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Abstract: Versatile Video Coding (VVC) has advantages over High Efficiency Video Coding (HEVC);
it can save nearly half of the bit rate and significantly improve the compression efficiency, but VVC’s
coding complexity is extremely high. Therefore, VVC encoders are difficult to implement in video
devices with different computing capabilities and power constraints. In this paper, we apply texture
information and propose a VVC intra complexity control algorithm. The algorithm assigns a different
encoding time to each CU based on the corresponding texture entropy. Besides, the complexity
reduction strategy at the CU level is designed to balance the complexity control while taking rate-
distortion performance into consideration. Experiments in our paper show that the coding complexity
can be accurately controlled from 90% to 70% with a slight loss of RD performance.

Keywords: VVC; complexity allocation; complexity control; intra coding; coding unit

1. Introduction

In the last decades, the amount of video transmitted through broadcast channels,
media platforms, and virtual networks has grown significantly. Demand for HD and ultra
HD video, 360 omnidirectional video, and high fps video has increased. The quantity of
information to be transmitted and the bandwidth requirements are also greatly increased,
which places a huge burden on the communication transmission network. To settle the
transmission pressure, the Joint Video Experts Group introduced quantities of new tech-
nologies into the coding framework and formulated the Versatile Video Coding (VVC)
standard. With the same quality of experience, the VVC encoder has higher compression
efficiency in comparison to the current High Efficiency Video Coding (HEVC) standard.
Meanwhile, each mobile terminal has different computing capabilities and different video
compression speeds. Therefore, different complexity control algorithms need to be specified
for different terminals.

The fast coding method is the foundation for the complexity control algorithm. There-
fore, to lessen the coding complexity of VVC, Zhang et al. [1] estimate CU’s texture direction
information with the gray level co-occurrence matrix, and terminated the horizontal or
vertical direction partition. Liu et al. [2] utilized CU’s cross-block disparity to skip the
not optimal partitions. In [3], a Support Vector Machine (SVM) primarily based method
is proposed.The approach makes use of texture information to perform early termination.
Saldanha et al. [4] skipped partition patterns that are unlikely to be selected as the best
partition type by an optical gradient boosting machine classifier. Kulupan et al. [5] accel-
erated the CU partition decision by selecting appropriate features to better specialize the
prediction of block features. Wang et al. [6] terminated the iterations early with a joint
classification decision tree. A random forest scheme was also introduced to reduce partition
redundancy in [7]. Fu et al. [8] considered that horizontal or vertical partitions will bring a
lot of coding complexity and used a Bayesian-based classifier to skip redundant partitions.
Yang et al. [9] introduced a fast decision framework for QTMT structure selection and
intra-mode search. Meanwhile, heuristic algorithms are able to prune the Quad Tree
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with a nested Multi-type Tree (QTMT) structure. Lei et al. [10] proposed a sum of abso-
lute transformed differences to determine possible block sizes. Chen et al. [11] addressed
the rectangular partition issue with variance and gradient features. Cui et al. [12] pre-
determined the likelihood of directional partitions. However, the above methods that use
artificial features cannot describe the segmentation rules well, so the coding loss becomes
large as the complexity decreases. He et al. [13] divided CUs into three categories, namely
simple ones, normal ones, and complex ones. A random forest classifier will be introduced
to simple and complex CUs to reduce unnecessary partition recursion. Normal CUs will be
predicted whether they will continue to be partitioned.

For neural network based methods, the main problem is the flexibility of the size of the
CU as input. Wu et al. [14] used a hierarchical grid fully convolutional network framework
combined with parallel processing and a hierarchy grid map to achieve a partition structure.
Pan et al. [15] introduced a multi-information fusion convolutional neural network (CNN)
model into the coding fast algorithm, which is used to prematurely terminate merge mode
decisions. A multi-stage dropout CNN model was proposed by Li et al. [16] to determine
CU partitions to conform to the multi-stage flexible QTMT structure. Then, an adaptive loss
function is designed to train a multi-stage dropout CNN model, combining the uncertain
number of segmentation patterns and the objective of minimizing Rate-Distortion (RD)
cost. Lastly, a balance between complexity and RD performance is obtained by a multi-
threshold scheme. Park et al. [17] introduced a lightweight neural network to reduce the
computational complexity caused by the ternary tree partition in VVC. Zhang et al. [18]
proposed DenseNet-based probability prediction. The method obtained a probability
for each QTMT partition and for skip partitions by comparing the probability with the
threshold. Tech et al. [19] proposed a CNN algorithm for 32 × 32 CU blocks that minimizes
the rate-distortion function as the objective function. Jin et al. [20] found that depth range
and coding complexity are strongly correlated. The method reduced the depth range of
each 32 × 32 CU to terminate the Rate-Distortion Optimization (RDO). Wang et al. [21]
extended depth range prediction to 64 × 64 CU for inter coding.

