
Citation: Gupta, S.; Iyer, S.;

Agarwal, G.; Manoharan, P.;

Algarni, A.D.; Aldehim, G.;

Raahemifar, K. Efficient Prioritization

and Processor Selection Schemes for

HEFT Algorithm: A Makespan

Optimizer for Task Scheduling in

Cloud Environment. Electronics 2022,

11, 2557. https://doi.org/10.3390/

electronics11162557

Academic Editor: Cheng-Chi Lee

Received: 27 June 2022

Accepted: 9 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Efficient Prioritization and Processor Selection Schemes for
HEFT Algorithm: A Makespan Optimizer for Task Scheduling
in Cloud Environment
Sachi Gupta 1, Sailesh Iyer 2, Gaurav Agarwal 3, Poongodi Manoharan 4,* , Abeer D. Algarni 5, Ghadah Aldehim 6

and Kaamran Raahemifar 7,8,9

1 Department of Information Technology, IMS Engineering College, Ghaziabad 201015, India
2 Department of Computer Science & Engineering, Rai School of Engineering, Rai University,

Ahmedabad 382260, India
3 Department of Computer Science & Engineering, IMS Engineering College, Ghaziabad 201015, India
4 Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa

University, Doha 500001, Qatar
5 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
6 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
7 College of Information Sciences and Technology, Data Science and Artificial Intelligence Program, Penn State

University, State College, PA 16801, USA
8 School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave W,

Waterloo, ON N2L3G1, Canada
9 Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L3G1, Canada
* Correspondence: dr.m.poongodi@gmail.com

Abstract: Cloud computing is one of the most commonly used infrastructures for carrying out
activities using virtual machines known as processing units. One of the most fundamental issues
with cloud computing is task scheduling. The optimal determination of scheduling criteria in cloud
computing is a non-deterministic polynomial-time (NP)-complete optimization problem, and several
procedures to manage this problem have been suggested by researchers in the past. Among these
methods, the Heterogeneous Earliest Finish Time (HEFT) algorithm is recognized to produce optimal
outcomes in a shorter time period for scheduling tasks in a heterogeneous environment. Literature
shows that HEFT gives extraordinary results in terms of quality of schedule and execution time.
However, in some cases, the average computation cost and selection of the first idle slot may not
produce a good solution. Therefore, here we propose modified versions of the HEFT algorithm that
can obtain improved results. In the rank generation phase, we implement different methodologies
for calculating ranks, while in the processor selection phase, we modify the way of selecting idle
slots for scheduling the tasks. This paper suggests enhanced versions of the HEFT algorithm under
user-required financial constraints to minimize the makespan of a specified workflow submission on
virtual machines. Our findings also suggest that enhanced versions of the HEFT algorithm perform
better than the basic HEFT method in terms of lesser schedule length of the workflow problems
running on various virtual machines.

Keywords: cloud computing; NP-complete; task scheduling; HEFT

1. Introduction

The cloud, or distributed computing worldwide, works on a “pay for every utiliza-
tion” pattern where clients use services available on the cloud without realizing the hosting
specifics and distribution policies [1–3]. This gives appropriate, on-request, and worldwide
access permission to a common collection of assets [4] (i.e., computing machines, intercon-
necting networks, storage space, net facilities, and so forth.) for a shortened time to shop

Electronics 2022, 11, 2557. https://doi.org/10.3390/electronics11162557 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11162557
https://doi.org/10.3390/electronics11162557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6801-6138
https://orcid.org/0000-0002-9835-7897
https://doi.org/10.3390/electronics11162557
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11162557?type=check_update&version=1

Electronics 2022, 11, 2557 2 of 15

for initiatives and determine logical findings. These assets can be steadily given to clients
with less effort and communication with the facility provider [5,6]. Cloud infrastructure
aims to provide a simple-to-utilize workspace for continuously changing and adaptable
applications. Such a workspace becomes obtainable through a combination of various com-
puter hardware and software package services. These available facilities empower clients
to send their submissions through cyberspace by indicating their accessibility, execution,
and quality of service (QoS) necessities [7]. Because of the divergent configuration, ar-
rangements, and deployment necessities of such submissions, the involved task scheduling
and asset managing approaches [8,9] become essential in developing the global effective-
ness and efficiency of the cloud framework. In a distributed framework, any job can be
imagined as implementing various tasks involved in it. These tasks can be divided into
two major categories: self-determining and reliant tasks. Self-determining tasks can be
performed simultaneously by numerous virtual machines (VMs), while reliant tasks should
be planned by fulfilling their dependency relationships. The dependency relationships can
be presented in the form of a directed acyclic graph (DAG) in which vertices of the graph
signify tasks and edges denote interconnections among the tasks [10,11]. It is necessary to
perform tasks having precedence constraints in a scheduling sequence, which can reduce
the complete scheduling makespan. However, for a task scheduling problem, discovering
the optimal results is recognized as NP-complete [10].

Scheduling of tasks in a multiprocessor environment can be generally divided into two
key classes: deterministic and non-deterministic scheduling. Deterministic (compile-time)
scheduling can be again classified into two subcategories, i.e., guided random search-based
(GRSB) [12–14] and heuristics-related [15,16]. Deterministic task scheduling is also known
as static scheduling. The GRSB algorithms (genetics-based methods) are more costly than
heuristics-related scheduling algorithms as GRSB methods require additional repetitions to
generate an improved makespan. On the other hand, the heuristics-related methods provide
estimated solutions in less than the polynomial time. The heuristics-related techniques can
be classified as duplication-related [17,18], list-based [19–21], and clustering-based [22,23].
The heuristics based on the duplication concept have higher time complexity, while those
based on clustering are increasingly reasonable for homogeneous or similar frameworks. In
this paper, list-based heuristics are considered because of their reduced time-involvedness
and advanced proficiency to deliver a shorter makespan. The list-based heuristics work
in two stages for scheduling the queue of tasks. In the initial stage, rank is calculated for
individual tasks before arranging them in descending order. In the subsequent stage, the
task with the maximum rank value is scheduled on the available machine. Among the list
scheduling procedures for diverse computing, the HEFT procedure [24] has gained much
popularity due to its low cost and high-performance trade-off. HEFT produces shorter
schedule lengths in contrast with other scheduling procedures at a lower cost.

