IDW). Numerical results based on the real-world multi-floor multi-building dataset
confirm the supremacy of the proposed schemes over the baseline IDW interpolation. Compared to
the baseline IDW, the proposed PCA-K-means-IDW, TSVD-K-means-IDW, PCA-IDW, and TSVD-IDW
could attain a performance gain in terms of average positioning error of up to 30.17%, 30.93%, 19.33%,
and 21.61%, respectively.

Keywords: indoor positioning; Wi-Fi fingerprint; received signal strength; radio map interpolation;
dimensionality reduction; clustering

1. Introduction

In the recent years of this globalized era, the rapid evolution of wireless technology has
led to the swift development of location-based services (LBS), which utilize the geographical
location of a user to provide services or information accordingly. In light of the blooming
of LBS, the demand for an accurate and real-time indoor positioning system (IPS) rises
to fulfill the need for indoor LBS, which are popularly used in sectors, such as hospitals,
indoor parking lots, airports, and shopping malls, for location identification and indoor
navigation [1,2]. While current mature technology such as Global Positioning System
(GPS), a type of global navigation satellite system (GNSS), is widely used for outdoor
navigation and positioning, it is nevertheless not suitable for indoor localization purposes.
This is due to the requirement for a direct line of sight (LOS) between the satellites and the
user, which is almost impossible to be achieved in an indoor environment. Moreover, the
signal is often weakened due to obstructions as it penetrates through the thick walls of a
building, resulting in the accuracy of the indoor positioning information falling short of
expectations [1–3].

In view of that, various wireless technologies are being considered and researched for
their potential applications in indoor positioning. For instance, some of the available ap-
proaches include Bluetooth, radio frequency identification (RFID), ultra-wideband (UWB),
geomagnetism, visible light and Wi-Fi [2,3]. In Wi-Fi based IPSs, the different localization
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schemes include the time of arrival (ToA), time difference of arrival (TDoA), angle of arrival
(AoA) and the fingerprinting methods [2–6]. Nonetheless, it is worth mentioning that
among the many existing technologies, the received signal strength (RSS) based Wi-Fi fin-
gerprinting method has garnered the most attention since it does not require any additional
hardware besides the readily available Wi-Fi access points (APs) and mobile devices with
built-in network interface card (NIC) for RSS measurements [2,4]. This also implies that
no extra cost would be incurred. Considering the fact that Wi-Fi networks have already
been widely deployed and are capable of providing ubiquitous coverage, whereas mobile
devices have long become part and parcel of our daily lives, it is thus safe to say that this
technology is an infrastructure-less approach. However, since Wi-Fi networks are initially
intended for wireless communication purposes and are not designed to support indoor
positioning, the Wi-Fi signal is always prone to reflections, shadowing and multipath
interference introduced by the obstacles (walls, doors, furniture and even human) present
in an indoor environment [4]. Moreover, during RSS measurements, even the motion and
the way the user carries the mobile device would affect the RSS values measured and thus
affecting the positioning accuracy in indoor location prediction.

Generally, two phases are involved in the RSS-based Wi-Fi fingerprinting method,
which are known as the offline and online phases. In the offline phase, a site survey must
first be performed at the area of interest where the indoor localization will take place.
As a result, a radio map, which contains the location labeled RSS measurements from
surrounding APs at specific reference points (RPs), is constructed. Meanwhile, in the online
phase, the RSS values measured from all the visible APs that can be detected from the
user’s unknown location create a test sample which will then be compared with the RSS
stored in the constructed radio map via a machine learning algorithm, thus predicting the
user’s current location [2,3]. However, the radio map construction, which requires the
RSS from surrounding APs to be collected at each of the RP would be labor-intensive and
time-consuming. This issue is exacerbated under particular circumstances, such as having
a large indoor environment of interest (multi-floor and multi-building), repeated sampling
at each RP to obtain the average RSS vectors to be stored as fingerprints in the radio map
so as to reduce the effect of outliers, and sampling in all four directions to take the impact
of sheltering of the human body on RSS measurements into consideration, where all these
would ultimately result in an increased workload [7]. In [7], principal component analysis
(PCA) is adopted prior to location prediction with the aim to reduce the computational cost
due to a large number of APs detected in a real-world scenario.

In light of the above, we propose two interpolation methods, i.e., DimRed, which is
based on dimensionality reduction and DimRedClust, which is based on both dimensional-
ity reduction and clustering as alternatives to a more enhanced radio map construction.
PCA or truncated singular value decomposition (TSVD) is first adopted to extract key
features from the sparse RSS data and to reconstruct it for a better feature representation.
Besides eliminating redundancy while retaining maximal information, it also helps to re-
duce the impact of noise and outliers on the high dimensionality radio map. Subsequently,
the K-means algorithm is used to partition the RPs into several clusters with the assumption
that RPs closer to each other will demonstrate similar RSS attributes. Next, the interpola-
tion of RSS for all virtual points (VPs) are performed for each cluster via inverse distance
weighting (IDW) interpolation. Lastly, the interpolated radio map is combined with the
initial radio map to form a new radio map which will be used for indoor localization via
the K Nearest Neighbor (KNN) algorithm.

To the best of our knowledge, no prior work attempts to enhance the quality of
the radio map and localization performance by performing dimensionality reduction or
employing both the dimensionality reduction and clustering before radio map interpolation.
In summary, the main contributions of this work are outlined as follows:
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1. Two novel interpolation techniques, i.e., DimRed and DimRedClust, are proposed
to effectively enhance the robustness of the interpolated radio map against the en-
vironmental noise and RSS fluctuations and to reduce the storage requirement and
computational cost.

2. Two DimRed methods, abbreviated as PCA-IDW and TSVD-IDW, are developed. To
profoundly extract the key features with maximal information from the RSS data, the
former adopts PCA prior to the IDW interpolation while the latter employs TSVD
before performing IDW on the radio map.

3. Two DimRedClust approaches, which are known as PCA-K-means-IDW and TSVD-
K-means-IDW, are developed. Both the PCA-K-means-IDW and TSVD-K-means-IDW
methods utilize IDW interpolation. Still, in order to confine the selection of nearest
neighbors to only the known RPs located in the same cluster, the former performs
K-means clustering on the low-dimensional principal component-based fingerprint
matrix. At the same time, the latter applies K-means clustering after TSVD is executed.