There have been some complexity control algorithms for video coding. Most of
the research is on HEVC and there is little on VVC. To control the complexity of HEVC,
Huang et al. [22] designed a variable accuracy CU decision model, which can control the
coding complexity by changing the model’s accuracy. Cai et al. [23] focused on achieving a
constant objective reconstruction quality during video encoding, by modeling bitrate and
distortion as functions of video constituents and control features to achieve a certain rate-
distortion performance. Li et al. [24] found that most computations can be pruned. Then,
an adaptive pruning scheme is devised to apply well-suited weight parameter retention
rates to each level. Finally, complexity control is accomplished with several network mod-
els generated by different retention rates. Huang et al. [25] proposed a heuristic directed
framework where the HEVC encoder can be adapted to the underlying acceleration algo-
rithm. In this framework, CU and PU partitions are accelerated by boundary-consideration
CNN and Naive Bayes, respectively. Deng et al. [26] combined the subjective experience
with complexity control. This research not only discussed how the CU partition depth
range relates to subjective distortion, but also additionally managed the coding complexity
via restricting the range of CU partition depth. Jimenez-Moreno et al. [27] applied the
parameter adjustment to the complexity management method. The research studied the
relationship between the CU partition threshold and RDO iteration complexity and used
a feedback mechanism to adjust the model threshold. Zhang et al. [28] estimated and
controlled the complexity of CTU-level, taking advantage of the flexibility of HEVC. To
control the complexity for VVC, Huang et al. [29] proposed a Time-PlanarCost model for
CTU-level encoding time estimation and control.

The VVC fast coding method and HEVC complexity control algorithms need to be
redesigned for VVC complexity control. The method in [29] controls the maximum depth
of 64 × 64 without deciding each sub-CU’s partition. For more accurate control of CU-level
partitions and coding, this paper proposes a complexity control algorithm that assigns



Electronics 2022, 11, 2572 3 of 10

different fast algorithms to each CU according to the texture information entropy. Our
experimental results demonstrate that the coding performance is acceptable and the coding
complexity can be effectively controlled by the proposed algorithm.

2. Methods
2.1. Algorithm Framework

Figure 1 illustrates the whole process of our algorithm. The algorithm mainly consists
of two parts—the training algorithm and the prediction algorithm. If the current frame
is used for model training and data collection, the proposed method performs normal
encoding, collects SVM samples, and trains SVM models. The trained SVM CU partition
models will be introduced to predict the partition direction of CUs in subsequent frames.
If the current frame is a prediction frame, the method will predict the coding complexity
of the current frame and use the texture information entropy at the CU-level to assign the
coding complexity to each CU. Finally, the assigned coding complexity dictates different
fast partitioning strategies for each CU.

Figure 1. Flow chart of complexity control algorithm based on texture information entropy.

2.2. Frame-Level Complexity Estimation Algorithm

This paper aims to realize the video coding complexity control on the VVC platform.
In all configured encoding processes, the encoding time of a specific frame cannot be accu-
rately obtained in advance. In order to explore the relationship between the computational
complexity of each frame, this paper selects MarketPlace, BasketballDrill, and Basket-
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ballPass coded by the VVC test platform 3.0 (VVC Test Model, VTM) [30] in full intra
configuration. The encoding time of each frame is counted when QP is 22, 27, 32, and 37.
Table 1 shows the time taken for each sequence to encode frames 0 to 2, 9, 19, and 29. It
indicates that non-adjacent frames have different computational complexities. For example,
the coding time of the 9th frame and the 19th frame is quite different, so different complex-
ity allocation strategies need to be adopted for different frames.. Since the 0th to 2nd frames
have the characteristics of temporal correlation between adjacent frames, the difference in
coding time is not obvious. Taking advantage of this feature, the proposed method sets
10 frames as a cycle and estimates the encoding time Tori of the entire cycle through the
encoding time of the first frame of each cycle. The expression is as follows:

Tori = Tn × 10 i f n%10 = 0, (1)

where Tn represents the actual encoding time of the nth frame.
The target encoding time of other frames in the cycle will be obtained from the

remaining target time and the number of remaining frames to be encoded, namely:

Tj =
β · Tori − Tencode

10− gcoded
, (2)

where Tj represents the target encoding time of jth frame in a cycle, β represents the target
complexity rate, β · Tori represents the target encoding time of the entire sequence, Tencoded
represents the consumed encoding time, and gcoded represents the number of completed
encoded frames.

Table 1. Statistics of the encoding time of some frames (sec).

Sequence QP POC
0 1 2 9 19 29

MarketPlace

22 410.27 407.26 402.19 417.11 371.31 400.38
27 214.69 220.28 216.61 237.00 185.49 202.13
32 121.40 124.78 124.17 148.20 102.41 111.67
37 57.71 59.42 57.16 66.28 39.94 52.50

BasketballDrill

22 78.11 78.98 78.27 77.99 80.65 78.88
27 59.59 61.27 60.23 59.03 62.05 64.17
32 41.85 42.09 43.53 43.98 43.30 45.78
37 23.92 22.79 24.30 23.14 24.22 24.10

BasketballPass

22 24.25 23.54 23.92 18.94 20.89 23.32
27 17.99 18.18 18.14 13.40 15.96 17.23
32 12.62 12.46 12.45 9.43 11.55 13.88
37 7.82 7.38 7.80 5.65 6.77 9.51

The proposed method uses a frame-level complexity allocation strategy to retain good
RD performance and more exact implementation complexity control. Normal encoding is
carried out in time to prevent further deterioration of RD performance if the total of the
actual time savings of the encoded frames exceeds the intended time savings of the entire
sequence. Low complexity encoding will be used when the total of the actual time savings
of the encoded frames is less than the desired time savings of the full sequence.

In VVC, there are six partition modes, those are QuadTree (QT) partition, Vertical
Binary Tree (VB) partition, Horizontal Binary Tree (HB) partition, Vertical Ternary Tree
(VT) partition, Horizontal Ternary Tree (HT) partition, and Non-Partitioning (NP). Multi-
Type Tree (MT) Partitions refer to HB, VB, HT, and VT. One of the key components that
contribute to VVC’s increased compression effectiveness is its flexible partitioning structure.
Each frame is split into numerous CTUs with a measurement of 128 × 128 in VVC coding.
The CTUs are firstly divided by QT and then divided by QTMT at each QT leaf node. The
RDO search is a top-down brute force check to ascertain the ideal coding depth of CUs in
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each CTU. Therefore, redundant RDO searches need to be eliminated while maintaining
optimal RD performance.

2.3. Frame-Level Complexity Control Algorithm

However, if only the complexity of the assignment is known, it is still impossible
to encode each sequence accurately at the expected complexity. This paper proposes a
64 × 64 CU complexity control algorithm. We efficiently allocate the frame-level complexity
to each CU while avoiding the unnecessary depth of the RDO process in the CU. This paper
selects five sequences of different texture complexity and different resolutions and counts
the proportion of each partition mode of 32 × 32 CUs under different QPs. Analyzing the
data in Table 2, we can see that the proportion of non-partition modes also increases as the
image texture becomes flatter with increasing QP. When the QP is the same, the sequences
with relatively flat textures such as Tango2 have a better-undivided tendency than those of
sequences with complex textures such as BasketballPass. It indicates that homogeneous
CUs are more likely to be undivided and regions with richer textures have greater division
depths. Therefore, predicting the QTMT partition depth enables the complexity to be
effectively controlled. In addition, the proportion of NP is much larger than that of
other partitions, indicating that selecting some of the division modes in advance can
also effectively control the complexity.

Table 2. CU division result distribution (%).