Objectives of the study: In this work, modified versions of the HEFT algorithm are
proposed in which different options are used for computing the ranks of the tasks as well
as for selecting idle slots, preserving the insertion-based policy of the HEFT algorithm. We
find that options other than the average value of computation cost (basic HEFT algorithm)
significantly affect the schedule length.

The above-mentioned objective of the paper will be achieved by performing the
following tasks in this paper:

• We will lay out the issue of task scheduling on varied machines and the related features
in the cloud framework for proficiently arranging the specified jobs on the accessible
VMs by including the dependency constraints among the tasks, task’s heterogeneity,
and the accessible cloud asset’s heterogeneity in settling the scheduling conclusions.

• Three versions of the basic HEFT algorithm will be designed and developed.

MXCT (HEFT with maximum computation cost).
MNCT (HEFT with minimum computation cost).
AVBS (HEFT with average commutation cost and best idle slot).

Electronics 2022, 11, 2557 3 of 15

• The above algorithms will compute the ranks of individual tasks and choose the
suitable VM for each specified job so that the total finishing time of the arranged jobs
is minimized.

• We will systematically assess and relate the suggested algorithms with the basic HEFT
algorithm, named here as the AVCT algorithm, on arbitrarily created directed acyclic
graphs of real-world applications.

Contributions of this study: This paper contributes to the literature by proposing and
implementing some better-enhanced versions of the HEFT algorithm used in different
schemes for rank calculation and processor selection. From computational experiments and
analyses, it is noticed that there are noteworthy differences between the performance of the
original HEFT method (AVCT approach) and modified versions of the HEFT algorithm
(MXCT, MNCT, and AVBS) in terms of the produced schedule makespan. These indicate
that the schedule length will be affected notably by the scheme used. It is also noticed that
the use of an average value scheme for computing the ranks and selecting the first idle
slot, as the AVCT algorithm does, is not always a good choice. Our findings also indicate
that enhanced versions of the HEFT algorithm perform better in comparison with the basic
HEFT procedure in terms of improved makespan of the workflow problems running on
various virtual machines.

The structure of this paper is as follows: Section 2 is about related work; Section 3 de-
scribes the system model and objective function; Section 4 is the HEFT algorithm; Section 5
explains the proposed methodology; and Section 6 discusses tests and results. Section 7
concludes the paper.

2. Related Work

In the past, various list scheduling procedures have been suggested to solve task
scheduling problems. The HEFT algorithm [15] iteratively estimates ascendant rank values
of tasks with an average cost of communication and computation. To estimate ascendant
rank values, standard deviation-based task scheduling (SDBATS) [10] practices the standard
deviation of computing and transmission expenses. Critical Path on a Processor (CPOP) [15]
adds ascendant and descendant rank values to make a precedence column and critical track.
Performance effective task scheduling (PETS) [25] adds the average cost of computation,
cost of data transmission, and cost of data reception to each step of a directed acyclic
graph to fix the rank values of specified jobs. Duplication-based Heterogeneous Earliest
Finish Time (HEFD) [18] practices task variance as a property of heterogeneousness to
estimate computation as well as transmission costs between tasks. PEFT [24] is built on the
look-ahead method and calculates an optimistic cost value table to estimate descendent
jobs (OCT). The OCT is a two-dimensional array with rows and columns representing the
number of jobs and processors. Moreover, each element OCT (ti, pi) shows the maximum
of the shortest routes of ti task to the leaving node, seeing that the machine pi is nominated
for task ti. All of the calculations in these methods are based on the standard deviation
or average of task weights on accessible machines, and do not take into account the
framework’s heterogeneity. The latest effort reflects standard deviation to include tasks
and heterogeneity on existing machines. Based on the above literature survey, various
task scheduling algorithms [26,27], parameters, tools, improvements, and limitations of
algorithms have been analyzed (see Table 1).

Electronics 2022, 11, 2557 4 of 15

Table 1. Review of task scheduling algorithm.

S. No. Related Research Working Model Pross Cons

1.

2002-Topcuoglu
(HEFT)
2002-Topcuoglu
(CPOP)

• Prioritizing tasks according to their
rank value.

• Allocate tasks to suitable
processers (which provide the
earliest finish time).

• Minimize the make spam.
• Lower time complexity.

• provide approximate
outcomes, which generally
come with polynomial
time complexity.

2. 2013-
Munir (SDBATS)

• practices the standard deviation of
computing and
transmission expenses.

• significant reduction in
the overall execution time

• when the cost of
communication is too high,
task scheduling is unfair.

3. 2005-
Ilavasaran (PETS)

• adds the average cost of
computation, cost of data
transmission, and cost of
data reception.

• Minimize the makespan. • it does not consider the path
length as used in HEFT

4. 2010-
Tang (HEFD)

• practices task variance as a
property of heterogeneousness to
estimate computation as well as
transmission costs between tasks

• Lower time complexity. • provide
approximate outcomes

5. 2013-
Arabnejad (PEFT)

• built on the look-ahead method
and calculates an optimistic cost
value table to estimate
descendent jobs

• puts forward the priority
weights OCT table by
introducing a
look-ahead feature

• does not give a reasonable
allocation strategy

6. 2016-Bansal • cost and load balancing metrics
• Improved performance in

comparison with the
traditional methods.

• Comparison is done only
with the
traditional methods.

7. 2016-Abdullahi
• Imbalance degree, makespan time,

and overall execution time

• Improved performance
through reducing the
degree of imbalance
and timespan

• Only work for
load balancing.

Based on the findings, it can be stated that the HEFT method can compete with the
current scheduling algorithms in the cloud environment also, but its efficiency can be
improved by modifying its prioritization and processor selection methods. We propose that
the efficiency of the HEFT algorithm can be enhanced by considering the three versions
of the basic HEFT algorithm. This work proposes two schemes of rank calculation and
one different approach to idle slot selection. Then, we analyze the makespan of the
schedules generated by each version and consider the minimum length makespan the
final result. This may increase the cost of the algorithm to some extent, but it is a trade-off
between performance and time complexity. Our wide-ranging assessment illustrates that
the projected versions produce high-value schedules in terms of reduced schedule length
and increased effectiveness.