4. A comprehensive investigation is carried out to assess and analyze the performance
of all the proposed techniques viz a viz the IDW scheme in terms of the average
positioning error, root mean square error (RMSE) of the easting, northing, and po-
sitioning error. Besides that, various essential statistics of the positioning error are
characterized, and the effects of hyperparameters are also analyzed in detail.

The remainder of this paper is organized as follows: Section 2 presents a review of
recent literature on radio map interpolation, while Section 3 contains the description of
the IDW interpolation method used as a benchmark in this paper. Meanwhile, Section 4
further elaborates on the proposed methods for interpolation, including brief descriptions
of the PCA, TSVD, and K-means algorithms. Thereafter, the performance evaluation and
discussion of findings are presented in Section 5 followed by a conclusion of this paper
in Section 6.

2. Related Works

Numerous techniques are proposed to overcome the problem caused by the time
consuming and labor-intensive radio map construction. Kiring et al. investigated the
effect of spatial correlation (spatial patterns related to the geographical distributions of
signals) in the densely collected RSS measurements. This spatial correlation which exists
due to the proximity distance between the RPs is exploited for accurate prediction of the
user’s unknown location. To interpolate the RSS values for the incomplete radio map, the
IDW and KNN algorithms are used, and their performance is compared with each other.
The interpolation errors computed from the RMSE between the predicted and actual RSS
measurements for both the IDW and KNN algorithms are analyzed with and without the
spatial correlation over a variety of sparsity parameters [8].

Another approach is to calculate the RSS fingerprints via linear and Delaunay inter-
polations for radio map creation. The calculated RSS values for the interpolation points
are compared with the actual RSS measurements collected beforehand, thus producing the
interpolation errors. Subsequently, the performance of the two interpolation techniques is
also compared among each other [9].

In [10], a graph-based signal interpolation that treats the RSS measurements as signals
defined over a graph consisting of nodes representing different physical locations and
weighted edges denoting the distances between locations is presented. Such a graph-based
interpolation method captures global information and predicts the RSS of all unknown
nodes based on the relationships among the known nodes, apart from the relationships
between known and unknown nodes. Comparisons are also made among various graph
construction strategies, and from the simulation results, it is found that the graph-based
signal interpolation could outperform the conventional interpolation methods, which are
IDW, radial basis function (RBF), and model-based interpolation (MBI).

Moreover, Zuo et al. presented another Kriging based interpolation method which
relies on the spatial distribution correlation of the RSS to create a radio map covering the
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entire experiment testbed, including those inaccessible regions where RSS measurements
would be hindered. This method is capable of achieving a positioning error of less than
3 m in most of the conditions investigated [11].

Besides, an interesting image-driven approach which treats the radio propagation
data as an image and estimates the spatial distribution of the RSS via image processing
techniques is adopted in [12]. The proposed deep learning (DL) framework transforms
the spatial interpolation problem into a shadowing adjustment problem via the path loss
regression and employs the neural network (NN) structure for the shadowing adjustment
problem. A gradual training method is also used, which trains the encoding/decoding block
separately for the stability of the NN structure. The DL framework indeed outperformed
other existing image-driven DL methods, such as a generative adversarial network (GAN)-
based model and spatial interpolation with convolutional neural networks (CNN).

Zhao et al. used the universal Kriging (UK) interpolation method to calculate the
RSS values for the defined interpolation points besides virtually augmenting the space
boundary. Such augmentation is done by defining extra interpolation points outside of the
original space in order to overcome the boundary effect, which reduces the localization
accuracy at the boundary. Even with only 28 known RPs (the RSS values for the remaining
84 VPs are interpolated), this technique is still capable of achieving an average positioning
error that is comparable to that of when 112 known RPs are collected [13].

To reduce the workload during site surveying for the construction of a radio map,
Ye et al. developed a crowdsourcing approach instead for radio map generation using the
crowdsourced samples in [14]. However, this crowdsourcing approach, which is random
and voluntary, gives rise to a non-uniform spatial distribution problem that exists when
certain grids of the experimented indoor environment contain too few or lack crowdsourced
samples. To overcome this problem, a binary polynomial function is adopted to interpolate
more RSS fingerprints for the grid with insufficient crowdsourced samples based on the RSS
fingerprints of its neighboring grids. In this case, only sufficient grid distinct fingerprints
are used for interpolation instead of considering as many surrounding grids as possible
since the inclusion of faraway grids might cause larger RSS deviations and thus affect the
quality of the interpolated radio map.

Wang et al. designed an improved low-rank matrix completion method for a more
rapid radio map construction. Assuming that the RSS data matrix in the radio map has
low-rank characteristics, the radio map construction can then be modeled as a low-rank
matrix completion problem (completion of an incomplete matrix into a complete matrix).
In view of that, it is possible to collect RSS values at only a small number of RPs and
to further fill up the RSS values in the radio map in order to convert it into a complete
Wi-Fi fingerprinting database using the low-rank matrix completion algorithm with the
Frobenius parameter (F-parameter) integrated into it for the stability of the model solution
when filling up the data. Apart from that, the low-rank matrix recovery algorithm is also
used to suppress noise caused by the environment and equipment [15].

A least absolute shrinkage and selection operator (LASSO) based interpolation scheme
is proposed in [16], which enabled the reconstruction of a radio map by RSS fingerprints
interpolation at a finer granularity based on the RSS fingerprints collected for the RPs at a
coarser granularity. The sparse reconstruction of the radio map using the sparse recovery
algorithm is made possible due to the extremely sparse feature of the RSS fingerprints. An
outlier detection scheme is also introduced into the radio map interpolation procedure to re-
duce the effect of outliers present during the offline phase and ensure that the interpolation
is performed using the RSS values of RPs that are free of outliers.

Talvitie et al. on the other hand, investigated the performance of various interpolation
and extrapolation methods, including linear interpolation, minimum method extrapolation,
mean method extrapolation, gradient method extrapolation, nearest neighbor and IDW
that are used to construct a complete radio map. Comparisons are made between the
estimated RSS fingerprints and the actual RSS fingerprints while varying the percentages
of the interpolated RSS fingerprints. This is done in order to determine the average RSS
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estimation error of the different interpolation and extrapolation methods. The performance
of four cases, including the original fingerprint, the partial fingerprint (the incomplete
fingerprint without any interpolation), the interpolated fingerprint, and the combined
interpolated and extrapolated fingerprint, are also compared in their resulting indoor
positioning accuracy [17].