Sequence QP NP QT HB VB HT VT

Tango2

22 57.18 2.21 22.59 12.71 2.62 2.69
27 71.39 0.94 14.89 9.73 1.40 1.64
32 76.64 0.66 12.29 7.94 1.16 1.31
37 81.26 0.49 9.88 6.50 0.86 1.01

CatRobot

22 53.73 7.90 19.18 12.41 2.65 4.13
27 58.49 5.60 17.32 12.43 2.36 3.80
32 61.43 3.47 16.71 12.57 2.28 3.54
37 65.02 1.62 15.68 12.43 1.98 3.27

MarketPlace

22 54.01 4.69 24.58 10.72 3.72 2.29
27 58.49 3.30 23.49 8.76 4.14 1.81
32 62.78 2.30 21.66 8.13 3.60 1.53
37 68.43 1.52 18.82 7.10 2.93 1.20

BasketballDrill

22 56.67 29.55 5.93 3.22 2.52 2.12
27 48.95 20.08 14.15 8.32 4.45 4.05
32 49.90 10.72 20.20 11.30 4.00 3.87
37 56.27 6.31 19.69 11.36 3.44 2.93

BasketballPass

22 44.41 14.45 21.04 8.27 7.48 4.34
27 44.69 12.57 22.47 8.89 6.82 4.56
32 47.19 10.69 23.02 8.57 6.43 4.10
37 50.02 7.33 22.40 10.11 5.86 4.29

Information entropy can be used to measure the orderliness of the system. In image
processing, it can measure the complexity of regions. The entropy corresponding to the
image increases with the complexity of the image texture. Conversely, a simple image has
less information and it has less entropy [31]. Therefore, this paper uses the texture entropy
of the ith CU (ω(k,i)) in kth frame as the complexity weight, calculated by:

ω(k,i) = −
w′

∑
i=1

h′

∑
j=1

d(i, j) log(d(i, j)), (3)

where the width and height of the corresponding CU are denoted as w′ and h′, and the
probability distribution of the pixel value at (i, j) is denoted by d(i, j).
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Then, the estimated coding time of the ith CU of the kth frame is T(k,i) , namely:

T(k,i) = Tk ×
ω(k,i)

∑ ω(k,m)
, (4)

where ∑ ω(k,m) is the sum of all uncoded 64 × 64 CU complexity assignment weights in the
kth frame. Then, the proposed method obtains the control threshold of ith 64 × 64 in the
kth frame (ϕ(k,i)), by:

ϕ(k,i) = 10m · T(k,i)/Tori, (5)

where m is the number of all 64 × 64 CUs in the kth frame.
In our algorithm, the partition direction of the CU is predicted by the SVM model.

The Haar wavelet transform coefficients, texture entropy, and image energy are intro-
duced [32]. There, the Haar wavelet transform coefficients can represent texture direction
information. The image energy (ENG) can measure the uniformity of the pixel. The ENG is
expressed as:

ENG =
w′

∑
i=1

h′

∑
j=1

d(i, j)2. (6)

Besides, the SVM prediction algorithm uses online training. The training cycle is
10 frames. The training frame is placed on the first frame, and prediction frames are placed
on the rest frames in one cycle. To effectively control encoding performance and time,
the minimum number of partitions should be kept while preserving the optimal mode as
much as possible. In this paper, statistical experiments are carried out on the performance
of each fast SVM model. The training size and prediction size of CU are set to 64 × 64,
32 × 32, 32 × 16, 16 × 32, 16 × 16, 16 × 8, 8 × 16 and 8 × 8 pixels. However, in the actual
test process, if the prediction model for 64 × 64 CU is introduced, the coding performance
will decrease and the bitrate will increase a lot. The time spent training the 8 × 8 CU model
exceeds the time it can save, so the six SVM models are finally retained. In this paper,
the classifiers of six sizes are defined as S32×32, S16×16, S32×16, S16×32, S8×16, and S16×8.