3. The System Model and Objective Function

The model of scheduling structure contains a submission (application), a target compu-
tational framework, and scheduling standards. An application or a problem can be denoted
as a DAG = G (T, E, R, C) (see Figure 1), where T = ti, i = 0, 1, 2, . . . , n − 1 is a group of
n tasks [28–35]. Symbol E signifies a group of edges between tasks E = {ei,j, i < j}, and ei,j
illustrates the precedence restrictions between two related tasks. Tasks ti, tj ∈ T, which are
linked to one another, denoting the precedence restriction of task tj being conditional on
task ti for its running. It similarly demonstrates that the result of task ti will be applied
as an input value for task tj, and tj cannot begin its execution before ti. Task tj is the
descendant of ti and ti is the ancestor of ti. Here, R represents a 2D matrix of size vxm,
and Rij in R represents the expected running time of on jth processor. A matrix CMC(txt)
represents the cost of communication between any two tasks ti and tj. In the provided
directed acyclic graph, an entering job is one without an ancestor, and an exit task is one
without a descendant.

Electronics 2022, 11, 2557 5 of 15

Electronics 2022, 11, x FOR PEER REVIEW 5 of 15

conditional on task for its running. It similarly demonstrates that the result of task will

be applied as an input value for task 𝒕𝒋, and cannot begin its execution before . Task is

the descendant of and is the ancestor of . Here, 𝑹 represents a 2D matrix of size 𝑣𝑥𝑚, and

𝑹𝒊𝒋 in 𝑹 represents the expected running time of on 𝒋𝐭𝐡 processor. A matrix 𝑪𝑴𝑪(𝒕𝒙𝒕)

represents the cost of communication between any two tasks and . In the provided

directed acyclic graph, an entering job is one without an ancestor, and an exit task is one

without a descendant.

Figure 1. A model DAG.

A cloud framework includes a set 𝐕𝐌 = {𝐯𝐦𝐢, 𝐰𝐡𝐞𝐫𝐞 𝐢 = 𝟎, 𝟏, 𝟐, … , 𝐦 − 𝟏} of 𝐦 self-

regulating VMs which are completely interconnected over a high-rate network (see Figure

2). Due to the varying network bandwidth of cloud infrastructure, the data transfer

frequency (DTF) may change. DTF can be represented as a 𝐦𝐱𝐧 two-dimensional array,

and between any two VMs as 𝐃𝐓𝐅𝐦𝐱𝐦 . The probable execution cost (PEC) can be

represented by an additional two-dimensional array 𝐏𝐄𝐂𝐧𝐱𝐦 to perform a task on a VM,

𝐯𝐦𝐣 , where 𝟎 ≤ 𝐢 ≤ 𝐧 − 𝟏 and 𝟎 ≤ 𝐣 ≤ 𝐦 − 𝟏. The PEC builds upon the computational

speed of a VM and can be distinct for each one of the VMs.

The cost of communication between and rests on two different aspects. The initial

one is the installed frequency at the processors on dual sides of communications and the

next is the correspondence cost value of the frequency. We assume that each VM’s

workstations may send data to other VMs’ workstations without causing congestion on

the transmission channel. We also consider that jobs planned on the same virtual machine

have no communication costs.

The purpose of the task arrangement challenge is to plan all the tasks of a provided

submission to machines so that the completion time of a given application is lessened,

fulfilling each precedence restriction.

Figure 1. A model DAG.

A cloud framework includes a set VM = {vmi, where i = 0, 1, 2, . . . , m − 1} of m
self-regulating VMs which are completely interconnected over a high-rate network (see
Figure 2). Due to the varying network bandwidth of cloud infrastructure, the data transfer
frequency (DTF) may change. DTF can be represented as a mxn two-dimensional array, and
between any two VMs as DTFmxm. The probable execution cost (PEC) can be represented
by an additional two-dimensional array PECnxm to perform a task ti on a VM, vmj, where
0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. The PEC builds upon the computational speed of a VM
and can be distinct for each one of the VMs.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 15

Figure 2. Task scheduling in a cloud-based framework.

4. Basic HEFT Algorithm

The earliest finish time algorithm in a heterogeneous environment, also called HEFT,

is designed for scheduling the tasks of a DAG onto heterogeneous processors. The HEFT

procedure has two major levels: the first is the rank generation level and the second is the

processor selection phase. In the rank generation phase, HEFT calculates ranks for all the

tasks and assigns priorities according to decreasing order of their rank values. Based on

the average costs of computation and transmission, we first assign weights to each node

and edge of the DAG for rank calculation. In the processor selection stage, HEFT selects

the tasks as per their priority values and schedules each nominated task on its most suited

processor, which can reduce the task’s schedule length. HEFT also follows an insertion-

oriented procedure in which a task can be arranged in an empty slot amid two previously

planned jobs on a machine if precedence restrictions are well-preserved. The HEFT

algorithm searches for an idle slot on a processor until it finds the first empty slot that can

carry the cost of computation of the selected task.

The HEFT procedure uses average computation and communication costs as weights

in the DAG for rank calculation, and for processor selection, it always considers the first

idle slot to schedule the tasks. However, in some cases, the average computation cost and

selection of the first idle slot may not generate a good solution. To clarify this, consider a

sample DAG (see Figure 3). The edges of sample DAG are labelled with the average

communication cost. The probable execution cost of every task on three distinct VMs is

shown in Table 2. In this example, if tasks are prioritized using average computation cost

over all the three VMs (as in basic HEFT), then scheduling order becomes

𝑻𝟏, 𝑻𝟐, 𝑻𝟑, 𝑻𝟒, 𝑻𝟔, 𝑻𝟖, 𝑻𝟓, 𝑻𝟏𝟎, 𝑻𝟕, 𝑻𝟗 and schedule length becomes 98 (see Figure 4). Suppose

priorities are assigned using the maximum value of computation cost over all the three

VMs on which a task may run. In that case, the scheduling order of tasks becomes

𝑻𝟏, 𝑻𝟐, 𝑻𝟑, 𝑻𝟒, 𝑻𝟔, 𝑻𝟖, 𝑻𝟓, 𝑻𝟏𝟎, 𝑻𝟗, 𝑻𝟕 and schedule length becomes to 96 (see Figure 5), which

is smaller than the schedule length calculated by the basic HEFT algorithm. In a similar

way, if priorities are assigned using the minimum value of computation cost over all the

three VMs on which a task may run then the scheduling order of tasks and the scheduling

length becomes the same as they were found in the basic HEFT algorithm (see Figure 6).