In [18], Jan et al. applied the Kriging algorithm to calculate the RSS values at more
unobserved locations, thus creating an extended database apart from the RSS fingerprints
measured at a small number of RPs. By varying the size of the extended database, i.e., the
number of basic RPs and Kriging RPs, its effect on the positioning error is evaluated apart
from comparing the interpolated database to the measured database to identify the RSS
interpolation error.

Similar work is also presented in [19], where different interpolation functions such
as Euclidean distance linear basis, multi-quadratic, thin-plate spline and polyharmonic
spline functions are used to calculate the RSS values for the interpolated points. Besides,
the impacts of density and distribution of the known RPs on the indoor localization error
are also investigated simultaneously. An assumption made here is that the radio frequency
(RF) signals for locations nearer to the beacons tend to have a better quality than that of
locations further away. Thus, the zones nearer to the beacons are assigned with a lower
density of known RPs, whereas the zones further away from the beacons are assigned with
a higher density of known RPs instead.

Meanwhile, Bi et al. proposed an adaptive path loss model interpolation method
that first performs crowdsourcing to collect RSS fingerprints at sparse RPs followed by
establishing path loss models for all visible APs with the help of several RPs in a small
area. The least-squares method is then used to estimate the optimal parameters for the path
loss models. Afterwards, the RSS values of the interpolation points could be calculated
based on the path loss models. A performance comparison is also made among their
proposed method with the IDW and Kriging interpolation approaches. However, this
method requires knowledge of the exact locations of the APs [20].

Furthermore, another radio map construction method based on crowdsourcing and
interpolation is also proposed by Bi et al. The RSS fingerprints are collected at a small
number of specified RPs via crowdsourcing with the usage of different devices followed
by normalization account for the device heterogeneity issue. The process is then carried
on with the IDW interpolation of RSS values at different interpolated points. After the
radio map interpolation, PCA is then used for dimensionality reduction of the new radio
map formed from the combination of the initial and interpolated radio map to reduce the
computational cost [7].

On the other hand, Boujnah et al. also proposed a method for localization based on
crowdsourcing, data clustering and multidimensional interpolation. The collected data
via crowdsourcing are partitioned into small areas according to the cell identifiers of the
received signals. Their corresponding RSS fingerprints will only be clustered via K-means
or fuzzy C-means if the cardinality of the partition exceeds a fixed threshold. Subsequently,
RBF with Gaussian kernel is adopted to identify the interpolation function assigned to each
cluster to estimate the user’s unknown location per cluster [21].

3. Radio Map Interpolation

In this section, the construction of initial radio map and the existing IDW interpolation
method are explained. Throughout the paper, scalars, vectors, and matrices are denoted
as non-bold variables (e.g., x), lower-case bold variables (e.g., x), and upper-case bold
variables (e.g., X), respectively. The transpose operation is represented by superscript T.

3.1. Construction of Initial Radio Map

Consider an indoor localization system with D APs and M predefined RPs. In the
offline phase, the RSS fingerprints, i.e., the RSS readings measured from all the APs, for
each of the RPs are collected. Then, the radio map χ, can be obtained by concatenating the
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location coordinates with their corresponding RSS fingerprints. Mathematically, χ can be
formulated as

χ =



(
l1,1 l1,2 · · · l1,Q

) (
r1,1 r1,2 · · · r1,D

)
...

...(
lm,1 lm,2 · · · lm,Q

) (
rm,1 rm,2 · · · rm,D

)
...

...(
lM,1 lM,2 · · · lM,Q

) (
rM,1 rM,2 · · · rM,D

)

 (1)

where χ ∈ RM×(Q+D), lm =
[
lm,1 lm,2 · · · lm,Q

]T denotes the location identifier
vector for RP m, Q is the total number of location identifiers used to specify each RP,
rm =

[
rm,1 rm,2 · · · rm,D

]T represents the RSS fingerprint vector at RP m, rm,d signifies
the RSS from AP d at RP m, m ∈ [1, M] and d ∈ [1, D]. (1) can also be re-written more
compactly as follows:

χ =
[
L R

]
(2)

where L =
[
l1 l2 · · · lM

]T ∈ RM×Q and R =
[
r1 r2 · · · rM

]T ∈ RM×D.

In the online phase, the RSS vector at the unknown location u ru =
[
ru,1 ru,2 · · · ru,D

]T

will be measured, and the user’s location can then be predicted by matching ru with the
RSS data in the radio map via machine learning techniques. As such, the quality of the
radio map plays a crucial role in dictating the localization performance. Generally, the
localization performance tends to improve as the density of the RPs increases. Unfortu-
nately, the fingerprint collection process is labor intensive and time consuming. In practice,
various environmental disturbances and interferences could reduce the discernibility of the
fingerprints between RPs, thereby leading to false fingerprint matching. Thus, to ensure
reliable localization, it is imperative to establish an enhanced interpolated radio map that is
robust against the environmental disturbances and interferences.

3.2. Virtual Points Generation Using IDW Interpolation

IDW interpolation is a deterministic spatial interpolation approach that estimates an
unknown value at a location with the aid of some known values from its surrounding with
corresponding weights. More specifically, the RSS values from the d-th AP at the u-th VP
which is denoted by ru,d could be computed based on the RSS of its surrounding N nearest
known RPs via (3) as follows:

ru,d =

N
∑

i=1
wi r̃i,d

N
∑

i=1
wi

(3)

where u denotes the index of the VPs, i refers to the index of the N nearest known RPs, r̃i,d
is the RSS of the d-th AP at i-th nearest known RPs that is chosen from the d-th column of
R, and wi signifies the interpolation weight. Mathematically, wi can be expressed as

wi =
1

d(u,i)
α

(4)

where d(u,i) stands for the Euclidean distance between the u-th VP and the i-th nearest
known RP, while α indicates the power parameter which determines the rate at which the
weight decreases with the increase in distance. As α increases, the weights decrease more
rapidly for distant points. Thus, for an extremely high α, only the immediate surrounding
RPs will influence the interpolation of RSS for the VP. When α = 2, it is commonly known
as the inverse distance squared weighted interpolation.