In this paper, SVM models of different CU sizes are combined while the encod-
ing performance of different combinations is tested and compared. The time saving
rate is used to measure the complexity reduction performance calculated by the ratio of
the encoding time obtained using the pattern to the encoding time of the original plat-
form. Finally, four classifier combinations are retained named Patterns 1, 2, 3, and 4.
Specifically, Patterns 1 to 4 are {S32×16, S16×32}, {S32×32, S8×16, S16×8}, {S32×32, S16×16},
and {S32×32, S32×16, S16×32, S16×16, S8×16, S16×8}, respectively. In Figure 2, the time saving
ratio of four patterns is shown in turn from left to right. Each pattern is tested with three
sequences. The three bars are MarketPlace in blue, BasketballDrill in red, and Basketball-
Pass in green. The classifiers with the best time saving ratio performance are the two
classifiers for rectangular CUs, S32×32 and S16×16, which are better than the classifiers for
non-rectangular CUs. S32×32 and S16×16 can control encoding time between 65% and 75%.
Therefore, this combination is used when ϕ(k,i) is ∈ [0.65, 0.75). Combinations of non-
rectangular CU classifiers will become applicable when the desired control rate decreases.
During testing, the performance of classifiers for large-size CUs is better than that for
small-size CUs, such as the combination of S32×16 and S16×32, which can save up more
encoding time than the combination of S8×16 and S16×8. The time saving ratio of S32×16 and
S16×32 is nearly 20% while that of S16×8 and S8×16 is relatively small. Therefore, Pattern
2 is used when ϕ(k,i) is ∈ [0.85, ∞). For the pattern with ϕ(k,i) ∈ [0.75, 0.85), during the
algorithm design phase, two classifier combinations are obtained by compromising the
above two patterns, namely {S32×32, S8×16, S16×8} and {S16×16, S32×16, S16×32}. After test-
ing, {S32×32, S8×16, S16×8} is set as Pattern 3 because it can achieve a 20% to 30% time
saving ratio rather than 25% to 30% with the other combination, which is more in line
with the expected control rate. When the six classifiers are fully on, this represents the
time-saving boundary of our algorithm. Furthermore, the time saving ratio can reach 50%.
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Therefore, using all classifiers is set as Pattern 4 with ϕ(k,i) ∈ [0, 0.65]. Finally, the overall
mapping relationship between ϕ(k,i) and Patterns is listed in Table 3.

Figure 2. Classifier performance.

Table 3. Fast CU partition method.

ϕ(k,i) Pattern

[0.85, ∞) S32×16, S16×32
[0.75, 0.85) S32×32, S8×16, S16×8
[0.65, 0.75) S32×32, S16×16
[0, 0.65) S32×32, S32×16, S16×32, S16×16, S8×16, S16×8

3. Results

The method is practiced on the VVC test platform V TM3.0, using the all intra con-
figuration. The test platform is 64G memory, Intel Core i9-10900XCPU 3.70 GHz with a
64-bit operating system. Bjntegaard Delta Bitrate (BDBR) [33] is used to evaluate the RD
performance. TS is used to measure the actual time saving, calculated by:

TS =
TOriginal − TProposed

TOriginal
× 100%, (7)

where TOriginal denotes the encoding time of the original VVC method, and TProposed repre-
sents the actual encoding time of the proposed algorithm after setting the control precision.
The control accuracy of the proposed algorithm is measured by the mean control error
(MCE):

MCE =
1
4

4

∑
i=1

∣∣TSQPi − (1− β)
∣∣, (8)

where β represents the setting coding time ratio, and TSQPi is the TS of the test sequence
under ith QP. The QP set is {22, 27, 32, 37}.

Test and analysis are carried out for the cases where β is 90%, 80%, 70%, and 60%
respectively. Besides, the performance comparison with the state-of-the-art VVC intra
complexity control method is performed.

Table 4 lists the complexity control performance of our method and the comparison
method under different target complexities, in which the experiment result of [29] is marked
with “*”. Experiments show that the MCE of this method is small, which indicates that
the time savings achieved at different QPs are not significantly different from each other.
The average TS is close to β, and even slightly exceeds it. This shows that our complexity
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control method has a more accurate and stable performance, is reasonable in different
situations, and can adapt to reserving a small part of the complexity to cope with the
sudden computing power demand in some mobile terminals. Therefore, the complexity
control method of ours can meet the different computational capabilities.

Table 4. Comparison of coding performance under different target complexity (%). (*) method of [29].