Figure 2. Task scheduling in a cloud-based framework.

The cost of communication between vmx and vmy rests on two different aspects. The
initial one is the installed frequency at the processors on dual sides of communications
and the next is the correspondence cost value of the frequency. We assume that each VM’s
workstations may send data to other VMs’ workstations without causing congestion on
the transmission channel. We also consider that jobs planned on the same virtual machine
have no communication costs.

The purpose of the task arrangement challenge is to plan all the tasks of a provided
submission to machines so that the completion time of a given application is lessened,
fulfilling each precedence restriction.

4. Basic HEFT Algorithm

The earliest finish time algorithm in a heterogeneous environment, also called HEFT,
is designed for scheduling the tasks of a DAG onto heterogeneous processors. The HEFT
procedure has two major levels: the first is the rank generation level and the second is
the processor selection phase. In the rank generation phase, HEFT calculates ranks for all

Electronics 2022, 11, 2557 6 of 15

the tasks and assigns priorities according to decreasing order of their rank values. Based
on the average costs of computation and transmission, we first assign weights to each
node and edge of the DAG for rank calculation. In the processor selection stage, HEFT
selects the tasks as per their priority values and schedules each nominated task on its
most suited processor, which can reduce the task’s schedule length. HEFT also follows an
insertion-oriented procedure in which a task can be arranged in an empty slot amid two
previously planned jobs on a machine if precedence restrictions are well-preserved. The
HEFT algorithm searches for an idle slot on a processor until it finds the first empty slot
that can carry the cost of computation of the selected task.

The HEFT procedure uses average computation and communication costs as weights
in the DAG for rank calculation, and for processor selection, it always considers the first idle
slot to schedule the tasks. However, in some cases, the average computation cost and selec-
tion of the first idle slot may not generate a good solution. To clarify this, consider a sample
DAG (see Figure 3). The edges of sample DAG are labelled with the average communication
cost. The probable execution cost of every task on three distinct VMs is shown in Table 2.
In this example, if tasks are prioritized using average computation cost over all the three
VMs (as in basic HEFT), then scheduling order becomes T1, T2, T3, T4, T6, T8, T5, T10, T7, T9
and schedule length becomes 98 (see Figure 4). Suppose priorities are assigned using the
maximum value of computation cost over all the three VMs on which a task may run.
In that case, the scheduling order of tasks becomes T1, T2, T3, T4, T6, T8, T5, T10, T9, T7 and
schedule length becomes to 96 (see Figure 5), which is smaller than the schedule length
calculated by the basic HEFT algorithm. In a similar way, if priorities are assigned using
the minimum value of computation cost over all the three VMs on which a task may run
then the scheduling order of tasks and the scheduling length becomes the same as they
were found in the basic HEFT algorithm (see Figure 6).

Electronics 2022, 11, x FOR PEER REVIEW 7 of 15

Figure 3. A model DAG with 10 tasks.

Table 2. Probable execution cost (PEC) matrix.

Task VM1 VM2 VM3

T1 10 6 9

T2 10 23 23

T3 10 9 7

T4 18 17 18

T5 5 2 23

T6 7 5 16

T7 17 9 17

T8 40 16 19

T9 18 9 8

T10 26 10 24

On the other hand, if the selection of an idle slot in the processor selection phase is

modified, the length of schedules obtained may change. Here, rank calculation is executed

by using the average value of computation cost. In the above example, if we select an idle

slot in which a task has the least ending time instead of the very initial slot, the schedule

length is reduced to 89 as the task 𝐓𝟓 is now scheduled on VM2 (22 to 27, see Figure 7)

instead of VM1 (24 to 26 in case of basic HEFT, see Figure 4). Here, we find that the average

value of computation cost for calculating ranks and selection of the first idle slot for

scheduling of tasks is not necessarily the best effective choices. More importantly, the

length of the schedules obtained may vary from one alternative to another. The question

that motivated us to perform this work is “what are the significant variations in schedule

length” if we modify the basic HEFT algorithm by using different options to calculate the

ranks of the tasks as well as different schemes to select an idle slot.

Figure 3. A model DAG with 10 tasks.

Electronics 2022, 11, 2557 7 of 15

Table 2. Probable execution cost (PEC) matrix.

Task VM1 VM2 VM3

T1 10 6 9
T2 10 23 23
T3 10 9 7
T4 18 17 18
T5 5 2 23
T6 7 5 16
T7 17 9 17
T8 40 16 19
T9 18 9 8

T10 26 10 24

Electronics 2022, 11, x FOR PEER REVIEW 8 of 15

Figure 4. Scheduling of DAG with original HEFT algorithm (use of average computation cost in

rank calculation). The schedule length is 98.

Figure 5. Scheduling of DAG with modified HEFT algorithm (use of maximum computation cost in

rank calculation). The schedule length is 96.

Figure 4. Scheduling of DAG with original HEFT algorithm (use of average computation cost in rank
calculation). The schedule length is 98.

On the other hand, if the selection of an idle slot in the processor selection phase is
modified, the length of schedules obtained may change. Here, rank calculation is executed
by using the average value of computation cost. In the above example, if we select an idle
slot in which a task has the least ending time instead of the very initial slot, the schedule
length is reduced to 89 as the task T5 is now scheduled on VM2 (22 to 27, see Figure 7)
instead of VM1 (24 to 26 in case of basic HEFT, see Figure 4). Here, we find that the
average value of computation cost for calculating ranks and selection of the first idle slot
for scheduling of tasks is not necessarily the best effective choices. More importantly, the
length of the schedules obtained may vary from one alternative to another. The question
that motivated us to perform this work is “what are the significant variations in schedule
length” if we modify the basic HEFT algorithm by using different options to calculate the
ranks of the tasks as well as different schemes to select an idle slot.