An assumption made in the IDW interpolation is that the values of points closer to
each other tend to be more similar than those located further away. Hence, the values of
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those points nearer to the interpolation location will generally have more influence on the
predicted value than those further away. As such, the points nearest to the interpolation
location will be assigned with greater weights that diminish as a function of distance.

4. Proposed Methods

Two radio map interpolation schemes are proposed for an enhanced radio map con-
struction. The DimRed interpolation scheme involves two main steps which are dimen-
sionality reduction and VP interpolation while the DimRedClust interpolation scheme
encompasses three main steps which include dimensionality reduction, clustering and VP
interpolation. In other words, the only difference between the two proposed interpolation
schemes is the addition of the clustering process in between. The block diagram for the Dim-
RedClust interpolation scheme is as depicted in Figure 1 below. The DimRed interpolation
scheme also follows a similar flow except for the clustering process being skipped.
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Data preprocessing is first performed to the initial radio map to ensure that there are
no missing values since it is common for some APs to be undetectable at faraway RPs.
After data preprocessing has completed, dimensionality reduction is performed on the
initial high-dimensional fingerprint matrix R using PCA or TSVD in order to reduce the
large number of features present in the radio map to P principal components by removing
redundant information while preserving as much useful information as possible. As a
result, only the key features are extracted and R will be transformed to a low-dimensional
principal component-based fingerprint matrix H ∈ RM×P. By reducing the dimension
of the Wi-Fi fingerprint, apart from reducing the computational cost, the influence of
noise and outliers initially present in R will also be mitigated, which in turn improves the
performance during location prediction.

Next, all the known RPs are partitioned into C clusters based on their eastings and
northings using K-means algorithm, as the known RPs located nearer to each other will tend
to have similar RSS characteristics as compared to known RPs that are located further away.
After grouping the known RPs into clusters, the process is then followed by cluster matching
of the VPs. More explicitly, a cluster whose centroid has the shortest distance to the VP will
be selected as the delegate cluster for that VP. Note that this step is only performed for the
DimRedClust interpolation scheme and not for the DimRed interpolation scheme.

IDW interpolation is carried out for the VPs in each cluster. This implies that the RSS
of the VPs will only be interpolated based on the known RPs located in the same cluster.
This prevents the occurrence of a situation whereby one of the nearest neighbors of the VP
is actually located rather far apart from that VP, and thus considering that nearest neighbor
during interpolation might have resulted in an adverse effect.

Finally, a new radio map is obtained by combining the initial radio map, which
contains the RSS for the known RPs and the interpolated radio map, which contains
the RSS for the VPs. The reason for combining both the initial and interpolated radio
maps to form the new radio map is to increase the density of the RPs as the indoor
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localization performance generally improves when the density of RPs distributed across
the indoor environment increases. This new radio map is then used for the indoor location
prediction of the testing samples via the KNN algorithm and its corresponding performance
is evaluated.

In the following, the working principles of PCA, TSVD, and K-means used in the
proposed interpolation methods will be presented.

4.1. Dimensionality Reduction of Radio Map Using PCA

PCA is a well-known dimensionality reduction method which transforms a large set
of variables into smaller ones while still preserving most of the information. This could
be achieved by extracting only the essential features and creating linearly uncorrelated
variables called principal components. Generally, most of the information within the
initial variables would be placed in the first principal component (to achieve the largest
possible variance), thus allowing for dimensionality reduction by discarding those principal
components with low information. The principal components show the directions of the
data that explain a maximal amount of variance. The larger the variance, the larger the
dispersion of data points along the line, thus the more information it contains.

A covariance matrix B, is a symmetric matrix with both its rows and columns having
the same size as the number of dimensions/variables of the dataset, i.e., the number of APs
D of the radio map χ in the context of indoor positioning. Its entries consist of covariances
associated with all possible pairs of initial variables, while the diagonal denotes the variance
of each initial variable. Note that this covariance matrix must be computed to identify
the correlations between the variables of the dataset. In the context of indoor positioning,
the correlation between two APs of the radio map cov(x, y) can be computed as shown
in (5), where M is the number of RPs/instances in the radio map, xi and yi denote the RSS
from AP x and y at RP i, respectively, while x and y are the sample means of AP x and y,
respectively. If the covariance is positive, this implies that the two variables are correlated,
while a negative covariance suggests that the two variables are inversely correlated.

cov(x, y) =

M
∑

i=1
(xi − x)(yi − y)

M
(5)

From the covariance matrix B, the eigenvectors v and eigenvalues λ are then computed
to determine the principal components. Let the covariance matrix B, eigenvectors v and
eigenvalues λ be a square matrix, a vector and a scalar that satisfies (6):

Bv = λv (6)

The eigenvalues λ of B are the roots of the characteristic equation and can be calculated
as defined in (7) where I is an identity matrix:

det(λI− B) = 0 (7)

Subsequently, for each λ, the basic eigenvectors could be obtained by identifying the
basic solutions to (8):

(λI− B)v = 0 (8)

The eigenvectors of the covariance matrix are the directions of the axes where the
variance is the largest (principal components) while the eigenvalues are the coefficients
which tell about the variance in each principal component. Hence, the principal components
could be ranked according to their significance by ranking the eigenvectors in the order of
their eigenvalues.

By discarding those principal components of lower eigenvalues, the remaining P
principal components will be used to form a matrix called a feature vector F, as shown
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in (9), whose columns consist of the eigenvectors v of the principal components that are
not removed.

F =


v1,1 v1,2 · · · v1,P
v2,1 v2,2 · · · v2,P

...
...

...
...

vD,1 vD,2 · · · vD,P

 (9)

Finally, the data are reoriented from the original axes to those represented by the
principal components via multiplication of the high-dimensional fingerprint matrix R by
the feature vector F and the output of the PCA is a low-dimensional fingerprint matrix H
which can be written as

H =


h1,1 h1,2 · · · h1,P
h2,1 h2,2 · · · h2,P

...
...