Sequence (Class) β = 90% β = 80% β = 70%
∆BR/TS ∆BR/TS ∆BR/TS

Tango2 (A1) 0.37/13.83 0.79/20.97 0.84/29.09
FoodMarket4 (A1) 0.23/3.78 0.60/9.58 0.64/13.95

Campfire (A1) 0.31/10.86 0.55/23.22 0.63/31.59
CatRobot (A1) 0.31/10.85 0.83/21.50 1.04/30.24

DaylightRoad2 (A2) 0.53/10.84 0.97/26.55 1.16/35.95
ParkRunning3 (A2) 0.61/14.01 0.38/17.94 0.49/25.20

MarketPlace (B) 0.20/11.15 0.56/19.47 0.66/31.39
RitualDance (B) 0.73/11.11 1.23 /24.62 1.46/36.62

Cactus (B) 0.34/10.63 0.69 /26.05 0.88/35.64
BasketballDrive (B) 0.40/14.68 0.80 /26.96 0.96/34.98

BQTerrace (B) 0.18/7.79 0.72 /27.78 0.85/37.57
BasketballDrill (C) 0.37/8.14 1.22 /23.18 1.64/38.26

BQMall (C) 0.32/9.63 0.90 /26.00 1.01/38.09
PartyScene (C) −0.01/4.77 0.46 /28.36 0.48/39.22

RaceHorsesC (C) 0.27/9.04 0.66 /27.43 0.77/37.09
BasketballPass (D) 0.50/10.60 1.09 /19.27 1.07/33.88

BQSquare (D) 0.00/13.42 0.45/ 18.86 0.52/35.81
Blowing Bubbles (D) 0.23/7.55 0.74 /26.32 0.75/37.47

RaceHorsesD (D) 0.15/7.64 0.66 /25.35 0.64/35.82
Average 0.32/10.01 0.75/23.13 0.87/33.57

MCE 2.30 4.69 5.86
Average * 0.23/9.96 0.44/17.72 0.66/25.55

MCE * 2.67 2.27 2.13

It can be observed that, at 90% of the expected complexity, the TS of different sequences
is between 3.78% and 14.68%, with an average of 10.01%, and an MCE of 2.30. When the
expected complexity is set to 80%, the TS of different sequences ranges from 9.58% to
22.14%, the average is 23.13%, and the MCE is 4.69. When the expected complexity is
set to 70%, the TS of different sequences ranges from 13.95% to 38.09%, the average is
33.57%, and the MCE is 5.86. It is worth noting that a large gap with the β comes from the
FoodMarket4 sequence of class A1, resulting in less than ideal coding complexity control.
This is because the sequence is more inclined to be divided into large blocks.

Table 4 also provides the RD performance of the method. These results show evidence
that our method is robust to different settings when the sequence is encoded with different
resolutions and different QPs. When the expected complexity was 90%, the BDBR of
different sequences ranged from 0.18% to 0.61%, with an average of 0.32%. When the
expected complexity is 80%, the BDBR of different sequences ranges from 0.13% to 0.72%,
with an average of 0.36%. When the expected complexity was 70%, the BDBR of different
sequences ranged from 0.49% to 1.64%, with an average of 0.87%. The BDBR increases with
the control complexity, which is acceptable since the coding complexity and the BDBR are
mutually constrained.

The proposed algorithm can save more time than the algorithm in [29] with the same
target complexity. The average time saving of the algorithm in this paper exceeds the
target complexity, while that in [29] is smaller than the target complexity. In contrast, this
indicates that our algorithm is less prone to delays in encoding. It is worth mentioning that
interactivity is very important for video conferencing, and the delay caused by encoding
will seriously affect real-time interactivity. In these cases, saving more time rather than
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saving more bitrate compared to the encoding time rate is a better solution for processing
the video.

4. Conclusions

In this paper, we proposed a VVC intra complexity control algorithm with an applica-
tion of texture entropy, which is able to accurately control the coding complexity under the
condition of slight loss of RD performance, so that the VVC encoder can be used in different
computing power and power-limited video equipment. The method firstly proposes a
frame-level complexity allocation and control algorithm based on the phenomenon that
the coding time ratio of adjacent frames is basically the same. Then, the proposed method
uses the texture entropy and the CU decision model of SVM to adaptively control the
coding complexity of the CU level. The experimental results show that the algorithm
can effectively control the complexity when BDBR performs well and save more coding
complexity than a state-of-the-art method, resulting in less delay. In the feature, we plan to
control the inter-coding complexity on VVC with a learning method and features reflecting
temporal correlation.
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