Electronics 2022, 11, 2557 8 of 15

Electronics 2022, 11, x FOR PEER REVIEW 8 of 15

Figure 4. Scheduling of DAG with original HEFT algorithm (use of average computation cost in

rank calculation). The schedule length is 98.

Figure 5. Scheduling of DAG with modified HEFT algorithm (use of maximum computation cost in

rank calculation). The schedule length is 96.

Figure 5. Scheduling of DAG with modified HEFT algorithm (use of maximum computation cost in
rank calculation). The schedule length is 96.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 15

Figure 6. Scheduling of DAG with modified HEFT algorithm (use of minimum computation cost in

rank calculation). The schedule length is 98.

Figure 7. Scheduling of DAG with modified HEFT algorithm (use of minimum schedule length idle

slot in processor selection). The schedule length is 89.

Figure 6. Scheduling of DAG with modified HEFT algorithm (use of minimum computation cost in
rank calculation). The schedule length is 98.

Electronics 2022, 11, 2557 9 of 15

Electronics 2022, 11, x FOR PEER REVIEW 9 of 15

Figure 6. Scheduling of DAG with modified HEFT algorithm (use of minimum computation cost in

rank calculation). The schedule length is 98.

Figure 7. Scheduling of DAG with modified HEFT algorithm (use of minimum schedule length idle

slot in processor selection). The schedule length is 89.

Figure 7. Scheduling of DAG with modified HEFT algorithm (use of minimum schedule length idle
slot in processor selection). The schedule length is 89.

5. Proposed Methodology for Cloud Environment

Here we propose the modified versions of the basic HEFT algorithm to obtain more
optimal results for task arrangement problems in the cloud environment. In the rank
generation phase, we implement a different methodology for calculating ranks, while in
the resource selection phase, we modify the way of selecting idle slots for scheduling the
given tasks. These modifications do not include any additional cost compared to the basic
HEFT algorithm. Proposed changes in the phases of the original HEFT algorithm are as
follows (Algorithm 1):

Electronics 2022, 11, 2557 10 of 15

Algorithm 1: HEFT

Begin

Step 1. In DAG, label the nodes and edges with the average values of computation cost and
communication cost respectively.

Step 2. Calculate Rankup(Ti)/Rankdw(Ti) using equation (1) or (2)/(3) or (4) for each task by
passing through the DAG in an upward/ downward direction, starting from the last
task/first task.

Step 3. Arrange the tasks in a scheduling queue in order of their decreasing Rankup(Ti) or
increasing Rankdw(Ti) values.

Step 4. While there are unallocated tasks in the scheduling queue do

Pick the first task, ni,from the scheduling queue.
For each virtual machine pk in the machine set do
Calculate Earliest Finish Time (ni,pk) value using the insertion-based
allocation policy
Allocate task ni to the machine pj that minimizes the EFT value of task
ni

End For

Step 5. End while.

End

5.1. Rank Generation Phase

At this level, the precedence of each task should be determined with the ascendant or
descendant rank value. The subsequent formulas recursively compute the upward rank of
a task:

If task Ti is an exit (leaf) task, then the rank of task Ti is specified by the following
rank function:

Rankup(Ti) = f
(

w1
i , . . . wk

i , . . . wn
i

)
(1)

Else

Rankup(Ti) = f
(

w1
i , . . . wk

i , . . . wn
i

)
+ max
∀Tz∈ suc(Ti)

(avg (commi,z) + Rankup(Tz)) (2)

Here, wi
k is the execution amount of task Ti on resource k and 1 ≤ k ≤ n, suc(Ti) is the

group of the direct descendants of task Ti and avg(commi,z) is the average communication
cost between the tasks Ti and Tz. Here f denotes a function which can be the max, min,
or average value of computation cost. The rank is called upward rank value because it is
calculated recursively from the exit node.

If task Ti is an entry task, then rank of task Ti is specified by the rank function:

Rankdw(Ti) = 0 (3)

Else

Rankdw(Ti) = max
∀Tz∈ pre(Ti)

(avg (commz,i) + Rankdw(Tz) + f
(

w1
i , . . . wk

i , . . . wn
i

)
) (4)

where pre(Ti) is the set of immediate ancestors of task Ti.
After computing the ranks for each task, a task list is produced by arranging the tasks

according to their reducing order of Rankup.

5.2. Resources’ Selection Phase

We propose a different approach for determining the idle slot for chosen task. In the
proposed methodology, the hunt for a suitable idle slot for a task on a resource starts when
all predecessors of task Ti sent the required input data to that resource. The search persists

Electronics 2022, 11, 2557 11 of 15

until obtaining an idle slot that is competent enough to hold the computation cost of task
Ti and in which selected task Ti has the least finish time.

6. Experiments, Results, and Discussion

In this effort, we have designed a system that implements the basic HEFT algorithm,
permitting various possibilities for task prioritization and processor selection. Its inputs
are the number of tasks, number of VMs, probable execution cost matrix, communication
cost, and a DAG (which shows dependencies). To assess the efficiency of our projected
algorithms, we produce scheduling problems of varying ranges and solve them by basic and
modified versions of HEFT algorithms. Specifics of experimental arrangement and findings
obtained by basic HEFT and modified versions of HEFT algorithm are mentioned below:

6.1. Experimental Arrangement

We developed a system that generates essential-size scheduling problems automati-
cally. This is done to avoid biasing while selecting values for various parameters that are
essential for the problems. Our scheme generates random values in suitable ranges for
these parameters. With the following properties, we have generated problems for our tests:

• Problem size (No. of tasks) ranges from 50 to 80 with an interval of 5.
• Every task, excluding the exit task, has an arbitrary number of offspring between 0

and 10.
• Each task’s implementation time can be any value between 1 and 20.
• The communication time between tasks is an arbitrary number that ranges from 1

to 50.
• The total quantity of VMs is considered as either 4 or 5.