...
...

hM,1 hM,2 · · · hM,P

 (10)

where p = [1, 2, · · · , P].
For the proposed DimRed interpolation technique, IDW will then be performed on

the low-dimensional fingerprint matrix H as follows:

ru,p =

N
∑

i=1
wi h̃i,p

N
∑

i=1
wi

(11)

where h̃i,p is the value of the p-th principle component for the i-th nearest known RPs. More
explicitly, the N nearest neighbors for the p-th principle component are selected from the
p-th column of H based on the Euclidean distance.

4.2. Dimensionality Reduction of Radio Map Using TSVD

SVD is a matrix decomposition technique that reduces a matrix into its constituent
elements for a more simplified matrix calculation. In the context of indoor positioning,
it involves the factorization of an M × D high-dimensional fingerprint matrix R into a
product of an M×M unitary matrix U, an M× D rectangular diagonal matrix S, and an
D× D complex unitary matrix VT as shown in (12).

R = USVT (12)

The diagonal of the S matrix contains the singular values of the fingerprint matrix R
which has a form as shown in (13) where σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 are the singular values
of the fingerprint matrix R with rank r arranged in weakly decreasing order. Note that
every S matrix will have a singular value decomposition. Meanwhile, the columns of the
U matrix are the left singular vectors of fingerprint matrix R while the columns of the
V matrix are the right singular vectors of fingerprint matrix R.

S =

σ1
. . .

σr

 (13)

TSVD belongs to one of the types of SVD method for dimensionality reduction, which
works by setting all except the top few largest singular values in the S matrix to zero
and using only the first few columns of U and V . It is often performed on the fingerprint
matrix whereas PCA is performed on the covariance matrix instead. TSVD factorizes the
fingerprint matrix such that the number of columns is equal to the truncation. The digits
after the decimal place are dropped in order to mathematically shorten the value of float
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digits. For a given high-dimensional fingerprint matrix R, the TSVD will produce low-
dimensional fingerprint matrix H with the specified number of columns by retaining only
P features as specified. In comparison with PCA, which is another similar technique, TSVD
works better with sparse data which contains many zero values since it does not centre
the data before computing the SVD. Similar to the DimRed interpolation technique that
utilizes PCA, the interpolated principle component-based fingerprint matrix for DimRed
with TSVD could be obtained by executing Equations (10) and (11).

4.3. Clustering of Reference Points Using K-Means

K-means is a simple yet powerful algorithm popularly used for clustering. In the
context of indoor positioning, it attempts to group M RPs/instances in the radio map
into C clusters based on the similarity in features shared by them. It is a centroid based
algorithm that calculates the distances in order to assign an RP to a cluster and aims to
minimize the sum of squared distances between the RPs in each cluster with their respective
centroid as defined by the objective function J in (14), where xi denotes the coordinates for
one of the M RPs while µj denotes the centroid for one of the C clusters.

J =
C

∑
j=1

M

∑
i=1

∣∣∣∣xi − µj
∣∣∣∣2 (14)

The algorithm involves a few steps which are briefly described as follows:

1. Choose the number of clusters, C;
2. Initialize C points as centroids, µ for each cluster as expressed in (15);

µ = µ1, µ2, . . . µC (15)

3. Assign each of the RP xi to the closest cluster centroid µj with the shortest Euclidean
distance via (16);

arg min
µj∈µ

dist(xi, µj)
2 (16)

4. Re-compute the centroid µj according to the average of the newly formed cluster as
shown in (17) where G denotes the set of RPs assigned to the j-th cluster;

µj =
1
G

G

∑
i=1

xi (17)

5. Repeat Steps 3 and 4 until either one of the termination criteria is met, which could
be either the centroids of the newly formed clusters no longer change, or all the RPs
remain in the same cluster or the maximum number of iterations had reached.

Once the clusters are formed, the principal component based radio map will be
split into C principal component based sub-radio maps ξc ∈ RGc×(Q+P) according to the
grouping of RPs obtained via K-means, where c = [1, 2, · · · , C], Gc denotes the total

number of RPs that are associated with cluster c, and
C
∑

c=1
Gc = M. Since K-means is a hard

clustering scheme, the sub-radio maps created will be mutually exclusive, i.e., each RP only
belongs to one of the clusters. For the proposed DimRedClust technique, cluster matching
will then be performed on the VP and IDW interpolation will be applied on the principal
component based sub-radio map that corresponds to the cluster that the VP belongs to.

5. Results and Analysis

In this section, we perform a comparative performance study between the proposed
schemes and the baseline IDW.
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5.1. Experimental Setup

In this work, the publicly available UJIIndoorLoc dataset collected at University
Jaume I is used to evaluate the performance of the proposed techniques and benchmark
with those of the existing schemes. The dataset was collected across 3 buildings with either
4 or 5 floors, and this covered a total surface area of 108,730 m2. Altogether, 520 wireless
APs (WAPs) were adopted in the three buildings, which made up the 520 attributes of RSS
values among the 529 attributes present in the dataset, alongside some other important
attributes, such as Building ID, Floor ID, Easting, and Northing. A total of 21,049 samples
were captured in the dataset, with 19,937 as training samples while the remaining 1111
as testing samples. The training samples include a total of 933 distinct RPs distributed
across the 3 buildings [22]. Table 1 shows the number of RPs available at each floor of
each building.

Table 1. Number of RPs at each floor of each building.

Building Floor Number of RPs

0

0 54

1 67

2 70

3 68

1

0 76

1 60

2 79

3 50

2

0 67

1 89

2 73

3 113

4 67

Prior to dimensionality reduction and clustering, a data preprocessing step is first
performed to the sparse UJIIndoorLoc dataset. This data sparsity exists due to the obstruc-
tion of certain out-of-range WAPs, as not all the 520 WAPs are detectable at each of the
RPs. In the initial dataset, the default RSS values for undetectable WAPs are represented
as +100 dBm. In general, a smaller RSS value implies a weaker signal, thus representing
the RSS for missing WAPs with a large value such as +100 dBm might create confusion
to the regressor for location prediction. Thus, a common practice is to represent missing
RSS values for the weak APs with a value slightly smaller than the smallest detectable RSS.
Since the weakest RSS present in the dataset is found to be −104 dBm, the suitable value
that should be used to replace the RSS for missing WAPs is chosen to be −110 dBm [23].