In each DAG, the ranks of tasks are calculated by the upward rank calculation formula.

6.2. Investigation on Rank Generation Phase

Three techniques are used to calculate a value for the method f in rank function:
(i) The AVCT (average computation cost) approach returns an average computation cost of
a task over all the VMs (this approach is used in basic HEFT). (ii) The MXCT (maximum
computation cost) approach returns the maximum computation cost of a task over all
the VMs. (iii) The MNCT (minimum computation cost) approach returns the minimum
computation cost of a task over all the VMs. In all three approaches, the very first idle
slot that can hold the computation cost of a task is considered (as in basic HEFT). We run
the basic HEFT algorithm (AVCT approach) as well as our proposed schemes (MXCT and
MNCT approaches) on a hundred diverse problems with problem identification numbers
(PIN) 800 to 899 for problem size 80. Our experiments show that for 33% of problems, all
three algorithms give equal schedule lengths. For the remaining 67% of problems, the MXCT
approach gives equal schedule lengths in 36% of cases, better schedule lengths in 39% of
cases, and worse schedule lengths in 25% of cases in comparison with the AVCT approach.
Variations in schedule lengths obtained from the MXCT algorithm and AVCT algorithm
are shown in Figure 8. Similarly, for the rest, 67% of problems, the MNCT approach gives
equal schedule lengths in 27% of cases, better schedule lengths in 40% of cases, and worse
schedule lengths in 33% of cases compared to the AVCT approach. The variations in
schedule lengths obtained from the MNCT algorithm and AVCT algorithm are shown in
Figure 9. Table 3 represents a comparison of all three approaches for rank calculation.

Electronics 2022, 11, 2557 12 of 15

Electronics 2022, 11, x FOR PEER REVIEW 12 of 15

39% of cases, and worse schedule lengths in 25% of cases in comparison with the AVCT

approach. Variations in schedule lengths obtained from the MXCT algorithm and AVCT

algorithm are shown in Figure 8. Similarly, for the rest, 67% of problems, the MNCT

approach gives equal schedule lengths in 27% of cases, better schedule lengths in 40% of

cases, and worse schedule lengths in 33% of cases compared to the AVCT approach. The

variations in schedule lengths obtained from the MNCT algorithm and AVCT algorithm

are shown in Figure 9. Table 3 represents a comparison of all three approaches for rank

calculation.

Figure 8. Variations in schedule length obtained from AVCT approach and MXCT approach.

Figure 9. Variations in schedule length obtained from AVCT approach and MNCT approach.

Table 3. Comparison of AVCT, MXCT, and MNCT algorithms.

Problem Percentage Approaches Outcomes

33%

AVCT

Equal schedule length MXCT

MNCT

Comparison of AVCT Approach and MXCT

Approach

0

100

200

300

400

500

600

700

800

900

805 813 825 842 851 868 876 883 892

PIN

S
ch

ed
u
le

 L
en

g
th

AVCT

M XCT

Comparison of AVCT Approach and MNCT

Approach

0

100

200
300

400

500

600
700

800

900

80
0

80
9

81
7

82
9

84
3

85
4

86
4

87
1

88
4

89
1

PIN

S
ch

ed
u

le
 L

en
g

th

AVCT

M NCT

Figure 8. Variations in schedule length obtained from AVCT approach and MXCT approach.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 15

39% of cases, and worse schedule lengths in 25% of cases in comparison with the AVCT

approach. Variations in schedule lengths obtained from the MXCT algorithm and AVCT

algorithm are shown in Figure 8. Similarly, for the rest, 67% of problems, the MNCT

approach gives equal schedule lengths in 27% of cases, better schedule lengths in 40% of

cases, and worse schedule lengths in 33% of cases compared to the AVCT approach. The

variations in schedule lengths obtained from the MNCT algorithm and AVCT algorithm

are shown in Figure 9. Table 3 represents a comparison of all three approaches for rank

calculation.

Figure 8. Variations in schedule length obtained from AVCT approach and MXCT approach.

Figure 9. Variations in schedule length obtained from AVCT approach and MNCT approach.

Table 3. Comparison of AVCT, MXCT, and MNCT algorithms.

Problem Percentage Approaches Outcomes

33%

AVCT

Equal schedule length MXCT

MNCT

Comparison of AVCT Approach and MXCT

Approach

0

100

200

300

400

500

600

700

800

900

805 813 825 842 851 868 876 883 892

PIN

S
ch

ed
u
le

 L
en

g
th

AVCT

M XCT

Comparison of AVCT Approach and MNCT

Approach

0

100

200
300

400

500

600
700

800

900

80
0

80
9

81
7

82
9

84
3

85
4

86
4

87
1

88
4

89
1

PIN

S
ch

ed
u

le
 L

en
g

th

AVCT

M NCT

Figure 9. Variations in schedule length obtained from AVCT approach and MNCT approach.

Table 3. Comparison of AVCT, MXCT, and MNCT algorithms.

Problem Percentage Approaches Outcomes

33%
AVCT

Equal schedule lengthMXCT
MNCT

67%

MXCT vs. AVCT
36% Equal schedule length
39% MXCT gives better schedule length
25% MXCT gives worse schedule length

MNCT vs. AVCT
27% equal schedule length
40% MNCT gives better schedule length
33% MNCT gives worse schedule length

Electronics 2022, 11, 2557 13 of 15

From the analysis, it is experiential that there are significant differences amid the
performance of the basic HEFT method (AVCT approach) and modified versions of the
HEFT algorithm (MXCT and MNCT approaches). It is also noticed that the use of an
average value scheme for computing the ranks is not always a good choice. The result
analysis shows that MXCT and MNCT approaches can give better schedule length in
comparison with the basic HEFT algorithm, but it will be a time-consuming job to run all
three algorithms and find the best results.

6.3. Investigation on Resource Selection Phase

Two approaches are used to select an idle slot for scheduling a task: (i) AVCT approach
(basic HEFT algorithm—average commutation cost and very first idle slot). (ii) AVBS
(average commutation cost and best idle slot) approach always uses average computation
cost for calculating ranks and selects an idle slot in which the selected task has the least
finish time. We have taken a hundred sample problems of each size, ranging from 50 to
80 with an interval of 5. We test both the algorithms on sample problems and analyze the
results obtained from both the algorithms (see Table 4).

Table 4. Comparison of AVCT and AVBS algorithm.

Problem Size No. of Resources
AVCT Algorithm

(Average of
Hundred Problems)

AVBS Algorithm
(Average of

Hundred Problems)

50 4 425.50 425.14
55 4 457.34 457.32
60 4 491.12 490.94
65 4 548.24 548.26
70 4 574.66 574.18
75 5 623.21 622.02
80 5 665.97 665.61

According to analysis, the AVBS approach outperforms the AVCT algorithm. The
outcomes show that the AVBS procedure gives a shorter average schedule length in 86%
of problem sets and a slightly larger average schedule length in only 14% of problem sets
compared to the AVCT algorithm.

7. Conclusions

Cloud computing is a mode of computation where significantly scalable resources are
provided as services to clients using the Internet. Therefore, a cloud service provider has to
attend to more clients in the cloud computing framework. Task scheduling has consequently
emerged as one of the major challenges in setting up a cloud computing environment. In this
study, we proposed various versions of the heuristic-based algorithm (HEFT) that perform
tasks’ scheduling and assign resources optimally in the cloud computing environment. In
terms of schedule length, we find that our suggested heuristic method performs better
when compared to alternative methods, while the complexity of the proposed algorithms
remains the same as that of the basic HEFT algorithm. It is observed that the efficiency of
the original HEFT algorithm can be improved by selecting the best result from the schedules
obtained by each approach. This will lead to more time consumption as three algorithms
will be run, but there may be a trade-off between performance and running cost.

Future Work

Nature-inspired optimization algorithm-based scheduling can be further considered
for attaining more efficient task scheduling in the cloud context. Moreover, the existing
work can be extended for dynamic scheduling of tasks.

Electronics 2022, 11, 2557 14 of 15

Author Contributions: Conceptualization, S.G. and S.I.; methodology, G.A. (Gaurav Agarwal);
software, S.I.; validation, A.D.A. and G.A. (Ghadah Aldehim); formal analysis, A.D.A.; investigation,
P.M.; resources, K.R.; data curation, G.A. (Gaurav Agarwal); writing—original draft preparation, S.G.;
writing—review and editing, S.I.; visualization, A.D.A.; supervision, P.M.; project administration, G.A.
(Ghadah Aldehim). All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R51), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Acknowledgments: The authors would like to acknowledge Princess Nourah bint Abdulrahman
University Researchers Supporting Project number (PNURSP2022R51), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

References
1. Zomaya, A.Y. Parallel and Distributed Computing Handbook; McGraw-Hill: New York, NY, USA, 1996.
2. Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging IT platforms: Vision, hype, and reality

for delivering computing as the 5th utility. Future Gener. Comput. Syst. 2009, 25, 599–616. [CrossRef]
3. Tziritas, N.; Khan, S.U.; Xu, C.-Z.; Hong, J. An Optimal Fully Distributed Algorithm to Minimize the Resource Consumption

of Cloud Applications. In Proceedings of the 2012 IEEE 18th International Conference on Parallel and Distributed Systems,
Singapore, 17–19 December 2012; pp. 61–68.

4. Gupta, P.; Sharma, R.; Gupta, S. Resource Management, Issues, Challenges and Future Directions in Fog Computing: A
Comprehensive Survey. Des. Eng. 2021, 7, 14580–14593.

5. Li, J.; Li, Q.; Khan, S.U.; Ghani, N. Community-based cloud for emergency management. In Proceedings of the 2011 6th
International Conference on System of Systems Engineering, Albuquerque, NM, USA, 27–30 June 2011.

6. Hashemi, S.M.; Bardsiri, A.K. Cloud computing vs. grid computing. ARPN J. Syst. Softw. 2012, 2, 88–194.
7. Calheiros, R.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2010, 41, 23–50. [CrossRef]
8. Agarwal, G.; Maheshkar, V.; Maheshkar, S.; Gupta, S. Vocal Mood Recognition: Text Dependent Sequential and Parallel

Approach. In Proceedings of the International Conference on Signals, Machines and Automation (SIGMA’18), New Delhi, India,
23–25 February 2018.

9. Shin, K.S.; Park, M.-J.; Jung, J.-Y. Dynamic task assignment and resource management in cloud services by using bargaining
solution. Concurr. Comput. Pract. Exp. 2013, 26, 1432–1452. [CrossRef]

10. Munir, E.U.; Mohsin, S.; Hussain, A.; Nisar, M.W.; Ali, S. SDBATS: A Novel Algorithm for Task Scheduling in Heterogeneous
Computing Systems. In Proceedings of the 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum, Cambridge, MA, USA, 20–24 May 2013; pp. 43–53.

11. Radulescu, A.; Van Gemund, A.J. Fast and effective task scheduling in Heterogeneous system. In Proceedings of the 9th
Heterogeneous Computing Workshop, Cancun, Mexico, 1 May 2000.

12. Gupta, S.; Mittal, V.; Agarwal, G. Task Scheduling in Multiprocessor System Using Genetic Algorithm. In Proceedings of the 2nd
International Conference on Machine Learning and Computing (ICMLC-2010), Bangalore, India, 12–13 February 2010.

13. Gupta, S.; Agarwal, G.; Mittal, V. An Efficient and robust Genetic Algorithm for Multiprocessor Scheduling. Int. J. Comput. Theory
Eng. 2013, 5, 1793–8201. [CrossRef]

14. Goldberg, D.C. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989.
15. Topcuouglu, H.; Hariri, S.; Wu, M.-y. Performance-effective and low-complexity task scheduling for heterogeneous computing.

IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]
16. Gotoda, S.; Ito, M.; Shibata, N. Task scheduling algorithm for multi-core processor system for minimizing recovery time in case of

single node fault. In Proceedings of the IEEE CCGRID, Ottawa, ON, Canada, 13–16 May 2012; pp. 260–267.
17. Mei, J.; Li, K.; Li, K. A resource-aware scheduling algorithm with reduced task duplication on heterogeneous computing systems.