For the experimental purposes of the proposed interpolation methods, all the 933 RPs
found in the training samples are treated as known RPs for the interpolation of RSS of
the VPs. At each floor of each building, there are a total of 100 VPs (10 × 10) uniformly
distributed across the area of interest. Figure 2 portrays an example of the distributions of
known RPs and VPs for Building 0 Floor 0.
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Figure 2. Distribution of known RPs and VPs for Building 0 Floor 0.

To evaluate the performance of the interpolated radio map in estimating the user’s
location using machine learning technique, two metrics are used, i.e., RMSE and the
average positioning error a. More explicitly, the RMSE is the standard deviation of the
errors between the predicted values l̂i = [l̂1, l̂2, . . . , ˆlM] given by the regression model
and the actual values li = [l1, l2, . . . , lM] from the dataset, where M is the total number of
RPs/instances in the radio map and l can represent either the easting or the northing. The
smaller the RMSE is, the better the regression model is able to fit the dataset. Mathematically,
the RMSE for the easting and northing of each scenario can be expressed as follows:

RMSE =

√√√√√ M
∑

i=1
(l̂i − li)

2

M
(18)

As for the average positioning error a, it is calculated based on the Euclidean distance
between the predicted coordinates (x̂i, ŷi) = [(x̂1, ŷ1), (x̂2, ŷ2), . . . , ( ˆxM, ˆyM)] and the actual
coordinates (xi, yi) = [(x1, y1), (x2, y2), . . . , (xM, yM)] as given in Equation (19).

a =

M
∑

i=1

√
(x̂i − xi)

2 + (ŷi − yi)
2

M
(19)

5.2. Localization Performance Evaluation

To provide an in-depth analysis, the performance evaluation of the proposed interpola-
tion methods is narrowed down to floor level of each building. Throughout the simulations,
the hyperparameters for PCA and TSVD, K-means and IDW are configured as 100 com-
ponents (p = 100), 8 clusters (c = 8) and 10 nearest neighbors (n = 10), respectively. As
mentioned in Section 3, after dimensionality reduction is performed using PCA or TSVD,
the proposed DimRedClust invokes K-means clustering to group the known RPs at each
floor of each building into several clusters. Afterwards, cluster matching is carried out
to select a delegate cluster for each VP with the shortest distance to its cluster centroid.
Figure 3 illustrates an example of the clusters of known RPs and VPs for Building 0 Floor 2,
Building 1 Floor 0, and Building 2 Floor 0, respectively. The “X” points denote the known
RPs while the “.” points indicate the VPs.
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ing 2 Floor 0.

After the new radio map is established, it is used to train the KNN localization
algorithm with K = 1 while during the online phase, the locations of the 1111 testing
samples are being predicted accordingly. In this simulation environment, it could be
observed that the test points are surrounded by a high density distribution of reference
points in the area for each floor of each building. Thus, K = 1 is adopted in our simulations.
Similar performance trend is still observed even if a larger value of K is chosen.

Table 2 shows the RMSE of the easting and northing along with the average positioning
error for each floor of each building with different radio map interpolation schemes applied.
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Table 2. RMSE of the easting, northing, and positioning error along with the average positioning
error for each floor of each building.

Building Floor RMSE IDW PCA-IDW TSVD-IDW PCA-K-Means-IDW TSVD-K-Means-IDW

0

0

Easting (m) 9.4416 8.6225 8.9315 8.3859 8.2659

Northing (m) 14.7595 13.3795 14.1189 12.8554 12.3858

Positioning Error (m) 17.5210 15.9172 16.7067 15.3488 14.8907

Average Positioning Error (m) 12.8447 11.3212 11.7703 11.1543 10.7624

1

Easting (m) 11.7109 9.6786 10.1641 6.9290 6.9693

Northing (m) 10.5238 9.9266 9.7190 10.7048 10.4493

Positioning Error (m) 15.7447 13.8641 14.0630 12.7516 12.5602

Average Positioning Error (m) 10.6407 9.3495 9.5337 8.6490 8.5688

2

Easting (m) 10.219 9.0521 9.0229 6.5435 6.5338

Northing (m) 10.0285 9.6556 9.5815 6.607 6.4915

Positioning Error (m) 14.3178 13.2352 13.1612 9.2989 9.2103

Average Positioning Error (m) 10.4779 9.3639 9.2744 7.3165 7.2368

3

Easting (m) 11.0204 8.8976 8.7323 8.0133 7.8294

Northing (m) 9.2817 7.5031 7.4354 7.6515 7.5851

Positioning Error (m) 14.4083 11.6389 11.4690 11.0796 10.9011

Average Positioning Error (m) 10.3945 8.3853 8.1487 7.9698 7.7332

1

0

Easting (m) 19.1633 18.8355 18.8355 16.5722 16.5722

Northing (m) 20.6161 20.0613 20.0613 23.3360 23.3360

Positioning Error (m) 28.1470 27.5178 27.5178 28.6218 28.6218

Average Positioning Error (m) 22.8716 21.3027 21.3027 20.6183 20.6183

1

Easting (m) 15.756 16.4022 16.5623 14.5905 14.2651

Northing (m) 18.0366 15.3201 15.1860 14.4555 14.2278

Positioning Error (m) 23.9493 22.4441 22.4705 20.5388 20.1475

Average Positioning Error (m) 18.2782 17.6605 17.6604 16.0125 15.6671

2

Easting (m) 24.5545 24.7884 24.8481 24.4649 24.5011

Northing (m) 13.0135 14.4692 14.4329 13.8393 13.7363

Positioning Error (m) 27.7898 28.7023 28.7356 28.1080 28.0890

Average Positioning Error (m) 19.1628 20.0837 20.2200 19.6864 19.6534

3

Easting (m) 15.5852 15.7281 15.8921 12.8963 12.8963

Northing (m) 17.0811 17.4297 17.6340 14.7195 14.7195

Positioning Error (m) 23.1228 23.4770 23.7385 19.5698 19.5698

Average Positioning Error (m) 15.8137 16.7522 17.0843 13.5668 13.5668

2

0

Easting (m) 17.9662 16.5076 16.5076 13.3441 13.3441

Northing (m) 20.2671 19.7827 19.7827 17.4998 17.4998

Positioning Error (m) 27.0839 25.7654 25.7654 22.0070 22.0070

Average Positioning Error (m) 17.2819 15.7411 15.7411 12.7154 12.7154

1

Easting (m) 13.2959 13.1762 12.9223 11.9471 11.9486

Northing (m) 12.071 11.7508 11.5148 12.9875 13.0040

Positioning Error (m) 17.9580 17.6548 17.3083 17.6468 17.6599

Average Positioning Error (m) 14.6222 14.2529 13.7925 13.6007 13.6349

2

Easting (m) 15.7205 14.0292 13.9836 12.0564 12.1975

Northing (m) 19.9843 20.3055 19.8579 17.7979 17.6906

Positioning Error (m) 25.4265 24.6806 24.2874 21.4970 21.4881

Average Positioning Error (m) 20.6346 19.9707 19.6288 16.7889 16.7773

3

Easting (m) 10.7117 10.9263 10.9263 10.4662 10.7010

Northing (m) 13.7748 13.7032 13.7032 11.7456 11.7663

Positioning Error (m) 17.4495 17.5260 17.5260 15.7321 15.9046

Average Positioning Error (m) 14.4646 14.7802 14.7802 13.1424 13.2958
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Table 2. Cont.

Building Floor RMSE IDW PCA-IDW TSVD-IDW PCA-K-Means-IDW TSVD-K-Means-IDW

4

Easting (m) 19.4505 18.2221 18.4556 17.2034 17.4443

Northing (m) 17.6151 19.0586 19.0959 15.7172 16.0164

Positioning Error (m) 26.2415 26.3681 26.5568 23.3021 23.6818

Average Positioning Error (m) 22.5599 22.1277 22.5415 19.1979 19.5443

Overall

Easting (m) 13.7705 12.9406 12.9779 11.5283 11.4887

Northing (m) 12.9225 12.6407 12.6203 11.4905 11.3666

Positioning Error (m) 18.8843 18.0900 18.1024 16.2768 16.1614

Average Positioning Error (m) 13.5163 12.7502 12.7502 11.4205 11.3180

From Table 2, it is observed that for most of the scenarios, PCA-IDW and TSVD-IDW
under the proposed DimRed interpolation scheme both result in a lower average position-
ing error than the baseline IDW. Most importantly, for almost all of the scenarios considered,
PCA-K-means-IDW and TSVD-K-means-IDW under the proposed DimRedClust interpola-
tion scheme resulted in improved indoor localization performance compared to baseline
IDW. Similar improvement trends are also observed for the RMSE of the easting and nor-
thing when comparing between the proposed DimRed and DimRedClust interpolation
schemes with the baseline IDW. For PCA-K-means-IDW, the improvement in average
positioning error ranges approximately from −2.73% to 30.17%, while for TSVD-K-means-
IDW, the improvement in average positioning error ranges from approximately −2.56%
to 30.93% for the scenarios investigated. This could be considered even more significant
than that of PCA-IDW and TSVD-IDW where the performance gain of the average posi-
tioning error ranges from −5.93% to 19.33% and −8.03% to 21.61%, respectively. Apart
from that, compared to the baseline IDW, the proposed PCA-K-means-IDW, TSVD-K-
means-IDW, PCA-IDW, and TSVD-IDW techniques resulted in a performance gain in terms
of average positioning error of up to 15.51%, 16.26%, 5.67%, and 5.67%, respectively, as
an overall. Thus, this observation implies that clustering could further enhance indoor
localization performance.

Upon comparing the PCA and TSVD based dimensionality reduction techniques, it
is observed that the performance of both techniques for the scenarios investigated are
very similar. More specifically, the TSVD method does not result in a more significant
improvement in the indoor localization performance over PCA method since TSVD is
originally known to work well when the dataset is sparse. However, in this work, since the
missing RSS values in the dataset are all replaced with a RSS value that is slightly lower
than the weakest RSS value detected from the APs, the dataset is no longer considered
sparse. Hence, TSVD does not exhibit much performance advantage here.

Meanwhile, from the boxplots shown in Figure 4 below, a comparison could be made
between the 75th percentiles of the baseline IDW interpolation with those of PCA-IDW
and PCA-K-means-IDW for Building 0 Floor 2, Building 1 Floor 0, and Building 2 Floor 0,
respectively. Based on the 75th percentiles for the three scenarios presented, it is observed
that the PCA-K-means-IDW technique is the best performer among all the other techniques,
followed by PCA-IDW and baseline IDW with the worst performance in terms of its
highest 75th percentile. For Building 0 Floor 2, the 75th percentile decreases from 14.3882 m
for IDW to 12.7461 m for PCA-IDW and 11.0563 m for PCA-K-means-IDW; for Building
1 Floor 0, the 75th percentile decreases from 31.6506 m for IDW to 29.7646 m for PCA-IDW
and 27.9245 m for PCA-K-means-IDW, while for Building 2 Floor 0, the 75th percentile
decreases from 24.1827 m for IDW to 18.5572 m for PCA-IDW and 13.7196 m for PCA-K-
means-IDW, respectively.
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The IDW interpolator (initially with a particular number of nearest neighbors fixed)
will adjust its number of nearest neighbors according to the number of instances available in
each cluster during interpolation. This avoids taking faraway points that belong to another
cluster into consideration when interpolating, although that faraway point is also consid-
ered as one of the nearest neighbors so as to eliminate its adverse influence in the process
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of interpolating for a VP. In other words, the selection of known RPs when interpolating for
a VP might now be different due to this reason when comparing the interpolation schemes
with and without clustering. Thus, this causes the proposed DimRedClust interpolation
scheme to outperform both the proposed DimRed interpolation scheme and the baseline
IDW interpolation.

In this work, the baseline scheme considered is IDW interpolation and all the proposed
techniques (DimRed and DimRedClust) also adopt the same interpolation method as that
of the baseline scheme. However, apart from the IDW interpolation, the proposed DimRed
technique also performs dimensionality reduction prior to the interpolation while the
proposed DimRedClust employs both the dimensionality reduction and clustering before
interpolating the radio map. By extracting the essential features from the RSS data via
dimensionality reduction, both the proposed DimRed and DimRedClust could effectively
minimize the influence of noise and outliers that initially present in the high-dimensional
fingerprint matrix while reducing the computational cost. On the other hand, clustering
could further improve the performance of DimRedClust by confining the selection of
nearest neighbors to only the known RPs located in the same cluster. For these reasons,
regardless of the number of nearest neighbors used for KNN localization, distribution of
RSS in space, or known reference points, the proposed techniques could still outperform
the baseline counterpart due to the performance advantages resulting from dimensionality
reduction and clustering.