J. Supercomput. 2014, 68, 1347–1377. [CrossRef]
18. Tang, X.; Li, K.; Liao, G.; Li, R. List scheduling with duplication for heterogeneous computing systems. J. Parallel Distrib. Comput.

2010, 70, 323–329. [CrossRef]
19. Agarwal, G.; Gupta, S.; Saxena, P.; Mukherjee, S. Web Graph Based Ranking Algorithm for Search Engines. In Proceedings of

the International Conference on Network Communication and Computer (ICNCC-2011), New Delhi, India, 19–20 March 2011;
ISBN 9781424495504.

20. Gupta, S.; Mukherjee, S.; Agarwal, G. List Scheduling Heuristic: Efficient Prioritization and Processor Selection Schemes for
Heft Algorithm. In Proceedings of the International Conference on Industrial Applications of Soft Computing Techniques
(IIASCT-2011), Odisha, India, 20–22 August 2011; ISBN 9789381361221.

http://doi.org/10.1016/j.future.2008.12.001
http://doi.org/10.1002/spe.995
http://doi.org/10.1002/cpe.3124
http://doi.org/10.7763/IJCTE.2013.V5.713
http://doi.org/10.1109/71.993206
http://doi.org/10.1007/s11227-014-1090-4
http://doi.org/10.1016/j.jpdc.2010.01.003

Electronics 2022, 11, 2557 15 of 15

21. Agarwal, G.; Gupta, S.; Mukherjee, S. Web Graph Based Search by Using Density of Keywords and Age Factor. In Proceed-
ings of the International Conference on Computer Science and Information Technology (ICCSIT-2012), Hong Kong, China,
29–30 December 2012; ISBN 9789381693766.

22. Cirou, B.; Jeannot, E. Triplet: A clustering scheduling algorithm for heterogeneous systems. In Proceedings of the International
Conference on Parallel Processing Workshop, Valencia, Spain, 3–7 September 2001.

23. Fiore, U.; Palmieri, F.; Castiglione, A.; de Santis, A. A cluster-based data-centric model for network-aware task scheduling in
distributed systems. Int. J. Parallel Program. 2014, 42, 755–775. [CrossRef]

24. Arabnejad, H.; Barbosa, J.G. List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table. IEEE Trans.
Parallel Distrib. Syst. 2013, 25, 682–694. [CrossRef]

25. Ilavarasan, E.; Thambidurai, P.; Mahilmannan, R. Performance effective task scheduling algorithm for heterogeneous computing
system. In Proceedings of the ISPDC. IEEE Computer Society, Lillie, France, 4–6 July 2005; pp. 28–38.

26. Bansal, N.; Awasthi, A.; Bansal, S. Task Scheduling Algorithms with Multiple Factor in Cloud Computing Environment. In
Information Systems Design and Intelligent Applications; Springer: Berlin, Germany, 2016.

27. Abdullahi, M.; Ngadi, A.; Abdulhamid, S.M. Symbiotic Organism Search optimization based task scheduling in cloud computing
environment. Future Gener. Comput. Syst. 2016, 56, 640–650. [CrossRef]

28. Dai, Y.; Zhang, X. A Synthesized Heuristic Task Scheduling Algorithm. Sci. World J. 2014, 2014, 465702. [CrossRef] [PubMed]
29. Ali, S.; Siegel, H.; Maheswaran, M.; Hensgen, D. Task execution time modelling for heterogeneous computing systems. In

Proceedings of the 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No. PR00556), Cancun, Mexico, 1 May 2000;
pp. 185–199.

30. Agarwal, G.; Om, H. Parallel training models of deep belief network using MapReduce for the classifications of emotions. In
International Journal of System Assurance Engineering and Management; Springer: Berline, Germany, 2021.

31. Rathore, M.S.; Poongodi, M.; Saurabh, P.; Lilhore, U.K.; Bourouis, S.; Alhakami, W.; Osamor, J.; Hamdi, M. A novel trust-based
security and privacy model for Internet of Vehicles using encryption and steganography. Comput. Electr. Eng. 2022, 102, 108205.
[CrossRef]

32. Poongodi, M.; Bourouis, S.; Ahmed, A.N.; Vijayaragavan, M.; Venkatesan, K.G.S.; Alhakami, W.; Hamdi, M. A Novel Secured
Multi-Access Edge Computing based VANET with Neuro fuzzy systems based Blockchain Framework. Comput. Commun. 2022,
192, 48–56.

33. Ramesh, T.R.; Lilhore, U.K.; Poongodi, M.; Simaiya, S.; Kaur, A.; Hamdi, M. Predicitive Analysis of Heart Diseases with Machine
Learning Approaches. Malays. J. Comput. Sci. 2022, 132–148.

34. Poongodi, M.; Malviya, M.; Hamdi, M.; Vijayakumar, V.; Mohammed, M.A.; Rauf, H.T.; Al-Dhlan, K.A. 5G based Blockchain
network for authentic and ethical keyword search engine. IET Commun. 2022, 16, 442–448.

35. Poongodi, M.; Malviya, M.; Kumar, C.; Hamdi, M.; Vijayakumar, V.; Nebhen, J.; Alyamani, H. New York City taxi trip duration
prediction using MLP and XGBoost. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 16–27. [CrossRef]

http://doi.org/10.1007/s10766-013-0289-y
http://doi.org/10.1109/TPDS.2013.57
http://doi.org/10.1016/j.future.2015.08.006
http://doi.org/10.1155/2014/465702
http://www.ncbi.nlm.nih.gov/pubmed/25254244
http://doi.org/10.1016/j.compeleceng.2022.108205
http://doi.org/10.1007/s13198-021-01130-x

	Introduction
	Related Work
	The System Model and Objective Function
	Basic HEFT Algorithm
	Proposed Methodology for Cloud Environment
	Rank Generation Phase
	Resources’ Selection Phase

	Experiments, Results, and Discussion
	Experimental Arrangement
	Investigation on Rank Generation Phase
	Investigation on Resource Selection Phase

	Conclusions
	References