5.3. Effects of Hyperparameters

This subsection investigates the effects of the 3 hyperparameters, namely the number
of components p, number of clusters c and number of nearest neighbors n of IDW on the
performance of the indoor localization in terms of the average positioning error for B0F2
scenario. The line plots for PCA-K-means-IDW technique are as shown in Figures 5–7 while
the line plots for TSVD-K-means-IDW technique are as illustrated in Figures 8–10 below.
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Figure 5. Average positioning error of PCA-K-Means-IDW at building 0 floor 2 for a different number
of principal components and a different number of clusters with 10 nearest neighbors for IDW during
the testing phase.
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Figure 6. Average positioning error of PCA-K-Means-IDW at building 0 floor 2 for a different number
of clusters and a different number of nearest neighbors for IDW with 100 principal components
during the testing phase.
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Figure 7. Average positioning error of PCA-K-Means-IDW at building 0 floor 2 for a different number
of nearest neighbors for IDW and a different number of principal components with 8 clusters during
the testing phase.
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Figure 8. Average positioning error of TSVD-K-Means-IDW at building 0 floor 2 for a different
number of principal components and a different number of clusters with 10 nearest neighbors for
IDW during the testing phase.
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Figure 9. Average positioning error of TSVD-K-Means-IDW at building 0 floor 2 for a different number
of clusters and a different number of nearest neighbors for IDW with 100 principal components
during the testing phase.
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Figure 10. Average positioning error of TSVD-K-Means-IDW at building 0 floor 2 for a different
number of nearest neighbors for IDW and different number of principal components with 8 clusters
during the testing phase.

From the line plot shown in Figure 5, it is observed that as the number of principal
components increases, the average positioning error decreases and eventually converges
as the number of the principal components continues to increase beyond 50. In the real-
world scenario which involves a large indoor environment, a large number of APs would
generally be deployed to provide ubiquitous coverage. However, most of the time, not
all APs are useful and such redundancy of APs might result in biased estimation during
the RSS interpolation. This in turn degrades the quality of the interpolated radio map
and hence, the accuracy of indoor localization. In view of that, by extracting only the
informative features via dimensionality reduction prior to interpolation, the number of
detected APs could be reduced by multiple folds. Ultimately, the quality of the interpolated
radio map would be enhanced, and the average positioning error would also improve.

Meanwhile, from Figure 6, as the number of clusters increases, the average positioning
error decreases until it reaches an optimum value before saturating. This implies that a
slightly higher number of clusters helps to improve the indoor localization performance.
Without clustering, inappropriate known RPs that are located far from the VP might
be selected as the nearest neighbors and also contribute to the RSS interpolation. As a
result, RSS fluctuation due to the inclusion of those inappropriate nearest neighbors might
adversely affect the RSS interpolation of the VPs. Hence, clustering is essential to confine
the selection of nearest neighbors to only the known RPs located in the same cluster. Note
that when the number of nearest neighbors is small, i.e., n = 3, the average positioning
error exhibits a different trend as compared to those with a higher number of nearest
neighbors. This is because clustering does not exhibit much advantage in this case since
the probability for faraway known RPs located in different cluster to be selected as one of
the nearest neighbors for the RSS interpolation is extremely low with a smaller number of
nearest neighbors being selected. Thus, regardless of the number of clusters, the average
positioning error remains almost constant throughout.

From Figure 7, it can be observed that the average positioning error initially fluctuates
when the number of nearest neighbors is low but possesses a decreasing trend afterwards as
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the number of nearest neighbors continues to increase. This suggests that a higher number
of nearest neighbors could be used for this scenario. With a moderately higher number of
nearest neighbors contributing to the RSS interpolation, the effect of outliers on the RSS
interpolation could be suppressed and this will thus result in a less biased RSS estimation.
With the enhancement in the quality of the interpolated radio map, the performance of the
indoor localization in terms of its average positioning error will also improve.

Comparing Figures 5–7 with Figures 8–10 respectively, it is noticed that the line
plots produced by the TSVD-K-means-IDW technique possess similar trend to that of the
PCA-K-means-IDW technique since both techniques resulted in similar indoor localization
performance in terms of their average positioning error.

6. Conclusions

In this paper, two interpolation methods, namely DimRed and DimRedClust, are pro-
posed for the construction of an enhanced radio map that is robust against environmental
noise and RSS fluctuations. In a large indoor environment where not all of the detected
APs are useful for indoor localization, dimensionality reduction is employed in both pro-
posed interpolation schemes to extract key features with maximal information for better
feature representation besides suppressing the impact of outliers and noise. Apart from
that, the proposed DimRed and DimRedClust interpolation schemes are also beneficial in
large indoor environment since dimensionality reduction helps to save storage in resource
constrained mobile devices used for indoor positioning.

Additionally, in the proposed DimRedClust interpolation scheme, the known RPs are
further grouped into several clusters such that the RPs closer to each other will possess
similar RSS characteristics. The RSS for the VPs in each cluster are then interpolated
based on the nearest known RPs located in the same cluster to prevent the inclusion of
nearest known RPs located faraway which might introduce RSS fluctuations into the RSS
interpolation of the VPs. Based on the new radio map generated, indoor localization is
performed via the KNN localization algorithm.

An extensive and in-depth analysis is carried out using a real-world multi-building
and multi-floor dataset. Our results demonstrate that the proposed DimRedClust inter-
polation scheme outperforms the other proposed DimRed interpolation scheme, while
both proposed schemes outperform the baseline IDW interpolation by up to 30.17% for
PCA-K-means-IDW, 30.93% for TSVD-K-means-IDW, 19.33% for PCA-IDW and 21.61%
for TSVD-IDW, respectively. Meanwhile, from the investigation of the effects of the hy-
perparameters, it is confirmed that a moderately higher number of principal components,
clusters, and nearest neighbors of IDW could help to improve the indoor localization
performance in terms of average positioning error. With numerous merits shown, it could
be concluded that the proposed DimRed and DimRedClust interpolation schemes are
indeed practical and promising for deployment in real-world scenarios to cover large scale
indoor positioning.
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